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QUASITRIVIAL SEMIMODULES VI

TOMAS KEPKA, PETR NEMEC
Praha

Received February 8, 2013

The paper continues the investigation of quasitrivial semimodules and related problems.
In particular, endomorphisms of semilattices are investigated.

This part is a continuation of [1], [2], [3], [4] and [5] with main emphasis on
endomorphisms of semilattices. The notation introduced in the preceding parts is
used. All the results collected here are fairly basic and we will not attribute them to
any particular source.

1. Introduction

Throughout the paper, let M = M(+) be a non-trivial semilattice (i.e., a commuta-
tive idempotent semigroup). As usual, a relation of order is defined on M by a < b if
and only if a+b = b. The ordered set M(<) has the smallest element if and only if the
semilattice M has the neutral element (usually denoted as 0,;). Then 0y, is the small-
est element and minimal elements (or atoms) are the elements covering the neutral
element. If 0y, ¢ M then minimal elements (or atoms) are just the minimal elements
of the ordered set M(<). This set has the greatest element if and only if the semilat-
tice M has the absorbing element (denoted by oy, throughout this paper). Then oy, is
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the greatest element and maximal elements (or coatoms, dual atoms) are the elements
that are covered by the absorbing element oy,. If 0y, ¢ M then the ordered set M(<)
has no maximal elements at all. An element a € M is irreducible if a # x + y for all
x,y € M\ {a}.

1.1 Proposition. (i) An element w is the smallest element of M(<) if and only if
w = 0y is the neutral (or zero) element of the semilattice M.

(1) An element w is the greatest element of M(<) if and only if w = oy is the absorbing
element of the semilattice M.

(ii1) If 0y € M then a is minimal if and only if a # 0y and a ¢ (M \ {0y, a}) + M (or
a¢ (M\{0y,a}) +a).

@iv) If Oy & M then a is minimal if and only ifa ¢ (M \{a})+ M (ora ¢ M\ {a}) + a).
(v) Oy is irreducible.

(vi) Every minimal element is irreducible.

(vii) If opr € M then a is maximal if and only if a # oy and M + a C {a, oy}

(viii) If opy € M then M(<) has no maximal element.

Proof. 1tis easy. O

1.2 ExampLE. (i) M(+, *) is a semiring, where a « b = a for all a,b € M.
(i) M(+, o) is a semiring, where a o b = b.

(ii1) M(+, +) is a semiring.

(iv)Letwe Manda-b =wforalla,b € M. Then M(+,-) is a semiring.

1.3 REmMARK. A non-empty subset / of M is an ideal if M + 1 C I.
(1) If 1, J are ideals then the sets /+J, INJ and /U J are ideals and I+J C INJ C TUJ.
(i1) A one-element set {w} is an ideal iff w = oy.
(ii1) If oy ¢ M then no ideal is minimal.
(iv) If 0p; € M then an ideal I is minimal iff I = {a, oy}, where a is maximal.
(v) If 0y € M then the set M \ {0y} is the only maximal ideal of M.
(vi) If Oy ¢ M then I is a maximal ideal of M iff I = M \ {a}, where a is minimal.
(vii) For every a € M, the set M + a = {x|a < x} is just the ideal generated by the
one-element set {a}. If a # o), then the set (M + a) \ {a} = {y|a < y}is an ideal, too.
(viii) Consider the following conditions
(1) M is finite;
(2) Every strictly decreasing sequence /1 D I, D I3 O ... of ideals of M is finite;
(3) Every strictly decreasing sequence J; D J, D J; D ... of one-generated
ideals of M (see (vii)) is finite;
(4) Every strictly increasing sequence a; < a; < az < ... of elements from M is
finite;
5) oy e M.
One sees easily that (1) = (2) = 3) & 4) = (5).
(ix) Any infinite strictly decreasing chain a; > a;, > a3 > ... of elements from M
satisfies (2) (but not (1)).
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(x) Consider the following semilattice: M = {ay,az,as, by, by, bs,...,0y}, Where
a; < b; and a; < by for every i. Then M satisfies (3) and (4), but not (2).

