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The paper presents procedures for detection of changes in mean. In particular test proce-
dures based on ratio type test statistics that are functionals of partial sums of residuals are
studied. We explore the possibility of applying the bootstrap method for obtaining critical
values of the proposed test statistics and derive the limit behavior of the block bootstrap
statistic for the L2 procedure.

1. I n t r o d u c t i o n

Ratio type statistics studied in this paper are derived from non-ratio statistics based
on partial sums of residuals. They do not need to be standardized by any variance es-
timate, which makes them a suitable alternative for non-ratio statistics, most of all in
situations, when it is difficult to find a variance estimate with satisfactory properties.
Such difficulty can occur in situations with dependent random errors (see e.g. [1]).

We describe basic properties and asymptotic behavior of statistics for change de-
tection in location model with at most one abrupt change in the mean, while assum-
ing to have data obtained in ordered time points and study the null hypothesis of no
change against the alternative of a change occurring at some unknown time point. We
extend the ideas presented by Horváth et al. in [5] and Hušková in [6]. In order to
obtain critical values for the studied test statistic, we focus on the circular moving
block bootstrap method. The method was introduced by Politis and Romano in [10]
and applied in a similar situation by Kirch in [8].
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2. M o d e l d e s c r i p t i o n a n d t h e t e s t s t a t i s t i c s

Let us consider observations Y1, . . . ,Yn that were obtained at n time-ordered points.
We study the location model with at most one abrupt change in mean:

Yk = µ + dI{k > z} + ek, k = 1, . . . , n, (1)

where µ, d = dn and z = zn are unknown parameters and I{A} denotes the indicator of
set A, z is called the change-point. By e1, . . . , en, we denote the random error terms.
We are going to test the null hypothesis that no change occurred

H0 : z = n (2)

against the alternative that change occurred at some unknown time-point z

H1 : z < n, d � 0. (3)

Following the ideas described in [5], [6] and [7], a test statistic based on M-residuals
is considered:

Tn(ψ) = max
nγ≤k≤n−nγ

max
1≤i≤k

∣∣∣∣ ∑
1≤ j≤i
ψ(Yj − µ̂1k(ψ))

∣∣∣∣

max
k≤i≤n

∣∣∣∣ ∑
i+1≤ j≤n

ψ(Yj − µ̂2k(ψ))
∣∣∣∣
, (4)

where 0 < γ < 1/2 is a given constant, ψ is a score function, µ̂1k(ψ) is an M-estimate
of parameter µ based on observations Y1, . . . ,Yk and µ̂2k(ψ) is an M-estimate of µ
based on observations Yk+1, . . . ,Yn.

For the choice of ψL2 (x) = x, we get one of statistics studied in [5]. By considering
different score functions, we may construct similar statistics, but more robust against
outliers and more suitable for heavy-tailed distributions.

3. L i m i t d i s t r i b u t i o n u n d e r n u l l h y p o t h e s i s

At first we formulate assumptions concerning the score function ψ and the distri-
bution of random errors e1, . . . , en.

Assumption 1. The random error terms {ei, i ∈ } form a strictly stationary α-mixing
sequence with distribution function F, that is symmetric around zero and for some
δ > 0, ∆ > 0 there exists a constant C1(δ,∆) > 0 such that

∞∑
h=0

(h + 1)δ/2α(h)∆/(2+δ+∆) ≤ C1(δ,∆). (5)

where α(k), k = 0, 1, . . . are the α-mixing coefficients.
Assumption 2. The score function ψ is a non-decreasing and antisymmetric function.

