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The paper continues the investigation of quasitrivial semimodules and related problems.
In particular, endomorphisms of semilattices are investigated.

This part is a continuation of [1], [2], [3], [4] and [5] with main emphasis on
endomorphisms of semilattices. The notation introduced in the preceding parts is
used. All the results collected here are fairly basic and we will not attribute them to
any particular source.

1. I n t r o d u c t i o n

Throughout the paper, let M = M(+) be a non-trivial semilattice (i.e., a commuta-
tive idempotent semigroup). As usual, a relation of order is defined on M by a ≤ b if
and only if a+b = b. The ordered set M(≤) has the smallest element if and only if the
semilattice M has the neutral element (usually denoted as 0M). Then 0M is the small-
est element and minimal elements (or atoms) are the elements covering the neutral
element. If 0M � M then minimal elements (or atoms) are just the minimal elements
of the ordered set M(≤). This set has the greatest element if and only if the semilat-
tice M has the absorbing element (denoted by oM throughout this paper). Then oM is
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the greatest element and maximal elements (or coatoms, dual atoms) are the elements
that are covered by the absorbing element oM . If oM � M then the ordered set M(≤)
has no maximal elements at all. An element a ∈ M is irreducible if a � x + y for all
x, y ∈ M \ {a}.
1.1 Proposition. (i) An element w is the smallest element of M(≤) if and only if
w = 0M is the neutral (or zero) element of the semilattice M.
(ii) An element w is the greatest element of M(≤) if and only if w = oM is the absorbing
element of the semilattice M.
(iii) If 0M ∈ M then a is minimal if and only if a � 0M and a � (M \ {0M , a}) + M (or
a � (M \ {0M , a}) + a).
(iv) If 0M � M then a is minimal if and only if a � (M \ {a})+M (or a � M \ {a})+ a).
(v) 0M is irreducible.
(vi) Every minimal element is irreducible.
(vii) If oM ∈ M then a is maximal if and only if a � oM and M + a ⊆ {a, oM}.
(viii) If oM � M then M(≤) has no maximal element.

Proof. It is easy. �

1.2 Example. (i) M(+, ∗) is a semiring, where a ∗ b = a for all a, b ∈ M.
(ii) M(+, ◦) is a semiring, where a ◦ b = b.
(iii) M(+,+) is a semiring.
(iv) Let w ∈ M and a · b = w for all a, b ∈ M. Then M(+, ·) is a semiring.

1.3 Remark. A non-empty subset I of M is an ideal if M + I ⊆ I.
(i) If I, J are ideals then the sets I+J, I∩J and I∪J are ideals and I+J ⊆ I∩J ⊆ I∪J.
(ii) A one-element set {w} is an ideal iff w = oM .
(iii) If oM � M then no ideal is minimal.
(iv) If oM ∈ M then an ideal I is minimal iff I = {a, oM}, where a is maximal.
(v) If 0M ∈ M then the set M \ {0M} is the only maximal ideal of M.
(vi) If 0M � M then I is a maximal ideal of M iff I = M \ {a}, where a is minimal.
(vii) For every a ∈ M, the set M + a = { x | a ≤ x } is just the ideal generated by the
one-element set {a}. If a � oM then the set (M + a) \ {a} = { y | a < y } is an ideal, too.
(viii) Consider the following conditions

(1) M is finite;
(2) Every strictly decreasing sequence I1 ⊃ I2 ⊃ I3 ⊃ . . . of ideals of M is finite;
(3) Every strictly decreasing sequence J1 ⊃ J2 ⊃ J3 ⊃ . . . of one-generated

ideals of M (see (vii)) is finite;
(4) Every strictly increasing sequence a1 < a2 < a3 < . . . of elements from M is

finite;
(5) oM ∈ M.

One sees easily that (1)⇒ (2)⇒ (3)⇔ (4)⇒ (5).
(ix) Any infinite strictly decreasing chain a1 > a2 > a3 > . . . of elements from M
satisfies (2) (but not (1)).
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(x) Consider the following semilattice: M = {a1, a2, a3, b1, b2, b3, . . . , oM}, where
ai < bi and ai < bi+1 for every i. Then M satisfies (3) and (4), but not (2).

1.4 Remark. An ideal I of M is said to be prime if the set M \ I is a subsemilattice of
M (i.e., I � M and a + b ∈ M \ I for all a, b ∈ M \ I).
(i) If I, J are prime ideals such that I ∪ J � M then I ∪ J is a prime ideal.
(ii) For every a ∈ M, a � oM , the set Pa = { x ∈ M | x �≤ a } (= { x | a < x + a }) is a
prime ideal of M. (These prime ideals are called principal.)
(iii) Let P be a prime ideal of M. Then P ⊆ Pa for every a ∈ M \ P and we have
P =
⋃

Pa.
(iv) Let P be a prime ideal of M. Put N = M \ P. Then P is principal iff oN ∈ N.
(v) Let a1 < a2 < a3 < . . . be an infinite strictly increasing sequence and let P be the
set of x ∈ M such that x �≤ ai for every i. If P � ∅ then P is a non-principal prime
ideal.
(vi) The following conditions are equivalent:

(1) Every prime ideal is principal.
(2) Every infinite strictly increasing sequence a1 < a2 < a3 < . . . is upwards

cofinal in M.
(3) oN ∈ N for every (proper) subsemilattice N of M.

2. E n d o m o r p h i s m s ( a )

We denote by E the full endomorphism semiring of the semilattice M (= M(+)).
That is, E is the set of transformations f of M such that f (a + b) = f (a) + f (b)
for all a, b ∈ M. The basic operations of addition and multiplication are defined by
( f + g)(a) = f (a) + g(a) and ( f g)(a) = f (g(a)). The identity automorphism idM is
the (unique) multiplicatively neutral element of the semiring E, i.e., idM = 1E . The
additive semigroup E(+) is a semilattice and, for all f , g ∈ E, we have f ≤ g iff
f + g = g (or f (a) ≤ g(a) for every a ∈ M).