1.4 Remark. An ideal I of M is said to be prime if the set M \ I is a subsemilattice of
M@Ge,l#Manda+be M\ Iforalla,be M\I).
(i) If 1, J are prime ideals such that / U J # M then [ U J is a prime ideal.
(ii) Foreverya € M, a # oy, theset P, ={x e M|x £ a}(={x|la<x+a})isa
prime ideal of M. (These prime ideals are called principal.)
(iii) Let P be a prime ideal of M. Then P C P, for every a € M \ P and we have
P=UP,.
(iv) Let P be a prime ideal of M. Put N = M \ P. Then P is principal iff oy € N.
(v) Leta; < a; < az < ... be an infinite strictly increasing sequence and let P be the
set of x € M such that x £ a; for every i. If P # () then P is a non-principal prime
ideal.
(vi) The following conditions are equivalent:

(1) Every prime ideal is principal.

(2) Every infinite strictly increasing sequence a; < a; < az < ... is upwards

cofinal in M.
(3) oy € N for every (proper) subsemilattice N of M.

2. Endomorphisms (a)

We denote by E the full endomorphism semiring of the semilattice M (= M(+)).
That is, E is the set of transformations f of M such that f(a + b) = f(a) + f(b)
for all a,b € M. The basic operations of addition and multiplication are defined by
(f + g9)a) = f(a) + g(a) and (fg)(a) = f(g(a)). The identity automorphism idy; is
the (unique) multiplicatively neutral element of the semiring E, i.e., idy = 1g. The
additive semigroup E(+) is a semilattice and, for all f,g € E, we have f < g iff
f+g=g(or f(a) < g(a) for every a € M).

2.1 For every a € M, the constant transformation o, : M — {a} belongs to E. We put
EV ={o,lae M}.

2.1.1 Proposition. (i) o, + 0 = 0 41p.

(i) oo f = o, forevery f € E.

(111) fO'a = O'f(a).
(iv) o0 = 0.

Proof. 1t is easy. O
2.1.2 Proposition. (i) EV is an ideal of the semiring E.

(i1) E(l) is the smallest (left) ideal of E.
(iii) EWV is the set of left multiplicatively absorbing elements of the semiring E.
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Proof. Itis easy (use 2.1.1). m]

2.1.3 Proposition. (i) [EV| = |M|.

(ii) The semiring EWV is left-ideal-free.

(iii) The semiring EV is bi-idempotent.

(iv) Every subsemilattice of EV(+) is a right ideal of the semiring EV.

(V) Every element from EWV is left multiplicatively absorbing and right multiplica-
tively neutral in EV.

(vi) The semiring E"V has no left multiplicatively neutral element.

(vii) The semiring EV has no right multiplicatively absorbing element.

(viii) The semiring E(l) has an additively neutral element iff 0y € M; then o,, is the
additively neutral element.

(ix) The semiring E"V has an additively absorbing element iff 0y € M then oy 1S
the additively absorbing element.

(X) The semiring EVV is congruence-simple iff M| = 2 (or |[EV| = 2).

Proof. Ttis easy (use 2.1.1). O
2.1.4 Proposition. idy ¢ EV and EV # E.
Proof. Tt is obvious. O

2.2 Proposition. (i) The semiring E is not ideal-simple.

(i1) E has an additively neutral element iff 0yy € M; then o, is the additively neutral
element and o, is left multiplicatively absorbing.

(iii) E has an additively absorbing element iff oy € M; then o, is the additively
absorbing element and o, is left multiplicatively absorbing.

(iv) E has no right multiplicatively absorbing element.

(v) E is bi-idempotent iff M| = 2 (or |E| < 3).

Proof. 1tis easy. O

2.3 Proposition. (i) For every a € M, the one-element set {0} is a right ideal of E.
(1) A subset I of E is a minimal right ideal of E iff I = {0, 0} for some a,b € M,
a<b.

Proof. (1) This is obvious.
(i1) First, let / be a minimal right ideal of £ and let f € I. For every a € M, we have
T = foq € 1,and hence K = 1N EY # 0. Of course, K is a right ideal. If [K| = 1
then o) = 0 ), and hence f(a) = f(b) for all a,b € M. Thus f € EV, 1 ¢ EV
and I = K, a contradiction with |I| > 2. Thus |K| > 2, and hence K = I, since [ is a
minimal right ideal. Thus / € £/ and our result easily follows.