Assumption 3. ∫
|ψ(x)|2+δ+∆dF(x) < ∞ (6)

and∫
|ψ(x + t2) − ψ(x + t1)|2+δ+∆dF(x) ≤ C2(δ,∆)|t2 − t1|η,

|t j| ≤ C3(δ,∆), j = 1, 2 (7)

for some constants 1 ≤ η ≤ 2 + δ + ∆, δ > 0, ∆ > 0 as in (5) and constants
C2(δ,∆), C3(δ,∆) > 0 both depending only on δ and ∆.
Assumption 4. Let us denote λ(t) = −

∫
ψ(e − t)dF(e), for t ∈ . We assume that

λ(0) = 0 and that there exists a first derivative λ′(·) that is Lipschitz in the neighbor-
hood of 0 and satisfies λ′(0) > 0.
Assumption 5. Let

0 < σ2(ψ) = Eψ2(e1) + 2
∞∑

i=1

Eψ(e1)ψ(ei+1) < ∞. (8)

Remark 3.1 Assumption 1 is satisfied for example for ARMA processes with
continuously distributed stationary innovations and bounded variance (see [4], Sec-
tion 2.4).

Remark 3.2 The conditions regarding ψ reduce to moment restrictions for ψL2 (x) =
= x (L2-method). For ψL1 (x) = sgn(x) (L1-method), the conditions reduce to F being
a symmetric distribution and having continuous density f in a neighborhood of 0 with
f (0) > 0. Similarly, we may consider the derivative of the Huber loss function

ψH(x) = xI{|x| ≤ K} + Ksgn(x)I{|x| > K} (9)

for some K > 0. In that case, we need to assume F being a symmetric distribution
with continuous density f in a neighborhood of K and −K satisfying f (K) > 0.

Theorem 1 Let us assume that the above stated Assumptions 1-5 hold. Then,
under null hypothesis (2)

Tn(ψ)
D−→ sup
γ≤t≤1−γ

sup
0≤u≤t
|W(u) − u/tW(t)|

sup
t≤u≤1

∣∣∣W̃(u) − (1 − u)/(1 − t)W̃(t)
∣∣∣ , (10)

as n → ∞, where {W(u), 0 ≤ u ≤ 1} is a standard Wiener process and W̃(u) =
= W(1) −W(u).

Proof. The proof goes along the lines of proof of Theorem 1.1 in [5], using several
results derived in [7]. Therefore we give only an outline of the proof.
Without loss on generality, we assume that µ=0. Let

Zn(t) =
1
√

n

∑
1≤ j≤nt

ψ(e j), Z̃n(t) =
1
√

n

∑
nt< j≤n

ψ(e j).
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Then, by applying Theorem 1.5.1 from [4], we get

(Zn(t), Z̃n(t))
D→ σ(ψ)(W(t), W̃(t)),

where W̃(t) = W(1) −W(t).
By the same way as in [7], it follows from Lemma 3 and Lemma 4 (pages 15–16
in [7]) that

sup
1≤i≤nt

{
nκ
√

[nt]
i([nt] − i)

∣∣∣∣∣∣
∑

1≤ j≤i

ψ(Yj − µ̂1,[nt](ψ))

−

∑

1≤ j≤i

ψ(e j) −
i

[nt]

∑
1≤ j≤nt

ψ(e j)


∣∣∣∣∣∣
}

P→ 0, for some κ > 0,

where [a] denotes the integer part of a ∈ , which implies

1
√

n
sup

1<i≤nt

∣∣∣∣∣∣∣∣
∑

1≤ j≤i

ψ(Yj − µ̂1,[nt](ψ))

∣∣∣∣∣∣∣∣
= sup

1≤i≤nt

∣∣∣∣∣Zn

( i
n

)
− i

[nt]
Zn(t)
∣∣∣∣∣ + oP(1).

Similarly, we get

1
√

n
sup

nt<i≤n

∣∣∣∣∣∣∣∣
∑

i≤ j≤n

ψ(Yj − µ̂2,[nt](ψ))

∣∣∣∣∣∣∣∣
= sup

nt<i≤n

∣∣∣∣∣Z̃n

( i
n

)
− n − 1

n − [nt]
Z̃n(t)
∣∣∣∣∣ + oP(1).

