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Weak
√

n-consistency of the Least Weighted Squares estimator of the coefficients of re-
gression model is proved generally under the heteroscedasticity of error terms. The as-
sumptions required for the weak

√
n-consistency are briefly discussed. The roots of the

heteroscedasticity are also critically considered.

1. I n t r o d u c t i o n

The paper continues in studies of [21] where the reasons for introducing the Least
Weighted Squares (LWS ) were already discussed in details, see also [14].

Let N denote the set of all positive integers, R the real line and R p the
p-dimensional Euclidean space. The linear regression model given as

Yi = X′iβ
0 + ei =

p∑
j=1

Xi jβ
0
j + ei, i = 1, 2, . . . , n (1)

will be considered. For any β ∈ R p ri(β) = Yi − X′iβ denotes the i-th residual and
r2

(h)(β) stays for the h-th order statistic among the squared residuals, i.e. we have
r2

(1)(β) ≤ r2
(2)(β) ≤ . . . ≤ r2

(n)(β). We shall assume:

Conditions C 1 The sequence
{(

X′i , ei

)′}∞
i=1

is sequence of independent (p+1)-dimen-
sional random variables (r.v.’s) distributed according to a distribution functions (d. f.)
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FX,ei (x, r) = FX(x) · Fei (r) where Fei (r) = Fe(rσ−1
i ) with Eei = 0, var (ei) = σ2

i and
0 < lim inf

i→∞
σi ≤ lim sup

i→∞
σi < ∞. Moreover, Fe(r) is absolutely continuous with the

density fe(r) bounded by Ue. Finally, there is q > 1 so that E ‖X1‖2q < ∞ (as FX(x)
does not depend on i, the sequence {Xi}∞i=1 is sequence of independent and identically
distributed (i.i.d.) r.v.’s).

Prior to continuing, let us briefly discuss Conditions C 1. Such discussion will
reflect also the reasons, pros and cons for the present studies of weak

√
n-consistency

of LWS under heteroscedasticity.
First of all, let us recall that ei’s are called either error terms or disturbances. The

former name is used mainly in the exact sciences. In this context the regression model
describes a mutual relation between a set of explanatory variables on one side and a
response variable on the other. As the set of explanatory variables is nearly always ex-
haustively determined by the merits of problem in question, the error terms represent
errors of the measurement of response variable. Then of course, the heteroscedas-
ticity of the error terms is mostly due to the dependence of the variances of ei’s on
the explanatory variables. After all, one of the tests of heteroscedasticity is based on
testing independence of the error terms and the explanatory variables, see [22]. If
White’s test rejects the hypotheses of homoscedasticity, we should assume that also
the Orthogonality Condition is broken, i. e. that E{ei|Xi} � 0. Then the method of
Instrumental Variables (see [11]) or its robustified version the instrumental weighted
variables (see [18, 19]) is to be used.

In contrast, in the social sciences we typically meet with the situations when we
may assume that some explanatory variables were not (or even could not be) included
into the model, see e.g. [2, 3, 10, 23, 24]. So, we may assume that some explanatory
variables are (as latent variables) in the disturbances (there are attempts to cope with
the situation, e.g. fix and random effects represent one such a proposal, see again [7]
or [24]). Then the heteroscedaticity of disturbances may be caused just by these “hid-
den” part of a set of all possible explanatory variables. This situation is (indirectly)
reflected by proposals of the tests of heteroscedasticity which are based on a spec-
ification of models of the heteroscedasticity. These models usually assume that the
variances of ei’s can be given as var(ei) = h(α′ ·Zi) where α is a vector of coefficients
and Zi’s can be (statistically) independent from Xi’s (for a whole family of such tests
and a discussion see e.g. [7] or [12]).