Conversely, if I = {07, 0}, a < b, then the result is clear. O
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Let EY =E+EY ={fecE|o, < fforsomeae M}.

2.4 Proposition. (i) E is the smallest bi-ideal of the semiring E.
(ii) E(l) C E(Q)'

Proof. Let I be a bi-ideal of E. Since I is an ideal, we have E/V C I by 2.1.2(ii).
Since I is a bi-ideal, we have E©® = E + EV C I. O

2.5 Proposition. The following conditions are equivalent:

(1) E is bi-ideal-simple.
(ii) E is bi-ideal-free.

(iii) £ =E“.

@(iv) idy € E@.
(v) E has a mulitplicatively neutral element.

(vi) E(”) has an additively neutral element.

(vii) 0y € M.

Proof. Itis easy (use 2.4). O
2.6 Proposition. The semiring E is bi-ideal-free.

Proof. Let I be a bi-ideal of E. Then EV C I, and hence E®@ C I. O
Put E® = ED U (EY +idy) U {idy} and E®Y = ED U (ED +idy)

2.7 Proposition. (i) E® is a bi-idempotent subsemiring of E.

(i1) Eﬂ) is the subsemiring generated by E(l) U {ida}.

(iii) E® C E@ iff 0y € M.

(iv) E? = E iff IM| = 2.

(v) EAD c E@,

(vi) If Oy € M then E® = E¥Y.

(vii) If 0y ¢ M then E®Y is a proper bi-ideal of E®.

Proof. 1t is easy. O

2.8 For every a € M, the translation 4,, where 1,(x) = a + x, is an endomorphism of
M. Weput E?” = {A,|lae M).

2.8.1 Proposition. (i) A, + A, = Agyp = Agdp.
(i) fAy = Ay for every f € E.

Proof. 1t is easy. O
2.8.2 Proposition. (i) E? is a subsemiring of E.

(i1) E(” is bi-idempotent.
(iii) EY is ideal-simple iff it is congruence-simple and iff |M| = 2.
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Proof. It is easy. O
2.8.3 Lemma. 1, = o, + idy,.
Proof. 1t is obvious. O

2.8.4 Corollary.. (i) E” = EV +idy ¢ EY nEP,
(i) E? = EV U E? U {idu}. O

LetE(‘s):{feglfs(raforsomeaeM}z{f|f+o-a=0'af0rsomeaeM}.

2.9 Proposition. (i) E¥) is an ideal of the semiring E.
(i) E(l) C E((S)-
(iii) E® = E iff oy € M (and iff idy; € E©).

Proof. It is easy. O
Put E© = E@NE® ={fecE|a< f(M)<bforsomea,beM)}.

2.10 Proposition. (i) E'© is an ideal of the semiring E.
(i) E(l) C E(E)'
(iii) E'© = E iff 0,,, 0,y € M (and iff idy € E©).

Proof. It is easy. m|

2.11 Proposition. Let S be a subsemiring of E. Define a relation g,5 on S by
(f,8) € Qas Iff there is an element a € M such that f(x) + a = g(x) + a for every
x € M. Then 0,5 is a congruence of the semiring S. Moreover:

(1) (f,8) € Cas Uf f + 0, =g+ 0, forat least one a € M.

(i) T X T C 045, where T =S N EW.

(i) IF EV C S then EV x EV C 045.

@iv) If oy € M then 9o 5 = S X S.

W If f,04 €S and (f,04) € Oq.s then f € EV.

Proof. Clearly, o = g, 1s reflexive and symmetric and (i) is true. Now, if (f, g) €
cpand(g,h)eothen f+0,=g+ 0, g+ 0, =h+ 0oy, forsome a,b € M, and so
froup=f+0,+0p=g+0,+0p =h+0,+0, =h+ 04y and (f,h) € 0.
It follows that o is an equivalence defined on S. If (f,g) € o, f + 0, = g + 0, then
fth+o, = f+h+o,, (f+h,g+h) € o, hf+0-h(a) = h(f+o,) = h(g+to,) = hg+0—h(a)a
(hf,hg) € o, fh+o,=(f+0)h=(g+0,)h =gh+ 0o, (fh,gh) € 0. It follows that
o is a congruence of the semiring S.