The rest of the proof is the same as in the proof of Theorem 1.1 in [5]. �

Remark 3.3 The null hypothesis is rejected for large values of Tn(ψ). Explicit
form of the limit distribution (10) under the null hypothesis is not known. Therefore,
in order to obtain critical values, we have to use either simulation from the limit
distribution or resampling methods.

Remark 3.4 For ψL2 : ψL2 (x) = x, x ∈ , the above stated Assumptions 2 and 4
are satisfied. We can also drop the requirement of symmetry of F in Assumption 1
and replace it by Ee1 = 0. Assumptions 3 and 5 reduce to:
Assumption 3’.

E|e1|2+β < ∞. (11)

for some constant β > 0.
Assumption 5’.

0 < σ2(ψL2 ) = Ee2
1 + 2

∞∑
i=1

Ee1ei+1 < ∞. (12)

Remark 3.5 The limit results for Tn(ψL2 ) were derived in [5] and [6] under less
restrictive assumptions regarding the random errors. According to Theorem 1.2 in
[5], the test based on Tn(ψL2 ) is consistent, if z = [nζ] for some ζ : γ < ζ < 1− γ and√

ndn → ∞.

For other score functions ψ, results regarding limit behavior under fixed as well
as under local alternative for the related non-ratio statistic are presented in [7]. The
result for the ratio statistic under fixed alternative may be derived by a modification
of the proof therein.

4. B l o c k b o o t s t r a p w i t h r e p l a c e m e n t

In the following section, we are going to study only the case of ψL2 (x) = x. Exten-
sion to the case of a general score function ψ from the previous sections is straight-
forward, but the proofs are much more complex.

There are several different approaches that may be used when resampling depen-
dent observations. Classical resampling methods are not suitable, since they do not
take into account the underlying dependency structure. Here we focus our atten-
tion to the so called circular moving block bootstrap method, which was introduced
by Politis and Romano in [10]. Overlapping blocks of consequent observations are
formed from the original observations. The first few consequent observations from
the original sequence are appended after the last observation, so that for a sequence
of length n, we always have n possible blocks of subsequent observations to choose
from. With this method, there is equal probability for each observation to be included
in the bootstrap sample. For more details on the method, we also refer to [8].

Let L denote the number of blocks and let K be the block length. In order to keep
the notation as simple as possible, we restrict ourselves to situation, where n = KL,
i.e. if the set of n observations can be divided in exactly L blocks of length K. It can
be proven (cf. [8]) that the limit results remain the same after omitting the last K1
observations, if n = KL + K1, 1 ≤ K1 ≤ K − 1. We will assume that K and n are both
functions of L such that n = KL and we let L→ ∞.

First, let us define the following subsets of × for integer numbers l, k, L,K
and real number 0 < γ ≤ 1/2:

Πl,k,L,K = {(p, q) : p, q ∈ ,

1 ≤ p ≤ l, 1 ≤ q ≤ K, (p − 1)K + q ≤ (l − 1)K + k}, (13)

Π̃l,k,L,K = {(p, q) : p, q ∈ ,

l ≤ p ≤ L, 1 ≤ q ≤ K, (p − 1)K + q ≥ (l − 1)K + k + 1}, (14)

ΩL,K(γ) = {(p, q) : p, q ∈ ,

1 ≤ p ≤ L, 1 ≤ q ≤ K, KLγ ≤ (p − 1)K + q ≤ KL(1 − γ)}. (15)
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For a set of i.i.d. random variables U = (U1, . . . ,Un), uniformly distributed on the
set {0, . . . , n − 1}, we define the following block bootstrap statistics:

S U
L,K(p, q, l, k) =

p−1∑
i=1

K∑
j=1

(
YUi+ j − mU

L,K(l, k)
)
+

q∑
j=1

(
YUp+ j − mU

L,K(l, k)
)
, (16)

where

mU
L,K(l, k) =

1
(l − 1)K + k


l−1∑
r=1

K∑
s=1

YUr+s +

k∑
s=1

YUl+s



for p, l = 1, . . . , L, q, k = 1, . . . ,K, p ≤ l, (p − 1)K + q ≤ (l − 1)K + k. Similarly, we
define