2.1 For every a ∈ M, the constant transformation σa : M → {a} belongs to E. We put
E(1) = {σa | a ∈ M }.
2.1.1 Proposition. (i) σa + σb = σa+b.
(ii) σa f = σa for every f ∈ E.
(iii) fσa = σ f (a).
(iv) σaσb = σa.

Proof. It is easy. �

2.1.2 Proposition. (i) E(1) is an ideal of the semiring E.
(ii) E(1) is the smallest (left) ideal of E.
(iii) E(1) is the set of left multiplicatively absorbing elements of the semiring E.
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Proof. It is easy (use 2.1.1). �

2.1.3 Proposition. (i) |E(1)| = |M|.
(ii) The semiring E(1) is left-ideal-free.
(iii) The semiring E(1) is bi-idempotent.
(iv) Every subsemilattice of E(1)(+) is a right ideal of the semiring E(1).
(v) Every element from E(1) is left multiplicatively absorbing and right multiplica-
tively neutral in E(1).
(vi) The semiring E(1) has no left multiplicatively neutral element.
(vii) The semiring E(1) has no right multiplicatively absorbing element.
(viii) The semiring E(1) has an additively neutral element iff 0M ∈ M; then σ0M is the
additively neutral element.
(ix) The semiring E(1) has an additively absorbing element iff oM ∈ M; then σoM is
the additively absorbing element.
(x) The semiring E(1) is congruence-simple iff |M| = 2 (or |E(1)| = 2).

Proof. It is easy (use 2.1.1). �

2.1.4 Proposition. idM � E(1) and E(1) � E.

Proof. It is obvious. �

2.2 Proposition. (i) The semiring E is not ideal-simple.
(ii) E has an additively neutral element iff 0M ∈ M; then σ0M is the additively neutral
element and σ0M is left multiplicatively absorbing.
(iii) E has an additively absorbing element iff oM ∈ M; then σoM is the additively
absorbing element and σoM is left multiplicatively absorbing.
(iv) E has no right multiplicatively absorbing element.
(v) E is bi-idempotent iff |M| = 2 (or |E| ≤ 3).

Proof. It is easy. �

2.3 Proposition. (i) For every a ∈ M, the one-element set {σa} is a right ideal of E.
(ii) A subset I of E is a minimal right ideal of E iff I = {σa, σb} for some a, b ∈ M,
a < b.

Proof. (i) This is obvious.
(ii) First, let I be a minimal right ideal of E and let f ∈ I. For every a ∈ M, we have
σ f (a) = fσa ∈ I, and hence K = I ∩ E(1) � ∅. Of course, K is a right ideal. If |K| = 1
then σ f (a) = σ f (b), and hence f (a) = f (b) for all a, b ∈ M. Thus f ∈ E(1), I ⊆ E(1)

and I = K, a contradiction with |I| ≥ 2. Thus |K| ≥ 2, and hence K = I, since I is a
minimal right ideal. Thus I ⊆ E(1) and our result easily follows.

Conversely, if I = {σa, σb}, a < b, then the result is clear. �
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Let E(α) = E + E(1) = { f ∈ E |σa ≤ f for some a ∈ M }.
2.4 Proposition. (i) E(α) is the smallest bi-ideal of the semiring E.
(ii) E(1) ⊆ E(α).

Proof. Let I be a bi-ideal of E. Since I is an ideal, we have E(1) ⊆ I by 2.1.2(ii).
Since I is a bi-ideal, we have E(α) = E + E(1) ⊆ I. �

2.5 Proposition. The following conditions are equivalent:
(i) E is bi-ideal-simple.

(ii) E is bi-ideal-free.
(iii) E = E(α).
(iv) idM ∈ E(α).
(v) E(α) has a mulitplicatively neutral element.

(vi) E(α) has an additively neutral element.
(vii) 0M ∈ M.

Proof. It is easy (use 2.4). �

2.6 Proposition. The semiring E(α) is bi-ideal-free.

Proof. Let I be a bi-ideal of E(α). Then E(1) ⊆ I, and hence E(α) ⊆ I. �

Put E(β) = E(1) ∪ (E(1) + idM) ∪ {idM} and E(β1) = E(1) ∪ (E(1) + idM)

2.7 Proposition. (i) E(β) is a bi-idempotent subsemiring of E.
(ii) E(β) is the subsemiring generated by E(1) ∪ {idM}.
(iii) E(β) ⊆ E(α) iff 0M ∈ M.
(iv) E(β) = E iff |M| = 2.
(v) E(β1) ⊆ E(α).
(vi) If 0M ∈ M then E(β) = E(β1).
(vii) If 0M � M then E(β1) is a proper bi-ideal of E(β).

Proof. It is easy. �

2.8 For every a ∈ M, the translation λa, where λa(x) = a + x, is an endomorphism of
M. We put E(γ) = { λa | a ∈ M }.
2.8.1 Proposition. (i) λa + λb = λa+b = λaλb.
(ii) fλa = λ f (a) for every f ∈ E.