The applications of the regression analysis in social sciences deserves (maybe)
also other remark. The framework for regression model treats the explanatory vari-
ables either as a sequence of deterministic vectors (see e.g. [26]) or as a sequence
of independent and identically distributed, say p-dimensional, random variables (see
e.g. [5, 24], among many others). The former approach reflects the situation when
it seems (evidently) strange to treat explanatory variables as random (mainly in the
situations when we can assign the values to them – e.g. when performing some exper-
iment). Nevertheless, even then – to be able to study asymptotic properties – we have
to assume something like “pseudorandom” character of these vectors, see e.g. [16] or

again [26]. The later approach takes into account the fact that in some other cases
we just collect data (observations) and so the explanatory variable can be assumed
to be a realization of a random sequence. Of course, even then there can be a dis-
cussion whether we can assume that they are independent and identically distributed.
To allow at least for heteroscedasticity is just the goal of this paper. In the case of
panel data (when we look in fact for a cointegration model of time series) we can
express our ideas about a correlation structure by some model of Box-Jenkins type,
see e.g. [1, 7, 24, 25]. But after all, in such a situation we usually help ourselves by
transforming the time series in question to the independence by e.g. Cochrane-Orcutt
or Prais-Winsten transformation (see [4] or [9]). The last step however requires se-
rious care, as we can worsen the situation rather than improve, if we do not “guess”
a proper model for correlation structure (for a nice example see [8]).

Last but not least, a proof of consistency of LWS under the heteroscedasticity
open a possibility to establish a robustified version of a test of specificity [6] for
LWS and so to put a decision of when apply the least weighted squares and when the
instrumental weighted variables on a sound basis.

Remark 1 Notice that under Conditions C 1 there are constants 0 < sσ ≤ S σ < ∞
so that sσ ≤ σi ≤ S σ for all i’s. Moreover, as the density of ei is given as fe(r · σ−1

i ) ·
· σ−1

i , there is a constant fσ < ∞ such that

sup
i∈N

sup
r∈R

fei (r) < fσ.

The assumption that the d.f. Fe(r) is continuous is not only a technical assumption.
Possibility that the error terms in regression model are discrete r.v.’s implies problems
with treating response variable and it requires special considerations - see chapters
on logit or probit models or limited response variables e.g. [7]. Absolute continuity
is then a technical assumption. Without the density (even bounded density) we have
to assume that Fe(r) is Lipschitz and it would bring a more complicated form of all
what follows.

Conditions C 2 The weight function w(u) is continuous, nonincreasing, w : [0, 1]→
→ [0, 1] with w(0) = 1. Moreover, w is Lipschitz in absolute value, i.e. there is Lw

such that for any pair u1, u2 ∈ [0, 1] we have |w(u1) − w(u2)| ≤ Lw · |u1 − u2|.

Remark 2 If the weight function w is not continuous, as e.g. for LTS, the tech-
niques of proofs of asymptotic properties have to be more complicated (see [17]) and
on the other hand, due to discontinuity of w, the estimator may be much more sensitive
to (even very small) change of one observation, for details see [13, 15] or [16].

Further, let e be a r.v. distributed according to Fe(v) and for any β ∈ R p denote
Fβ(v) = P(|e − X′1

(
β − β0

)
| < v) and r(β) = e − X′1

(
β − β0

)
.

Conditions C 3 There is the only solution of

E
[
w
(
Fβ(|r(β)|)

)
β′X1

[
e − X′1

(
β − β0

)]]
= 0 (2)
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namely β0. Moreover
lim
n→∞

1
n

n∑
i=1

|1 − σi| = 0.

Definition 1 Let w : [0, 1]→ [0, 1] be a nonincreasing function with w(0) = 1.
Then the solution of the extremal problem

β̂(LWS ,n,w) = arg min
β∈Rp

n∑
i=1

w
(
i − 1

n

)
r2

(i)(β) (3)

will be called the Least Weighted Squares.