S̃ U
L,K(p, q, l, k) =

K∑
j=k+1

(
YUl+ j − m̃U

L,K(l, k)
)

I{p ≥ l + 1}

+

p−1∑
i=l+1

K∑
j=1

(
YUi+ j − m̃U

L,K(l, k)
)

I{p ≥ l + 2} +
q∑

j=1

(
YUp+ j − m̃U

L,K(l, k)
)
, (17)

where I{A} denotes the indicator of set A and

m̃U
L,K(l, k) =

1
(L − l + 1)K − k


K∑

s=k+1

YUl+s +

L∑
s=l+1

K∑
r=1

YUr+s



for p, l = 1, . . . , L, q, k = 1, . . . ,K such that p ≥ l, (p − 1)K + q ≥ (l − 1)K + k + 1.
Now define the block bootstrap version of Tn(ψL2 ) in (4):

T ∗L,K(ψL2 ) = max
(l,k)∈ΩL,K (γ)

max(p,q)∈Πl,k,L,K

∣∣∣S U
L,K(p, q, l, k)

∣∣∣
max(p,q)∈Π̃l,k,L,K

∣∣∣S̃ U
L,K(p, q, l, k)

∣∣∣ . (18)

We are going to prove that T ∗L,K(ψL2 ) provides asymptotically correct critical values
for the test based on Tn(ψL2 ), when observations follow either the null hypothesis or
alternative one.

Theorem 2 Let E|e1|ν < ∞ for some ν > 4. Let Assumption 1 be satisfied for
δ1,∆1 > 0 and for δ2,∆2 > 0 such that 2 + 2κ < δ1 < ν − 2, ∆1 = ν − 2 − δ1 and
0 < δ2 < (δ1−2+2κ)/(2+κ), ∆2 = (δ1−2+2κ)/(2+κ)−δ2 for some 0 < κ < (ν−4)/2.
Moreover, let Assumption 5’ be satisfied, and let

K ≤ Lδ2/2−ε (19)

for some ε > 0. For K bounded, also assume that var(
∑K

k=1 ek) ≥ c for some c > 0, as
L→ ∞.
Under alternative, let z = [nζ] for some ζ : γ < ζ < 1 − γ.

Then we have for all y ∈ , as L→ ∞

P
(
T ∗L,K(ψL2 ) ≤ y|Y1, . . . ,Yn

)
→

P

 sup
γ≤t≤1−γ

sup
0≤u≤t
|W(u) − u/tW(t)|

sup
t≤u≤1

∣∣∣W̃(u) − (1 − u)/(1 − t)W̃(t)
∣∣∣ ≤ y

 a.s.,

as L → ∞, where {W(u), 0 ≤ u ≤ 1} is a standard Wiener process and W̃(u) =
= W(1) −W(u).

Proof. The proof goes along the lines of proof of Theorem 3.6.2 in [8] and uses
several results derived there. Therefore we only give an outline of the proof. In
contrast to [8], we dropped the assumption of random errors being a linear process.
The crucial part of the proof is verification of the assumptions of Theorem 3.6.1 in [8],
i.e. that

1
n

n−1∑
i=0

 max
k=0,...,K−1

∣∣∣∣∣∣∣∣
1
√

K

K∑
j=k+1

(an(i + j) − ān)

∣∣∣∣∣∣∣∣

ρ ≤ D1 (20)

for some 2 < ρ ≤ 4 and satisfying

τ2
n(a) =

1
n

n−1∑
i=0


1
√

K

K∑
j=1

(an(i + j) − ān)


2

≥ D2 (21)

for some constants D1,D2 > 0 and for appropriately chosen scores

a = (an(1), . . . , an(n))

such that ān =
1
n
∑n

l=0 an(l). The assertion of the theorem then follows as a direct
consequence of the proof of Theorem 3.6.1 in [8].