Proof. It is easy. �

2.8.2 Proposition. (i) E(γ) is a subsemiring of E.
(ii) E(γ) is bi-idempotent.
(iii) E(γ) is ideal-simple iff it is congruence-simple and iff |M| = 2.
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Proof. It is easy. �

2.8.3 Lemma. λa = σa + idM.

Proof. It is obvious. �

2.8.4 Corollary.. (i) E(γ) = E(1) + idM ⊆ E(α) ∩ E(β).
(ii) E(β) = E(1) ∪ E(γ) ∪ {idM}. �

Let E(δ) = { f ∈ E | f ≤ σa for some a ∈ M } = { f | f + σa = σa for some a ∈ M }.
2.9 Proposition. (i) E(δ) is an ideal of the semiring E.
(ii) E(1) ⊆ E(δ).
(iii) E(δ) = E iff oM ∈ M (and iff idM ∈ E(δ)).

Proof. It is easy. �

Put E(ε) = E(α) ∩ E(δ) = { f ∈ E | a ≤ f (M) ≤ b for some a, b ∈ M }.
2.10 Proposition. (i) E(ε) is an ideal of the semiring E.
(ii) E(1) ⊆ E(ε).
(iii) E(ε) = E iff 0m, om ∈ M (and iff idM ∈ E(ε)).

Proof. It is easy. �

2.11 Proposition. Let S be a subsemiring of E. Define a relation �α,S on S by
( f , g) ∈ �α,S iff there is an element a ∈ M such that f (x) + a = g(x) + a for every
x ∈ M. Then �α,S is a congruence of the semiring S . Moreover:
(i) ( f , g) ∈ �α,S iff f + σa = g + σa for at least one a ∈ M.
(ii) T × T ⊆ �α,S , where T = S ∩ E(1).
(iii) If E(1) ⊆ S then E(1) × E(1) ⊆ �α,S .
(iv) If oM ∈ M then �α,S = S × S .
(v) If f , σa ∈ S and ( f , σa) ∈ �α,S then f ∈ E(δ).

Proof. Clearly, � = �α,S is reflexive and symmetric and (i) is true. Now, if ( f , g) ∈
∈ � and (g, h) ∈ � then f + σa = g + σa, g + σb = h + σb for some a, b ∈ M, and so
f + σa+b = f + σa + σb = g + σa + σb = h + σa + σb = h + σa+b and ( f , h) ∈ �.
It follows that � is an equivalence defined on S . If ( f , g) ∈ �, f + σa = g + σb, then
f +h+σa = f +h+σa, ( f +h, g+h) ∈ �, h f +σh(a) = h( f +σa) = h(g+σa) = hg+σh(a),
(h f , hg) ∈ �, f h+σa = ( f +σa)h = (g+σa)h = gh+σa, ( f h, gh) ∈ �. It follows that
� is a congruence of the semiring S .

If σa, σb ∈ T then (σa, σb) ∈ �, since σa + σa+b = σa+b = σb + σa+b. That is,
T × T ⊆ � and (ii),(iii) are clear. If oM ∈ M then f + σoM = σoM = g + σoM for all
f , g ∈ S , and so � = S × S . Finally, if ( f , σa) ∈ � then σa+b = σa + σb = f + σb for
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some b ∈ M, and hence σa+b = σa+b + σa = f + σb + σa = f + σa+b, f ≤ σa+b and
f ∈ E(δ). �

2.12 Proposition. Let S be a subsemiring of E and T = S ∩ E(α). Then:
(i) �β,S = (T × T ) ∪ idS is a congruence of S .
(ii) �γ,S = �α,S ∩ �β,S is a congruence of S .
(iii) If E(1) ⊆ S then E(1) × E(1) ⊆ �γ,S .

Proof. If T = ∅ then �β,S = idS . If T � ∅ then T is a bi-ideal of S and �β,S is
a congruence again. The rest is clear. �

2.13 Lemma. Let a ∈ M. Define a relation ξa on M by (u, v) ∈ ξa iff either u = v
or u + a = u, v + a = v. Then ξa is a congruence of the semilattice M (namely the
congruence corresponding to the ideal { x | a ≤ x }).

Proof. It is easy. �

2.14 Lemma. Let I be an ideal of M. Denote by S the set of endomorphisms f ∈ E
such that either f (I) ⊆ I or | f (I)| = 1. Then:
(i) S is a subsemiring of E.
(ii) E(1) ⊆ S .
(iii) E(γ) ⊆ S .
(iv) idM ∈ S .
(v) E(β) ⊆ S .
(vi) (I × I) ∪ idM is a congruence of the S -semimodule S M.

Proof. It is easy. �

2.15 Lemma. Let I and S be as in 2.14. Define a relation � on S by ( f , g) ∈ � iff
f (x) = g(x) for every x ∈ M \ I such that {( f (x), g(x)} � I. Then:
(i) � is a congruence of the semiring S .
(ii) (σa, σb) ∈ � for all a, b ∈ I.
(iii) (σa, σc) � � for all a ∈ I and c ∈ M \ I.
(iv) (σc, σd) � � for all c, d ∈ M \ I, c � d.
(v) (λa, λb) ∈ � for all a, b ∈ I.
(vi) (λa, λc) � � for all a ∈ I and c ∈ M \ I.
(vii) (λc, λd) � � for all c, d ∈ M \ I, c � d.

Proof. It is easy. �

2.16 Corollary. Let I and S be as in 2.14. If |I| ≥ 2 and I � M then the semiring S
is not congruence-simple. �
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3. E n d o m o r p h i s m s ( b )

Let S be a subsemiring of E such that E(1) ⊆ S .

3.1 Proposition. S is bi-ideal-simple (bi-ideal-free) if and only if S ⊆ E(α).

Proof. Put I = S ∩ E(α). Then E(1) ⊆ I and I is a non-trivial bi-ideal of the
semiring S . If S is bi-ideal-simple then I = S and S ⊆ E(α). Conversely, if S ⊆ E(α)

then S = S + E(1). Now, if K is a bi-ideal of S then E(1) ⊆ K and S = S + E(1) ⊆ K.
Thus K = S and S is bi-ideal-free. �

3.2 Proposition.. (i) 0S ∈ S iff 0M ∈ M (then 0S = σ0M ).
(ii) oS ∈ S iff oM ∈ M (then oS = σoM ).
(iii) E(1) is the smallest (left) ideal of S and it is the set of left multiplicatively absorb-
ing element of S .
(iv) S has no right multiplicatively absorbing elements.