If 04,04 € T then (0, 0p) € 0, Since 0, + Ty4p = Tgpp = Op + Ogpp. That is,
T xT C p and (ii),(iii) are clear. If 0y € M then f + o, = 0y, = § + 0, for all
f,.geS,andsop =S xS§. Finally, if (f,0,) € o then 0y4p = 04 + 0p = f + 0 foOr
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some b € M,andhence 0y4p = Oyip+ 0y =f+0p+0,=f+0up, [ < 0uqyp and
feEY. m

2.12 Proposition. Let S be a subsemiring of E and T = S N E. Then:
(i) ogs = (T xT)VUidg is a congruence of S.

(ii) 0y,5 = Oa,s NOp,s is a congruence of S.

(iii) If EV € S then EV x EV C o, 5.

Proof. If T = 0 then ggs = idg. If T # 0 then T is a bi-ideal of S and ggys is
a congruence again. The rest is clear. O

2.13 Lemma. Let a € M. Define a relation &, on M by (u,v) € &, iff either u = v
oru+a=uv+a=v Then &, is a congruence of the semilattice M (namely the
congruence corresponding to the ideal { x|a < x }).

Proof. It is easy. O

2.14 Lemma. Let I be an ideal of M. Denote by S the set of endomorphisms f € E
such that either f(I) C I or |f(I)| = 1. Then:

(1) S is a subsemiring of E.

(i) EV cS.

(iii) E” C S.

(iv)idy € S.

WV EPCS.

(vi) (I x I) U idy; is a congruence of the S -semimodule s M.

Proof. 1t is easy. O

2.15 Lemma. Let [ and S be as in 2.14. Define a relation o on S by (f,g) € o iff
f(x) = g(x) for every x € M \ I such that {(f(x), g(x)} € I. Then:

(1) o is a congruence of the semiring S.

(1) (o, 0p) €0 forall a,b € I.

(i) (o4, 0c) ¢oforallac I andce M\ I.

(iv) (o¢,049) ¢ oforallc,de M\ I, ¢ # d.

V) (Ag, Ap) € o forall a,b € I.

(vi) (A4, ;) ¢ oforallae I andce M\ 1.

(vii) (Ae, Ag) € o forall c,d e M\ I, ¢ # d.

Proof. Itis easy. O

2.16 Corollary. Let I and S be as in 2.14. If |I| > 2 and I # M then the semiring S
is not congruence-simple. m|
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3. Endomorphisms (b)

Let S be a subsemiring of E such that E(V C §..
3.1 Proposition. S is bi-ideal-simple (bi-ideal-free) if and only if S € E@.

Proof. Put I = S N E®. Then EV C I and I is a non-trivial bi-ideal of the
semiring S. If § is bi-ideal-simple then / = § and S € E®. Conversely, if § < E®
then S = S + EV. Now, if K is a bi-ideal of S then E’ ¢ Kand § =5 + EV C K.
Thus K = S and S is bi-ideal-free. O

3.2 Proposition.. (i) Os € S iff Oyy € M (then Os = o0v,,).

(ii) os € S iff oy € M (then og = 0,,,).

(iii) EV is the smallest (left) ideal of S and it is the set of left multiplicatively absorb-
ing element of S .

(iv) S has no right multiplicatively absorbing elements.

Proof. (1) If Og € S then a = o,(x) = (0, + 05)(x) = 04(x) + 05(x) = a + Og(x)
for all a,x € M. Thus Og(x) = 0y € M and Os = o0,,. Conversely, if 0y € M then
o9, = Oy is clear.

(i1) If og € S then og(x) = (05 + 0,)(x) = 05(x) + 04(x) = 05(x) + afor all a, x € M.
Thus o5(x) = oy € M and o5 = 0,,,. Conversely, if oy, € M then o,,, = o5 is clear.
(iii) and (iv) Easy to see. O

3.3 Proposition. The following conditions are equivalent:
(1) The semiring S has at least one left multiplicatively neutral element.
(i) 1s € S.
(iii) idy € S.
(iv) E® cCS.