In order to show validity of (20) and (21), we notice that if {ei, i ∈ } is an
α-mixing sequence, then {1/K∑K

j=1 eKl+k+ j−1, l ∈ } is also α-mixing for each k =
= 1, . . . ,K, but with smaller or equal mixing coefficients (see [2], Theorem 5.2).

Using Theorem B.6 in [8] for the sequences of partial sums, in combination with
(19), we get

1
n

n−1∑
l=0


1
√

K

K∑
k=1

el+k


2

→ var


1
√

K

K∑
k=1

ek

 ≥ D1, a.s., (22)

1
n

n−1∑
l=0

max
k=0,...,K−1

∣∣∣∣∣∣∣∣
1
√

K

K∑
j=k+1

el+ j

∣∣∣∣∣∣∣∣

2+κ

→ E max
k=0,...,K−1

∣∣∣∣∣∣∣∣
1
√

K

K∑
j=k+1

e1+ j

∣∣∣∣∣∣∣∣

2+κ

≤ D2, a.s. (23)

for some constants D1,D2 > 0.
Now, we consider three different situations and for each of them we choose the

appropriate scores a = (an(1), . . . , an(n)). We derive the results condtionally on given
Y1, . . . ,Yn.
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P
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sup
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√

K
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∣∣∣∣∣∣∣∣
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2
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(19), we get
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 ≥ D1, a.s., (22)
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e1+ j

∣∣∣∣∣∣∣∣

2+κ

≤ D2, a.s. (23)

for some constants D1,D2 > 0.
Now, we consider three different situations and for each of them we choose the

appropriate scores a = (an(1), . . . , an(n)). We derive the results condtionally on given
Y1, . . . ,Yn.
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(1) Kd2
n = O(1). This case also includes the null hypothesis (with dn = 0). We

choose an(i) = Yi.
(2) 1/(Kd2

n) = O(1). In this case, we let an(i) = Yi/(
√

Kdn).
(3) Both Kd2

n ≤ 1 and Kd2
n > 1 is true for infinitely many n ∈ . In this case, we

use a combination of both score choices.
Using the arguments given in the proof of Theorem 3.6.2 in [8], we prove that

the expressions in (22) and (23) are asymptotically equivalent to the left hand sides
of (20) and (21) for all of the three considered situations. Hence, the assumptions of
Theorem 2 are satisfied both under null hypothesis and under alternative and we get
that along almost all samples Y1, . . . ,Yn, it holds that
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|W(u) − u/tW(t)| , sup

t<u<1
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)
,

conditionally on Y1, . . . ,Yn, where

τ2
L,K =

1
n

n−1∑
i=0


1
√

K

K∑
j=1

(
Yi+ j − Ȳn

)
2

. (24)

The assertion of Theorem 3 is now straightforward, since the considered bootstrap
statistic is a continuous function of the above vector of statistics. �

5. S i m u l a t i o n

We were interested in the performance of the test based on test statistic Tn(ψ) with
ψL2 (x) = x and ψL1 (x) = sgn(x). We focused on comparison of the accuracy of
critical values obtained by circular moving block bootstrap method with the accuracy
of critical values obtained by simulation from the limit distribution. Some simulation
results concerning the test based on asymptotic critical values for the studied type of
test statistic can be also found in [5] and [9].

On Figures 1 (L2 method) and 2 (L1 method), one may see the size-power plots for
choices of n = 100, 200 and γ = 0.1, 0.2. The ideal situation under null hypothesis
is depicted by the straight dotted line. Under alternative, the desired situation would
be a steep function with values close to 1. For more details on size-power plots we
may refer e.g. to [8]. The random errors were simulated as an AR(1) process with
AR coefficients 0.3 (dark gray lines) and 0.5 (light gray lines), and as a set of i.i.d.
random errors with standard normal distribution (black lines). Rejection rates based
on simulated asymptotic critical values are depicted by the dashed line, rejection rates
based on block bootstrap with block length K = 5 are depicted by the solid line. On