For any β ∈ R p the empirical d. f. of the absolute values of residuals will be denoted
F(n)
β (r). It means that, denoting the indicator of a set A by I {A}, we have

F(n)
β (r) =

1
n

n∑
i=1

I {|ri(β)| < r} = 1
n

n∑
i=1

I
{∣∣∣Yi − X′iβ

∣∣∣ < r
}
. (4)

Taking into account that empirical d. f. has the jumps (of a magnitude 1
n ) just at the

order statistics, we obtain

β̂(LWS ,n,w) = arg min
β∈Rp

n∑
i=1

w
(
F(n)
β (|ri(β)|)

)
r2

i (β) (5)

and, then, it is straightforward that β̂(LWS ,n,w) is given as one of solutions of the normal
equations (for details see [21]

NE(n)
Y,X(β) =

n∑
i=1

w
(
F(n)
β (|ri(β)|)

)
Xi
(
Yi − X′iβ

)
= 0. (6)

One of key steps in the considerations about the weak
√

n-consistency of β̂(LWS ,n,w) is
an approximation of the empirical d. f. F(n)

β (r) (see (4)) by the theoretical one F n,β(r)
where

F n,β(v) =
1
n

n∑
i=1

Fβ,i(v) =
1
n

n∑
i=1

P
(∣∣∣Yi − X′iβ

∣∣∣ < v
)
. (7)

Theorem 1 Let Conditions C 1, C 2 and C 3 be fulfilled. Then any sequence{
β̂(LWS ,n,w)

}∞
n=1

of solutions of the normal equations (6) NE(n)
Y,X(β̂(LWS ,n,w)) = 0 is

consistent.

For the proof see [21].

2. W e a k
√

n - c o n s i s t e n c y o f t h e l e a s t w e i g h t e d s q u a r e s

Conditions N C 1 The derivative f ′e (r) exists and is bounded in absolute value by Be.
The derivative w′(α) exists and is Lipschitz of the first order (with the corresponding
constant Jw). Moreover, for any i ∈N

E

[
w′(F n,β0 (|ei|))

(
fe(|ei|) − fe(−|ei|)

)
· ei

]
= 0.

Finally, for any j, k, � = 1, 2, ..., p E
∣∣∣X1 j · X1k · X1�

∣∣∣ < ∞ (as FX(x) does not de-
pend on i, the sequence {Xi}∞i=1 is sequence of independent and identically distributed
p-dimensional r.v.’s).

Theorem 2 Let Conditions C 1, C 2, C 3 and N C 1 hold. Then any
sequence

{
β̂(LWS ,n,w)

}∞
n=1

of solutions of the normal equations (6) NE(n)
Y,X(β̂(LWS ,n,w)) = 0

is weakly
√

n-consistent, i.e. ∀(ε > 0) ∃(Kε < ∞) ∀(n ∈N )

P
({
ω ∈ Ω :

√
n
∥∥∥β̂(LWS ,n,w) − β0)

∥∥∥ < Kε
})
> 1 − ε.

Proof: Let us recall that β̂(LWS ,n,w) is one of the solutions of (see (6))
n∑

i=1

w
(
F(n)
β (|ri(β)|)

)
Xi
(
Yi − X′iβ

)
= 0. (8)

For any solution of (8), we have (write wri(β) instead of w
(
F(n)
β (|ri(β)|)

)
)

1
√

n

n∑
i=1

wri(β)Xiei =
1
n

n∑
i=1

wri(β)XiX′i ·
√

n
(
β − β0

)
. (9)

The idea of the proof of Theorem 2 is then as follows. We show that (9) can be
rewritten as

Ln = Qn · (1 + qn) ·
√

n
(
β̂(LWS ,n,w) − β0

)
(10)

where Ln = Op(1), Qn → Q in probability, Q being a regular matrix, and qn =

= op(β̂(LWS ,n,w)− β0). Then assuming that (1 + qn) ·
√

n
(
β̂(LWS ,n,w) −β0

)
is not Op(1)

and employing the Lemma 6, we prove that also Ln cannot be Op(1), which is a
contradiction.