Proof. 1If e € § is left multiplicatively neutral then a = o,(x) = (eo,)(x) =
e(o,(x)) = e(a) forall a,x € M. Thus e = idy; € §S. The rest is clear. ]

3.4 Proposition. Let S be bi-ideal-simple and let 15 € S. Then 0y € M, Og € S and
E(ﬂ) C S C E(Q).

Proof. By 3.1,S € E®. By 3.3, E® C §. Consequently, E® c E@, 0, € M by
2.7(iii) and Og € S by 3.2(i). O

3.5 Lemma. Let o # ids be a congruence of the semiring S. Then there are a,b € M
such that a < b and (04, 07p) € 0.
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Proof. There are f,g € S such that f # g and (f,g) € 0. Then f(u) # g(u)
for at least one u € M and we can assume that f(u) £ g(u) = a. If b = a + f(u)
then o, = goy, opa = fo, and (04,0 € 0. We have f(u) £ a, a < b and
(04, 0p) = (04 + 04,04 + Ty € 0. |

3.6 Lemma. Let 0 be a congruence of S and let a,b,c € M be such that a < b and
(0as0p) € 0. Let f € S be such that f(a) = ¢ and f(x) > c whenever a < x. Then
¢ < f(b) and (o, T f)) € 0.

Proof. Since a < b, we have ¢ < f(b). Since (0, 07}) € 0, we have (0,0 fp) =
= (Tf@» o) = (foa fop) € 0. o

Consider the following condition:
(A) For all a,b € M \ {oy} there is at least one endomorphism f € S such that
f(a) = b and f(x) > b for every x > a.

3.7 Lemma. Assume that (A) is true. Let 0 # idg be a congruence of S. Then for
every a € M, a # oy, there is at least one b € M such that a < b and (o0, 0}) € 0.

Proof. By 3.5, (07¢,04) € o for some ¢,d € M, ¢ < d. Then ¢ # oy and, using
(A), we find f € § with f(c) = a and f(x) > a whenever x > c. By 3.6, (0, 0%) € 0,
where b = f(d) > a. O

3.8 Lemma. Let o be a congruence of S and let a,b,c € M be such thata < ¢ < b. If
(O-a’ O-b) €0 then (O-a’ O-C) €0 and (O-C’ O-b) €o.

Proof. Wehaveo, +o0.=0.and op + 0, = 0p. O

3.9 Lemma. Let o be a congruence of S such that (o, 0,) € 0 whenever a < b. Then
EV xED Co.

Proof. Ifa,b € Mthena <a+b, (0,,04p) €0,b < a+b, (0p,041p) € 0 and,
finally, (o7, 0p) € 0. m|

3.10 Lemma. Assume that S C E'©. Let o be a congruence of S such that EVxE"D ¢
Co. Thenpo=S xS.

Proof. First, let f,g € S, f < g. Since S C E©, we have 0, < f < g < 0, for
some a,b € M, a < b. Now, (0,,0}) € 0, and hence (f,0p) = (f + 04, f + 0p) € 0
and (g,0p) = (g + 04,8 + 0p) € 0. Thus (f,g) € o. In the general case, we have

fsf+ggsf+g(f.f+geco (g f+gcoand(f,g €o. O
Consider the following condition:
(B) Every infinite strictly increasing chain a; < a; < a3 < ... of elements from

M is upwards cofinal in M.
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3.11 Lemma. Assume that both (A) and (B) are satisfied. Then EV x EV C o for
every congruence o # idg of S.

Proof. In view of 3.9, we have to show that (0,,0,) € o whenever a < b. If
oy € M and (o, 0,,,) € o then (0, 0p) € o by 3.8. Consequently, assume that either
oy ¢ M or (04,0,,) ¢ 0. Using 3.7 repeatedly, we get an infinite strictly increasing
chaina; <ay <az < ... suchthata; = aand (0y,0,) € o foreveryi =1,2,3,....
With respect to (B), we have b < a,, for some n. By 3.8, (0, 07}) € 0. O

3.12 Proposition. Assume that S C E'© and that the conditions (A) and (B) are
satisfied. Then the semiring S is congruence-simple.

Proof. Let o be a congruence of S. Then EV x EV C o is proved in 3.11. It
remains to use 3.10. O

4. Endomorphisms (c¢)

Let S be a subsemiring of E such that EV C §..