T 1. Simulated rejection rates with n = 200, γ = 0.2 under H1 with
d = 1 and z = 1/2. Random errors were simulated either as N(0, 1)− or
as t5−distributed AR(1) sequences with several values of autoregression
coefficient ϕ

L2 statistic L1 statistic

N(0, 1) t5 N(0, 1) t5

ϕ = 0 0.922 0.925 0.801 0.906

ϕ = 0.3 0.718 0.733 0.585 0.696

ϕ = 0.5 0.500 0.508 0.404 0.485

figures 3 and 4, the results of similar simulations for AR(1) sequences with student
t-distribution with 5 degrees of freedom are shown.

In the simulation study, we generated 10,000 independent samples in order to com-
pute asymptotic critical values. When bootstrapping, for each sample we used 1000
bootstrap samples to compute bootstrap critical values. In simulations of rejection
rates, we used 1000 repetitions.

In all of 4 figures depicting situation under the null hypothesis, we may see that
comparing to the critical values obtained by simulation from the asymptotic distribu-
tion, critical values obtained by bootstrapping are more accurate. When comparing
the accuracy of critical values for different choices of score function ψ, the L1 method
seem to be better then the L2 method. However, when using the L1-method, power
of the test slightly decreases, as we may see from Table 1. Similarly, the choice of
γ = 0.2 seem to provide more accurate critical values than the choice of γ = 0.1,
but the test power is larger in the latter case. Furthermore, with the choice of ψL2 ,
the simulated rejection rates under H0 are higher than the corresponding theoretical
α-levels for larger values of the autoregression coefficient, while for the L1-method
they remain much more stable. Comparing the case of N(0, 1) innovations with the
case of t5 innovations, rejection rates for the L1 version of the test statistic tend to
be slightly higher for t5 distribution, while they remain more or less the same for the
L2 version. As we expected, the accuracy of the critical values tend to be better for
larger n.

6. S u m m a r y

Ratio type statistics provide an alternative to non-ratio statistics in situations, in
which variance estimation is problematic. We proved that the block bootstrap method
provides asymptotically correct critical values for the studied ratio type statistic in the
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which variance estimation is problematic. We proved that the block bootstrap method
provides asymptotically correct critical values for the studied ratio type statistic in the
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F 1. Null hypothesis, N(0, 1)-distributed innovations, L2 version
of the test statistic

F 2. Null hypothesis, N(0, 1)-distributed innovations, L1 version
of the test statistic
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F 3. Null hypothesis, t5-distributed innovations, L2 version of the
test statistic

F 4. Null hypothesis, t5-distributed innovations, L1 version of the
test statistic
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F 3. Null hypothesis, t5-distributed innovations, L2 version of the
test statistic

F 4. Null hypothesis, t5-distributed innovations, L1 version of the
test statistic
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location model with α-mixing random errors. Simulations showed that critical val-
ues obtained by (block-)bootstrapping seem to be more accurate than critical values
obtained by simulation from the limiting distribution, especially for AR(1) sequences.
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We propose several estimators of interarrival time distribution based on observations of
independent identically distributed stationary point processes in time windows with length
of the same order as the mean interarrival time. This task is motivated by the situation in
which a high number of neurons communicates with a target neuron. The comparison of
the finite sample performance of the estimators is carried out by a simulation study for
three selected models of point processes, namely Poisson point process, renewal process
and mixed Poisson process.

1. I n t r o d u c t i o n

Point processes provide an important tool for modeling and analyzing data in the
form of random events in time. The whole point process can be described completely
by the random intervals between the events (so called interarrival times). These inter-
vals may be dependent and not necessarily identically distributed. By means of Palm
distributions, we can define the typical interarrival time. Our aim is to estimate its
distribution.

Often we deal with data recorded for a long period of time and we make statis-
tical inference about a point process from this one realization. The nonparametric
estimation of the interarrival distribution from a single realization of a renewal pro-
cess is examined in [5]. We are concerned with a different situation appearing when
the information about a stationary point process has to be deduced from independent
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