Since w is Lipschitz, employing Lemma 1 (see Appendix)

1
√

n
sup
β∈Rp

∥∥∥∥∥∥∥
n∑

i=1

[
w
(
F(n)
β (|ri(β)|)

)
− w
(
F n,β(|ri(β)|)

)]
Xiei

∥∥∥∥∥∥∥

≤
√

n · Lw · sup
v∈R+

sup
β∈Rp

∣∣∣∣F(n)
β (v) − F n,β(v)

∣∣∣∣ · 1
n

n∑
i=1

‖Xi‖ · |ei| = Op(1)

as n→ ∞. Hence
1
√

n

n∑
i=1

w
(
F(n)
β (|ri(β)|)

)
Xiei =

1
√

n

n∑
i=1

w
(
F n,β(|ri(β)|)

)
Xiei + R(1,n)

X,e (β)

where we have ∀(ε > 0) ∃(Kε < ∞) ∀(n ∈N )

P

ω ∈ Ω : sup

β∈Rp

∥∥∥R(1,n)
X,e (β)

∥∥∥ < Kε


 > 1 − ε.

In a similar way we derive

1
n

n∑
i=1

w
(
F(n)
β (|ri(β)|)

)
XiX′i =

1
n

n∑
i=1

w
(
F n,β(|ri(β)|)

)
XiX′i + R(2,n)

X,e (β)
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where we have ∀(ε > 0, δ > 0) ∃(nε,δ ∈N ) ∀(n > nε,δ)

P

ω ∈ Ω : sup

β∈Rp

∥∥∥R(2,n)
X,e (β)

∥∥∥
M
< δ


 > 1 − ε

(where ‖A‖M = maxi, j=1,2,...,k |ai j|).Utilizing these approximations in (9) we get

1
√

n

n∑
i=1

w
(
F n,β(|ri(β)|)

)
Xiei + R(1,n)

X,e (β) (11)

=
1
n

n∑
i=1

[
w
(
F n,β(|ri(β)|)

)
XiX′i + R(2,n)

X,e (β)
]
·
√

n
(
β − β0

)
. (12)

Now employing successively Lemma 2, 3, 4 and 5 (see Appendix), we find that (11)
can be written as

1
√

n

n∑
i=1

w
(
F n,β0 (|ei|)

)
+w′(F n,β0 (|ei|))× (13)

×
{(

fe(|ei|) − fe(−|ei|)
)
· (X′i − EXX′1

)} [
β− β0

]}
Xiei +R(3,n)

X,e (β) (14)

with ∀(ε > 0, δ > 0) ∃(Kε < ∞) ∀(n ∈N )

P

ω ∈ Ω : sup

β∈Rp

∥∥∥R(3,n)
X,e (β)

∥∥∥ < Kε


 > 1 − ε (15)

and (12) turns into

1
n

n∑
i=1

w
(
F n,β0 (|ei|)

)
XiX′i ·

√
n
(
β − β0

)
+ R(4,n)

X,e (β) (16)

with ∀(ε > 0, δ > 0) ∃(nε,δ ∈N ) ∀(n ∈N , n > nε, δ)

P

ω ∈ Ω : sup

β∈Rp

∥∥∥R(4,n)
X,e (β)

∥∥∥
M
< δ


 > 1 − ε. (17)

Utilizing CLT and taking into account (16) we find that (13) and (14) are Op(1).
Similarly, due to the law of large numbers

∥∥∥∥ 1
n
∑n

i=1 w
(
F n,β0 (|ei|)

)
· ·XiX′i

∥∥∥ is Op(1).

Plugging in for β the estimate β̂(LWS ,T,w) and employing Lemma 6 together with
Theorem 1 we conclude the proof.

3. C o n c l u s i o n s

We have shown the weak
√

n-consistency of the least weighted squares under the
heteroscedasticity of disturbances. Of course, the least weighted squares are a special
case of the instrumental weighted variables (see [19]) when we assume as instruments
just the explanatory variables. Nevertheless, as one can see in [19], we cannot rid

of some requirements on the instruments which however need not be automatically
fulfilled by the explanatory variables. On the other hand, as it was already recalled
in the introduction, we need the consistency of β̂(LWS ,n,w) for a possibility to study an
asymptotics of a robustified version of the test of specificity. Then we have no choice
but to prove the consistency of the least weighted squares under the heteroscedasticity
directly. It is clear that to be able to propose a robustified version of the test of
specificity (employing β̂(LWS ,n,w)) and to study in a reasonable way its asymptotics,
we will need also the consistency of the instrumental weighted variables under the
heteroscedasticity (this problem is still under research).