Proof. (i) If 0S ∈ S then a = σa(x) = (σa + 0S )(x) = σa(x) + 0S (x) = a + 0S (x)
for all a, x ∈ M. Thus 0S (x) = 0M ∈ M and 0S = σ0M . Conversely, if 0M ∈ M then
σ0M = 0S is clear.
(ii) If oS ∈ S then oS (x) = (oS + σa)(x) = oS (x) + σa(x) = oS (x) + a for all a, x ∈ M.
Thus oS (x) = oM ∈ M and oS = σoM . Conversely, if oM ∈ M then σoM = oS is clear.
(iii) and (iv) Easy to see. �

3.3 Proposition. The following conditions are equivalent:
(i) The semiring S has at least one left multiplicatively neutral element.

(ii) 1S ∈ S .
(iii) idM ∈ S .
(iv) E(β) ⊆ S .

Proof. If e ∈ S is left multiplicatively neutral then a = σa(x) = (eσa)(x) =
e(σa(x)) = e(a) for all a, x ∈ M. Thus e = idM ∈ S . The rest is clear. �

3.4 Proposition. Let S be bi-ideal-simple and let 1S ∈ S . Then 0M ∈ M, 0S ∈ S and
E(β) ⊆ S ⊆ E(α).

Proof. By 3.1, S ⊆ E(α). By 3.3, E(β) ⊆ S . Consequently, E(β) ⊆ E(α), 0M ∈ M by
2.7(iii) and 0S ∈ S by 3.2(i). �

3.5 Lemma. Let � � idS be a congruence of the semiring S . Then there are a, b ∈ M
such that a < b and (σa, σb) ∈ �.
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Proof. There are f , g ∈ S such that f � g and ( f , g) ∈ �. Then f (u) � g(u)
for at least one u ∈ M and we can assume that f (u) �≤ g(u) = a. If b = a + f (u)
then σa = gσu, σ f (a) = fσu and (σa, σ f (u) ∈ �. We have f (u) �≤ a, a < b and
(σa, σb) = (σa + σa, σa + σ f (u)) ∈ �. �

3.6 Lemma. Let � be a congruence of S and let a, b, c ∈ M be such that a < b and
(σa, σb) ∈ �. Let f ∈ S be such that f (a) = c and f (x) > c whenever a < x. Then
c < f (b) and (σc, σ f (b)) ∈ �.

Proof. Since a < b, we have c < f (b). Since (σa, σb) ∈ �, we have (σc, σ f (b)) =
= (σ f (a), σ f (b)) = ( fσa, fσb) ∈ �. �

Consider the following condition:
(A) For all a, b ∈ M \ {oM} there is at least one endomorphism f ∈ S such that

f (a) = b and f (x) > b for every x > a.

3.7 Lemma. Assume that (A) is true. Let � � idS be a congruence of S . Then for
every a ∈ M, a � oM, there is at least one b ∈ M such that a < b and (σa, σb) ∈ �.

Proof. By 3.5, (σc, σd) ∈ � for some c, d ∈ M, c < d. Then c � oM and, using
(A), we find f ∈ S with f (c) = a and f (x) > a whenever x > c. By 3.6, (σa, σb) ∈ �,
where b = f (d) > a. �

3.8 Lemma. Let � be a congruence of S and let a, b, c ∈ M be such that a ≤ c ≤ b. If
(σa, σb) ∈ � then (σa, σc) ∈ � and (σc, σb) ∈ �.

Proof. We have σa + σc = σc and σb + σc = σb. �

3.9 Lemma. Let � be a congruence of S such that (σa, σb) ∈ � whenever a < b. Then
E(1) × E(1) ⊆ �.

Proof. If a, b ∈ M then a ≤ a + b, (σa, σa+b) ∈ �, b ≤ a + b, (σb, σa+b) ∈ � and,
finally, (σa, σb) ∈ �. �

3.10 Lemma. Assume that S ⊆ E(ε). Let � be a congruence of S such that E(1)×E(1) ⊆
⊆ �. Then � = S × S .

Proof. First, let f , g ∈ S , f ≤ g. Since S ⊆ E(ε), we have σa ≤ f ≤ g ≤ σb for
some a, b ∈ M, a ≤ b. Now, (σa, σb) ∈ �, and hence ( f , σb) = ( f + σa, f + σb) ∈ �
and (g, σb) = (g + σa, g + σb) ∈ �. Thus ( f , g) ∈ �. In the general case, we have
f ≤ f + g, g ≤ f + g, ( f , f + g) ∈ �, (g, f + g) ∈ � and ( f , g) ∈ �. �

Consider the following condition:
(B) Every infinite strictly increasing chain a1 < a2 < a3 < . . . of elements from

M is upwards cofinal in M.
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3.11 Lemma. Assume that both (A) and (B) are satisfied. Then E(1) × E(1) ⊆ � for
every congruence � � idS of S .

Proof. In view of 3.9, we have to show that (σa, σb) ∈ � whenever a < b. If
oM ∈ M and (σa, σoM ) ∈ � then (σa, σb) ∈ � by 3.8. Consequently, assume that either
oM � M or (σa, σoM ) � �. Using 3.7 repeatedly, we get an infinite strictly increasing
chain a1 < a2 < a3 < . . . such that a1 = a and (σa, σai ) ∈ � for every i = 1, 2, 3, . . . .
With respect to (B), we have b ≤ an for some n. By 3.8, (σa, σb) ∈ �. �

3.12 Proposition. Assume that S ⊆ E(ε) and that the conditions (A) and (B) are
satisfied. Then the semiring S is congruence-simple.