4.1 Let o be a congruence of the semiring S. Define a relation 7 on M by (a,b) € T
iff (o, 07p) € 0.

4.1.1 Lemma. 7 is a congruence of the left S -semimodule g M.

Proof. Tt is easy. O
4.1.2 Lemma. o # idg iff T # idy.

Proof. 1f o # idg then 7 # idy, by 3.5. If 7 # idy, then o # idg trivially. O

4.1.3 Lemma. Assume that s M is congruence-simple and that ¢ # ids. Then E(l) X
x ED co.

Proof. We have 7 # idy by 4.1.2. Since the semimodule ¢ M is congruence-
simple, we get 7 = M X M. Thus EV x EW C o. o

4.2 Proposition. The (left S -)semimodule s M is faithful and strictly minimal.

Proof. 1tis easy. O

4.3 Let a be a congruence of the semimodule g M. Define a relation o on S by
(f, g) € 0iff (f(x),g(x)) € a for every x € M.

4.3.1 Lemma. g is a congruence of the semiring S

Proof. 1tis easy. O
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4.3.2 Lemma. o # idg iff & # idy.

Proof. If (f,g) € o0, f # g, then f(u) # g(u) for at least one u € M and we have
(f(u), g(u)) € . Thus a # idy. Conversely, if (a,b) € a, a # b, then o, # 0}, and
(04, 0p) € 0. Thus o # ids. O

433 Lemma. o =S5 XS iffa = M x M.

Proof. We can proceed similarly as in the proof of 4.3.2. O
4.3.4 Lemma. If EV x ED Cotheno=S5 xS.

Proof. Obvious. O

4.4 Proposition. The following conditions are equivalent:
(1) EW x EW C o for every congruence o # ids of the semiring S.
(i1) The semimodule s M is congruence-simple.

Proof. (i) implies (ii). Let @ # idy, be a congruence of s M. Consider the congru-
ence o defined in 4.3. By 4.3.2, we have o # idg, and hence E(V x E(V C 0. By 4.3.4,
o0 =358 XS§ and, finally, « = M X M by 4.3.3. Thus g M is congruence-simple.

(i1) implies (i). Let o # idg be a congruence of S. Consider the congruence 7 defined
in 4.1. Then 7 # idy, by 4.1.2, and hence T = M x M. Now, E) x EV C o follows
from 4.1.3. o

4.5 Corollary. If the semiring S is congruence-simple then the semimodule s M is
congruence-simple. O

4.6 Proposition. Assune that both (A) and (B) are satisfied. Then s M is congruence-
simple.

Proof. Combine 3.11 and 4.4. m

4.7 Proposition. Assume that S C E'©. Then the semiring S is congruence-simple if
and only if the semimodule g M is congruence-simple.

Proof. First, let S be congruence-simple. Then g M is congruence-simple by 4.5.
Conversely, if ¢ M is congruence-simple and if o # idg is a congrunece of S then
EW x EM C o by 4.1.3, and hence o = S x S by 3.10. Thus S is congruence-
simple. O

4.8 Remark. Notice that the mapping a — o, is an isomorphism of the seminodule
s M onto the semimodule g E(l).

4.9 Lemma. Let o be a congruence of S such that EV x EV) C o. Then 0y.5s C 0.
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Proof. Let (f,g) € 0,5, f # & Then (f,g) € ops, and hence f,g € EYNS
(see 2.12) and there are a,b € M such that f + 0, = f and g + 0, = g. Further,
(f,8) € 0as (see 2.11) and there is c € M with f + o, = g + 0. Now, (0, 0.) € 0,
and so (f, 0.+ f) = (f+04, f+o.) € 0. Similarly, (g,0.+g) € 0. Since oo+ f = o.+g,
we have (f, g) € o. O

4.10 Proposition. o, s is just the congruence of S generated by the set ED x ED,
Proof. We have EV x EV C o, 5 by 2.12(iii) and the rest follows from 4.9. O
4.11 Proposition. If S C E© then g,5 =S X S.
Proof. Combine 4.10 and 3.10. O

4.12 Proposition. Assume that the conditions (A) and (B) are satisfied. Then the
semiring S is subdirectly irreducible and the congruence o, is just the monolith
congruence of S.