4. A p p e n d i x

Lemma 1 Let Conditions C 1 hold. For any ε > 0 there is a constant Kε and
nε ∈N so that for all n > nε
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and for any �, k = 1, 2, . . . , p

sup
β∈Rp

sup
v∈R+

∣∣∣∣∣∣∣
1
n

n∑
i=1

{ [
w
(
F n,β(|ri(β)|)

)
− w
(
F n,β0 (|ri(β)|)

)]

− w′(F n,β0 (|ri(β)|)) ·
[
F n,β(|ri(β)|) − F n,β0 (|ri(β)|)

]}
Xi�Xik

∣∣∣∣∣∣∣
= Op(‖β − β0‖2).

Remark 3 Notice please that (21) says that when we substitute

1
√

n

n∑
i=1

w
(
F n,β(|ri(β)|)

)
Xiei

by

1
√

n

n∑
i=1

{
w
(
F n,β0 (|ri(β)|)

)
− w′(F n,β0 (|ri(β)|))

×
[
F n,β(|ri(β)|) − F n,β0 (|ri(β)|)

]}
Xiei,

the rest (in norm) is of order
√

n
∥∥∥β − β0

∥∥∥ ·Op(
∥∥∥β − β0

∥∥∥). Plugging, then the estimate
β̂(LWS ,n,w) instead of β, we obtain the rest of order

√
n
∥∥∥β̂(LWS ,n,w) −β0

∥∥∥ · op(1) (due
to weak consistency of β̂(LWS ,n,w)). So the rest can be “shifted” to the right hand side
of (10), into qn ·

√
n
(
β̂(LWS ,n,w) − β0

)
.

Similarly, when we substitute

1
n

n∑
i=1

w
(
F n,β(|ri(β)|)

)
Xi�Xik
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1
n

n∑
i=1
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w
(
F n,β0 (|ri(β)|)

)
− w′(F n,β0 (|ri(β)|))

×
[
F n,β(|ri(β)|) − F n,β0 (|ri(β)|)

]}
Xi�Xik,

the rest (in absolute value) is of order Op(
∥∥∥β − β0

∥∥∥2). When we plug moreover instead
of β the estimate β̂(LWS ,n,w), we obtain the corresponding rest of order√

n
∥∥∥β̂(LWS ,n,w) − β0

∥∥∥ ·op(n−
1
2 ) (due to the weak consistency of β̂(LWS ,n,w)). So the rest

can be again “shifted” into
√

n
(
β̂(LWS ,n,w) − β0

)
· qn of (10).

The proof of Lemma 3 is typical one and moreover, it is not very long. That is why
we give it in full details.

Consider the first assertion of the lemma. We have for any n ∈ N and any i =
= 1, 2, . . . , n
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)
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F n,β0 (|ri(β)|)

)
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w′(ξi) − w′(F n,β0 (|ri(β)|)

]
·
[
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+ w′(F n,β0 (|ri(β)|) ·
[
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]
(19)

where ξi ∈
[
F n,β(|ri(β)|), Fn,β0 (|ri(β)|)

]
ord

. Moreover, using Jw from Remark 1 (and
recalling that w is monotone function)∣∣∣∣w′(ξi) − w′(F n,β0 (|ri(β)|)

∣∣∣∣ ·
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∣∣∣∣
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[
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= O(

∥∥∥β − β0
∥∥∥2) (20)

where the last equality is due to (18). Finally, we have for any n ∈N∥∥∥∥∥∥∥
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∥∥∥ ·Op(
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∥∥∥)1
n

n∑
i=1

‖Xi‖ · |ei| .