Proof. Let � be a congruence of S . Then E(1) × E(1) ⊆ � is proved in 3.11. It
remains to use 3.10. �

4. E n d o m o r p h i s m s ( c )

Let S be a subsemiring of E such that E(1) ⊆ S .

4.1 Let � be a congruence of the semiring S . Define a relation τ on M by (a, b) ∈ τ
iff (σa, σb) ∈ �.
4.1.1 Lemma. τ is a congruence of the left S -semimodule S M.

Proof. It is easy. �

4.1.2 Lemma. � � idS iff τ � idM.

Proof. If � � idS then τ � idM by 3.5. If τ � idM then � � idS trivially. �

4.1.3 Lemma. Assume that S M is congruence-simple and that � � idS . Then E(1) ×
× E(1) ⊆ �.

Proof. We have τ � idM by 4.1.2. Since the semimodule S M is congruence-
simple, we get τ = M × M. Thus E(1) × E(1) ⊆ �. �

4.2 Proposition. The (left S -)semimodule S M is faithful and strictly minimal.

Proof. It is easy. �

4.3 Let α be a congruence of the semimodule S M. Define a relation � on S by
( f , g) ∈ � iff ( f (x), g(x)) ∈ α for every x ∈ M.

4.3.1 Lemma. � is a congruence of the semiring S .

Proof. It is easy. �
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4.3.2 Lemma. � � idS iff α � idM.

Proof. If ( f , g) ∈ �, f � g, then f (u) � g(u) for at least one u ∈ M and we have
( f (u), g(u)) ∈ α. Thus α � idM . Conversely, if (a, b) ∈ α, a � b, then σa � σb and
(σa, σb) ∈ �. Thus � � idS . �

4.3.3 Lemma. � = S × S iff α = M × M.

Proof. We can proceed similarly as in the proof of 4.3.2. �

4.3.4 Lemma. If E(1) × E(1) ⊆ � then � = S × S .

Proof. Obvious. �

4.4 Proposition. The following conditions are equivalent:
(i) E(1) × E(1) ⊆ � for every congruence � � idS of the semiring S .

(ii) The semimodule S M is congruence-simple.

Proof. (i) implies (ii). Let α � idM be a congruence of S M. Consider the congru-
ence � defined in 4.3. By 4.3.2, we have � � idS , and hence E(1) × E(1) ⊆ �. By 4.3.4,
� = S × S and, finally, α = M × M by 4.3.3. Thus S M is congruence-simple.
(ii) implies (i). Let � � idS be a congruence of S . Consider the congruence τ defined
in 4.1. Then τ � idM by 4.1.2, and hence τ = M × M. Now, E(1) × E(1) ⊆ � follows
from 4.1.3. �

4.5 Corollary. If the semiring S is congruence-simple then the semimodule S M is
congruence-simple. �

4.6 Proposition. Assune that both (A) and (B) are satisfied. Then S M is congruence-
simple.

Proof. Combine 3.11 and 4.4. �

4.7 Proposition. Assume that S ⊆ E(ε). Then the semiring S is congruence-simple if
and only if the semimodule S M is congruence-simple.

Proof. First, let S be congruence-simple. Then S M is congruence-simple by 4.5.
Conversely, if S M is congruence-simple and if � � idS is a congrunece of S then
E(1) × E(1) ⊆ � by 4.1.3, and hence � = S × S by 3.10. Thus S is congruence-
simple. �

4.8 Remark. Notice that the mapping a �→ σa is an isomorphism of the seminodule
S M onto the semimodule S E(1).

4.9 Lemma. Let � be a congruence of S such that E(1) × E(1) ⊆ �. Then �γ,S ⊆ �.
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Proof. Let ( f , g) ∈ �γ,S , f � g. Then ( f , g) ∈ �β,S , and hence f , g ∈ E(α) ∩ S
(see 2.12) and there are a, b ∈ M such that f + σa = f and g + σb = g. Further,
( f , g) ∈ �α,S (see 2.11) and there is c ∈ M with f + σc = g + σc. Now, (σa, σc) ∈ �,
and so ( f , σc+ f ) = ( f+σa, f+σc) ∈ �. Similarly, (g, σc+g) ∈ �. Sinceσc+ f = σc+g,
we have ( f , g) ∈ �. �

4.10 Proposition. �γ,S is just the congruence of S generated by the set E(1) × E(1).

Proof. We have E(1) × E(1) ⊆ �γ,S by 2.12(iii) and the rest follows from 4.9. �

4.11 Proposition. If S ⊆ E(ε) then �γ,S = S × S .

Proof. Combine 4.10 and 3.10. �

4.12 Proposition. Assume that the conditions (A) and (B) are satisfied. Then the
semiring S is subdirectly irreducible and the congruence �γ,S is just the monolith
congruence of S .

Proof. Let � � idS be a congruence of S . By 3.11, E(1)×E(1) ⊆ �. By 4.9, �γ,S ⊆ �.
Of course, �γ,S � idS , and hence �γ,S is the monolith congruence of S . �

4.13 Remark. Combining 4.11 and 4.12, we get another proof of 4.6.

Consider the following condition:
(C) For all a, b, c, d ∈ M such that a < b and c < d there is at least one f ∈ S

such that f (a) = c and f (b) = d.

4.14 Lemma. Assume that (C) is true. If � � idS is a congruence of S then E(1) ×
× E(1) ⊆ �.

Proof. By 3.5, (σa, σb) ∈ � for some a, b ∈ M, a < b. Since (C) is true, we get
(σc, σd) ∈ � for all c, d ∈ M, c < d. Now, if x, y ∈ M then x ≤ x + y, y ≤ x + y,
(σx, σx+y) ∈ �, (σy, σx+y) ∈ � and, finally, (σx, σy) ∈ �. �

4.15 Proposition. (cf. 4.12) Assume that the condition (C) is satisfied. Then the
semiring S is subdirectly irreducible and the congruence �γ,S is just the monolith
congruence of S .

Proof. Combine 4.10 and 4.14. �

4.16 Proposition. Assume that either the conditions (A), (B) are true or that the
condition (C) is true. The following conditions are equivalent:

(i) The semiring S is congruence-simple.
(ii) S ⊆ E(ε).

(iii) For every f ∈ S there are a, b ∈ M such that σa + f = f and σb + f = f (i.e.,
σa ≤ f ≤ σb).
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Moreover, if these equivalent conditions are satisfied then the semimodule S M is
congruence-simple.

Proof. (i) implies (ii). We have E(1) × E(1) ⊆ �γ,S (see 2.12(iii)), and hence �γ,S �
� idS . Since S is congruence-simple, we get �γ,S = S × S . Of course, �γ,S =
= �α,S ∩ �β,S , and therefore �α,S = S × S = �β,S . Since �β,S = S × S , the inclusion
S ⊆ E(α) follows from 2.12(i). Since �α,S = S × S , the inclusion S ⊆ E(δ) follows
from 2.11(v). Thus S ⊆ E(α) ∩ E(δ) = E(ε).
(ii) is equivalent to (iii). This is clear from the definitions.
(ii) implies (i). If (A),(B) are true then S is congruence-simple by 3.12. If (C) is true
then S is congruence-simple by 4.15 and 4.11. �

4.17 Proposition. Assume that either the conditions (A),(B) are true or that the
condition (C) is true. Then the semimodule S M is congruence-simple.

Proof. Use 4.6, 4.14 and 4.4. �

4.18 Remark. Let (C) be true and let a, b ∈ M \ {oM}. Choose c > b. For every
d > a there is fd ∈ S such that fd(a) = b and fd(d) = c. Now, assume that the set
{ d } d > a } is finite and put f =

∑
fd. Then f (a) = b and f (d) ≥ c > b for every

d > a. In particular, if M is finite then (C) implies (A) (and, of course, (B) is true).

4.19 Proposition. Assume that the semimodule S M is congruence-simple. Then the
semiring S is subdirectly irreducible and the congruence �γ,S is the monolith congru-
ence of S .

Proof. See 4.1.3. �

4.20 Proposition. The semiring S is congruence-simple if and only if S ⊆ E(ε) and
the semimodule S M is congruence-simple.

Proof. If S is congruence-simple then S ⊆ E(α) by 3.1. Furthermore, E(1) × E(1) ⊆
⊆ �γ,S , �γ,S = S × S , and hence �α,S = S × S = �β,S . Using 2.11(v), we get S ⊆ E(δ).
Thus S ⊆ E(α) ∩ E(δ) = E(ε). By 4.5, S M is congruence-simple. Conversely, if
S ⊆ E(ε) and S M is congruence-simple then S is subdirectly irreducible and �γ,S is
the monolith congruence. By 4.1, �γ,S = S × S , and so S is congruence-simple. �

5. E n d o m o r p h i s m s ( d )

Let S be a subsemiring of E with E(1) ⊆ S .

5.1 Lemma. Let u, v ∈ M, u � v. Define a relation αu,v on M by (a, b) ∈ αu,v iff
{u, v} � { f (a), f (b)} for every f ∈ S . Then αu,v is reflexive, symmetric and stable.
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Proof. First, (a, a) ∈ αu,v, since |{u, v}| = 2 and |{ f (a), f (a)}| = 1. The symmetry
is clear. If (a, b) ∈ αu,v then ( f (a), f (b)) ∈ αu,v for every f ∈ S . Finally, { f (a + c),
f (b + c)} = { f (a) + f (c), f (b) + f (c)} = {( f + σ f (c))(a), ( f + σ f (c))(b)}, and hence
{u, v} � { f (a + c), f (b + c)} and (a + c, b + c) ∈ αu,v. �

5.2 Lemma. Let u, v ∈ M, u � v, and let βu,v be the transitive closure of the relation
αu,v. Then βu,v is a congruence of the semimodule S M.

Proof. It follows easily from 5.1. �

5.3 Lemma. Let u, v ∈ M, u � v. The following conditions are equivalent:
(i) αu,v = idM.

(ii) βu,v = idM.
(iii) For all a, b ∈ M, a � b, there is at least one f ∈ S such that {u, v} =
= { f (u), f (v)}.

Moreover, if these equivalent conditions are satisfied then either u < v or v < u.

Proof. It is easy (choose a < b). �

5.4 Remark. Using 5.3, one sees easily that the condition (C) is true if and only if
αu,v = idM for all u, v ∈ M, u < v.

5.5 Lemma. Let u, v,w ∈ M be such that u � v and (u,w) ∈ αu,v.
(i) If f ∈ S is such that f (u) = u then f (w) � v.
(ii) If f ∈ S is such that f (u) = v then f (w) � u.

Proof. It is easy. �

Consider the following condition:
(C1) For all a, b, c ∈ M such that a < b and a < c there is at least one f ∈ S such

that f (a) = a and f (b) = c.
Clearly, (C) implies (C1).

5.6 Lemma. The following conditions are equivalent:
(i) (C1) is true.

(ii) (u,w) � αu,v whenever u < v and u < w.
(iii) (u,w � βu,v whenever u < v and u < w.