As 1
n
∑n

i=1 ‖Xi‖ · |ei| is finite in probability, we conclude that
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for any �, k = 1, 2, . . . , p. Employing (20) once again we arrive at (for any n ∈N )
∣∣∣∣∣∣∣
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]

×
[
F n,β(|ri(β)|) − F n,β0 (|ri(β)|)

]
· Xi�Xik

∣∣∣∣

≤ Jw · sup
v∈R+

[
F n,β(v) − F n,β0 (v)

]2 1
n
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|Xi�Xik|
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1
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w′(ξi) − w′(F n,β0 (|ri(β)|))

]

×
[
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�

Lemma 4 Let Conditions C 1′, C 2, C 3 and N C 1 hold. Then, as n→ ∞,

sup
β∈Rp

1
n

n∑
i=1

∣∣∣∣∣w′(F n,β0 (|ri(β)|)) − w′(F n,β0 (|ri(β0)|))
∣∣∣∣∣×

×
∣∣∣∣∣F n,β(|ri(β)|) − F n,β0 (|ri(β0)|)

∣∣∣∣∣ ·
∥∥∥∥Xiei

∥∥∥∥ = Op(
∥∥∥β − β0
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and for any �, k = 1, 2, . . . , p∣∣∣∣∣∣∣
1
n

n∑
i=1

[
w′(ξi) − w′(F n,β0 (|ri(β)|))

]

×
[
F n,β(|ri(β)|) − F n,β0 (|ri(β)|)

]
· Xi� · Xik

∣∣∣∣ = Op(
∥∥∥β − β0
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The proof consists of a chain of straightforward steps of finding the upper bound of
respective expressions.

Lemma 5 Let Conditions C 1, C 2, C 3 and N C 1 hold. Then, as n→ ∞,

1
n

n∑
i=1

∥∥∥β − β0
∥∥∥−2 ·
∥∥∥∥∥∥w
(
F n,β0 (|ri(β)|)

)
− w
(
F n,β0 (|ri(β0)|)

)

− w′(F n,β0 (|ei|))
[(

fe(ei) − fe(−ei)
)
· X′i
(
β − β0

)]
· Xiei

∥∥∥∥∥∥ = O(1).

The proof again consists of a chain of straightforward steps employing CLT and the
law of large numbers.

Lemma 6 Let for some p ∈ N ,
{
V (n)
}∞
n=1

, V (n) =
{
v(n)

i j

} j=1,2,...,p

i=1,2,...,p
be a sequence of

(p × p) matrixes such that for i = 1, 2, . . . , p and j = 1, 2, . . . , p

lim
n→∞

v(n)
i j = qi j in probability (23)

where Q =
{
qi j

} j=1,2,...,p

i=1,2,...,p
is a fixed nonrandom regular matrix. Moreover, let

{
θ(n)
}∞
n=1

be a sequence of p–dimensional random vectors such that

∃ (ε > 0) ∀ (K > 0) lim sup
n→∞

P
(
‖θ(n)‖ > K

)
> ε.

Then
∃ ( δ > 0) ∀ (H > 0)

so that
lim sup

n→∞
P
(∥∥∥V (n)θ(n)

∥∥∥ > H
)
> δ.

For the proof see [13] or [15].
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Weak
√

n-Consistency of the Least Weighted
Squares under Heteroscedasticity

Data sets in economics and finance have often the form of time series. The article is
devoted to an application of simple univariate and multivariate autoregressive models to
a two-dimensional collection of exchange rates. Parameter estimates obtained using spe-
cial methods constructed for non-negative time series are compared with the outputs of
standard estimation procedures implemented in commonly used software products. Later
on, the attention is paid to the predictive capability of our models.

1. I n t r o d u c t i o n

In economics and finance, we often observe time series, i.e. ordered sequences
of records of a variable. Different models are available to describe such data and
to predict their future development. Simple linear models such as the first order
autoregression are frequently applied and implemented in commonly used statistical
software packages.

Some special procedures for parameter estimation in non-negative autoregressive
models were proposed in last decades [4,1,2,3]. Their small sample behaviour was
investigated in simulation studies which confirmed satisfactory convergence proper-
ties. The aim of this article is to study the forecasting quality on real data sets and to
compare selected univariate and multivariate models estimated using the mentioned
approach with models analyzed by means of standard methods. Some series of ex-
change rates were used for this purpose.
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