Proof. Clearly, (i) is equivalent to (ii) and (iii) implies (ii). It remains to show
that (ii) implies (iii). For, suppose that (ii) is true and (u,w) ∈ βu,v. Then there are
u0, u1, . . . , un, n ≥ 1, such that u0 = u, un = w and (ui, ui+1) ∈ αu,v for
i = 0, 1, . . . , n − 1. Since αu,v is stable, we get (zi, zi+1) ∈ αu,v for i = 0, 1, . . . , n − 1,
where z0 = u0 = u and zi =

∑
j≤i u j for i ≥ 1. Of course, z0 ≤ z1 ≤ z2 ≤ · · · ≤ zn,

z0 = u and w = un ≤ zn, and there is k such that 0 ≤ k < n and z0 = z1 = · · · = zk = u
and zk+1 � u. Now, (u, zk+1) ∈ αu,v and u < zk+1, a contradiction with (ii). �
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5.7 Proposition. Assume that the semimodule S M is congruence-simple. Then (C) is
true if and only if (C1) is true.

Proof. The direct implication is trivial. Now, let (C1) be true and let a, b, c, d ∈ M
be such that a < b and c < d. By 5.6, (c, d) � βc,d and so βc,d � M × M. But βc,d

is a congruence of S M and, since S M is congruence-simple, we have βc,d = idM . In
particular, (a, b) � βc,d, and hence (a, b) � αc,d either. That is, {c, d} ⊆ { f (a), f (b)} for
some f ∈ S . Since c < d and a < b, we conclude that f (a) = c and f (b) = d. We
have proved that (C) is true. �

5.8 Proposition. The following conditions are equivalent:
(i) S M is congruence-simple and (C1) is true.

(ii) (C) is true.

Proof. Combine 5.7 and 4.17. �

5.9 Proposition. If the semiring S is congruence-simple and (C1) is true then (C) is
true.

Proof. By 4.5, the semimodule S M is congruence-simple and 5.8 applies. �

5.10 Lemma. Assume that the condition(C1) is satisfied. Let � be a congruence of
S M, � � idM ,M × M. Then:
(i) There is an ideal A of M such that � = (A × A) ∪ idM (M + A = A).
(ii) A � M and |A| ≥ 2.

Proof. First, let A be a block of � such that |A| ≥ 2. Of course, A is a non-trivial
subsemilattice of M and we claim that M + A = A. For, take a ∈ A, a � oA. Then
a < b for some b ∈ A and we have (a, b) ∈ �. If c ∈ M is such that a < c then there
is f ∈ S with f (a) = a and f (b) = c. Now, (a, c) = ( f (a), f (b) ∈ �, and therefore
c ∈ A. Thus M + a ⊆ A. If oA ∈ A then a < oA for some a ∈ A (since |A| ≥ 2)
and M + oA = M + a + oA ⊆ A + oA = {oA}. We have proved that M + A ⊆ A (then
M + A = A and oA = oM). Now, if B is a block of � with |B| ≥ 2 then B is an ideal as
well, and hence ∅ � A + B ⊆ A ∩ B and A = B. Consequently, � = (A×) ∪ idM . Since
� � M × M, we have A � M and the proof is finished. �

5.11 Remark. Consider the situation from 5.10. If f ∈ S then either f (A) ⊆ A or
| f (A)| = 1. In the latter case, f (A) = {u} and if a ∈ A and b ∈ M then a + b ∈ A
and u = f (a + b) = f (a) + f (b) = u + f (b). Thus f ≤ σu and f ∈ E(δ). Put
S � = { f ∈ S | f (A) ⊆ A }. Clearly, S � is a subsemiring of S and σa ∈ S � for every
a ∈ A. Now, A becomes a left S �-semimodule. If a, b, c ∈ A are such that a < b and
a < c then f (a) = a, f (b) = c for some f ∈ S �.
(i) Assume that the S �-semimodule A is congrneunce-simple. Then, for all a, b, c, d ∈
∈ A such that a < b and c < d, there is f ∈ S � such that f (a) = c and f (b) = d (see
the proof of 5.7).
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Let α be a non-identical congruence of the semiring S �. Proceeding similarly as
in 4.1, we get (σa, σb) ∈ α for all a, b ∈ A.

Define a relation α1 on S � by ( f , g) ∈ α1 iff f |A = g|A. Then α1 is a congruence of
S � and (σa, σb) � α1 whenever a, b ∈ A are such that a � b. Consequently, α1 = idA

and A is a faithful S �-semimodule.
Now, consider again the congruence α. Let f , g ∈ S � and a, b ∈ A be such that a ≤

≤ f (x) ≤ g(x) ≤ b for every x ∈ A. We have (σa, σb) ∈ α, and hence ( f +σa, f +σb) ∈
∈ α and (g + σa, g + σb) ∈ α. Furthermore, ( f + σa)|A = f |A, ( f + σb)|A = σb|A,
(g + σa)|A = g|A and (g + σb)|A = σb|A. Since A is a faithful S �-semimodule, we
conclude that f + σa = f , f + σb = σb, g + σa = g and g + σb = σb. Thus
( f , σb) ∈ α, (g, σb) ∈ α and ( f , g) ∈ α. Now, more generally, let f , g ∈ S � and
a1, a2, b1, b2 ∈ A be such that a1 ≤ f (x) ≤ b1 and a2 ≤ g(x) ≤ b2 for every x ∈ A.
Then a1 ≤ f (x) ≤ ( f+g)(x) ≤ b1+b2, and hence ( f , f+g) ∈ α. Similarly, (g, f+g) ∈ α
and we get ( f , g) ∈ α.
(ii) Assume that the S �-semimodule A is congruence-simple and that for every f ∈ S �
there are elements a ∈ A and b ∈ M such that a ≤ f (x) ≤ b for every x ∈ A (then, in
fact, b ∈ A). Then the semiring S � is congruence-simple (use (i)).
(iii) Put T = E(1) ∪ S � ∪ (S � + E(1)). It is immediately clear that T is a subsemiring of
E and that S � ⊆ T ⊆ S . Moreover, T1 = E(1)∪ (S �+E(1)) is a bi-ideal of the semiring
T . Clearly, T1 = T iff S � ⊆ E(α).
(a) Now, let τ be a congruence of the semiring T such that S � × S � ⊆ τ. Take a ∈ M,
b ∈ A and f ∈ S �. Then a ≤ a + b ∈ A and, using (C1), we find g ∈ S � such that
g(a) = a and g(a + b) = a + b (see 5.11; g = σa ∈ S � if a = a + b). Furthermore,
(g, σa+b) ∈ τ, and hence (σa, σa+b) = (gσa, σa+bσa) ∈ τ. Since ( f , σa+b) ∈ τ, we get
(σa, f ) ∈ τ. Now, it is easy to conclude that E(1) × E(1) ⊆ τ and, in fact, τ = T × T .
(b) Define a relation θ on T by ( f , g) ∈ θ iff, for every x ∈ M, we have either f (x) =
= g(x) or f (x), g(x) ∈ A. Then θ is a congruence of the semiring T (cf. 4.3). We have
(σa, σb) ∈ θ for all a, b ∈ A, and hence θ ∩ (S � × S �) � idS � . On the other hand, if
c ∈ A and d ∈ M \ A then (σc, σd) � θ. Consequently, idT � θ � T × T and it follows
that the semiring T is not congruence-simple.
(iv) Define a relation µ of S � by ( f , g) ∈ µ iff, for every x ∈ M, we have either
f (x) = g(x) or f (x), g(x) ∈ A (of course, µ = θ ∩ (S � × S �)). Then µ is a congruence
of the semiring S �. We have (σa, σb) ∈ µ for all a, b ∈ A, and hence µ � idS � .

Now, let a ∈ M and b ∈ A. Then a ≤ a + b ∈ A and, using (C1), we find f ∈ S
such that f (a) = a and f (a + b) = a + b ( f = σa if a = a + b). Of course, f ∈ S �
and if a ∈ M \ A then f (a) � A and f (a) � σa+b(a). Consequently, ( f , σa+b � µ and
µ � S � × S �. Thus the semiring S � is not congruence-simple (cf. (ii)).

5.12 Remark. 5.11 continued. Now, denote by S �,1 the set of all endomorphisms
f ∈ S � such that there is an element a ∈ A with a ≤ f (x) for every x ∈ A. It is easy
to see that S �,1 is a bi-ideal (and hence a subsemiring) of the semiring S � and that
σA ∈ S �,1 for every a ∈ A.
(i) S �,1 = S �, provided that the semiring S � is bi-ideal-simple.
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(ii) Let a, b, c ∈ A be such that a < b and a < c. Since the condition (C1) is true, there
is f ∈ S � such that f (a) = a and f (b) = c (see 5.11). If g = f +σa ∈ S � then g(a) = a
and g(b) = c + a = c. Clearly, a ≤ g(x) for every x ∈ M and we get g ∈ S �,1.
(iii) Assume that the S �,1-semimodule A is congruence-simple. Then, for all
a, b, c, d ∈ A such that a < b and c < d, there is f ∈ S �,1 with f (a) = c and
f (b) = d (see the proof of 5.7). Furthermore, if α is a non-identical congruence of the
semiring S �,1 then (σa, σb) ∈ α for all a, b ∈ A. The S �,1-semimodule A is faithful
(see 5.11(i)). Assume, moreover, that for every f ∈ S �,1 there is an element a ∈ M
such that f (x) ≤ a for every x ∈ A (this condition is satisfied, provided that oM ∈ M).
Then the semiring S �,1 is congruence-simple (see 5.11).

5.13 Remark. 5.11 and 5.12 continued. Let S �,2 be the set of all endomorphisms
f ∈ S � such that there are elements a ∈ A and b ∈ M with a ≤ f (x) ≤ b for every
x ∈ A (then b ∈ A). It is easy to see that S �,2 is a subsemiring of the semiring S �,1 and
that σa ∈ S �,2 for every a ∈ A. Besides, S �,2 is an ideal of the semiring S � (and S �,1,
too).
(i) S �,2 = S �,1, provided that oM ∈ M.
(ii) S �,2 = S �,1 = S �, provided that the semiring S � is ideal-simple.
(iii) S �,2 = S �,1, provided that the semiring S �,1 is ideal-simple.
(iv) S �,2 = S �,1 = S �, provided that oM ∈ M and the semiring S � is bi-ideal-simple.
(v) S �,2 = S �,1, provided that S ⊆ E(δ).
(vi) If S �,2 = S �,1 and the S �,1-semimodule A is congruence-simple then the semiring
S �,1 is congruence-simple (see 5.12(iii)).

5.14 Remark. 5.11 continued. Let �1 be a non-identical congruence of the S �-
semimodule A. Proceeding similarly as in 5.10, we find that �1 = (A1 × A1) ∪ idA,
where A1 is a non-trivial ideal of A. Then A1 is an ideal of M and A1 � A iff �1 � A×A.

Let f ∈ S . If f ∈ S � then f (A) ⊆ A, and hence either f (A1) ⊆ A1 or f (A1) = {v}
for some v ∈ A \ A1. If f ∈ S \ S � then f (A1) = f (A) = {u} for some u ∈ M \ A. The
set S �1 = { f ∈ S | f (A1) ⊆ A1 } is a subsemiring of S �.
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