Proof. Leto # idg be a congruence of S. By 3.11, EVxE( C . By 4.9, 0y.5 Co0.
Of course, 0,5 # idg, and hence g, 5 is the monolith congruence of S. m]

4.13 Remark. Combining 4.11 and 4.12, we get another proof of 4.6.

Consider the following condition:
(C) For all a,b,c,d € M such that a < b and ¢ < d there is at least one f € S
such that f(a) = c and f(b) =d.

4.14 Lemma. Assume that (C) is true. If o # ids is a congruence of S then E1V x
x EV co.

Proof. By 3.5, (04,0p) € o for some a,b € M, a < b. Since (C) is true, we get
(o¢,0q) € oforall c,d € M,c <d. Now, if x,y e Mthenx < x+y,y < x+Y,
(O, Oxry) €0, (0, 0x1y) € 0 and, finally, (o, 07y) € 0. O

4.15 Proposition. (cf. 4.12) Assume that the condition (C) is satisfied. Then the
semiring S is subdirectly irreducible and the congruence oy is just the monolith
congruence of S.

Proof. Combine 4.10 and 4.14. m|

4.16 Proposition. Assume that either the conditions (A), (B) are true or that the
condition (C) is true. The following conditions are equivalent:
(i) The semiring S is congruence-simple.
(i) S c E®.
(iii) Forevery f € S there are a,b € M suchthato,+ f = fand o+ f = f (i.e.,
o, < f < O'b).

56



Moreover, if these equivalent conditions are satisfied then the semimodule s M is
congruence-simple.

Proof. (i) implies (ii). We have E®V x E!V C o, 5 (see 2.12(iii)), and hence g, 5 #
# idg. Since § is congruence-simple, we get o, s = S X §. Of course, 0,5 =
= Ou,s N Ops, and therefore o, 5 = S X § = ggs. Since ggg = S X S, the inclusion
S C E9 follows from 2.12(i). Since 0,5 = S x S, the inclusion § C E follows
from 2.11(v). Thus S € E® N E® = E©.
(ii) is equivalent to (iii). This is clear from the definitions.
(i1) implies (i). If (A),(B) are true then S is congruence-simple by 3.12. If (C) is true
then S is congruence-simple by 4.15 and 4.11. O

4.17 Proposition. Assume that either the conditions (A),(B) are true or that the
condition (C) is true. Then the semimodule ¢ M is congruence-simple.

Proof. Use 4.6, 4.14 and 4.4. O

4.18 Remark. Let (C) be true and let a,b € M \ {oy}. Choose ¢ > b. For every
d > athere is f; € S such that f,(a) = b and f,;(d) = c¢. Now, assume that the set
{d}d > a} is finite and put f = | f;. Then f(a) = b and f(d) > ¢ > b for every
d > a. In particular, if M is finite then (C) implies (A) (and, of course, (B) is true).

4.19 Proposition. Assume that the semimodule s M is congruence-simple. Then the
semiring S is subdirectly irreducible and the congruence o, s is the monolith congru-
ence of S.

Proof. See 4.1.3. O

4.20 Proposition. The semiring S is congruence-simple if and only if S C E'© and
the semimodule s M is congruence-simple.

Proof. If S is congruence-simple then S € E@ by 3.1. Furthermore, E) x E)
C 0y5,0y5 =S XS, and hence 9,5 =S XS = ggs. Using 2.11(v), we get S C EV,
Thus S € E@9 N E® = E©. By 4.5, ¢M is congruence-simple. Conversely, if
S C E© and gM is congruence-simple then S is subdirectly irreducible and Oy.5 18
the monolith congruence. By 4.1, 0,5 = § X S, and so § is congruence-simple. O

5. Endomorphisms (d)

Let S be a subsemiring of E with E(V C §.

5.1 Lemma. Let u,v € M, u # v. Define a relation «,, on M by (a,b) € «,, iff
{u,v} £ {f(a), f(D)} for every f € S. Then a,,, is reflexive, symmetric and stable.
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Proof. First, (a,a) € ay,, since [{u,v}| = 2 and |[{f(a), f(a)}| = 1. The symmetry
is clear. If (a,b) € «,, then (f(a), f(b)) € a,, for every f € S. Finally, {f(a + ¢),
SO+ o} =1{f(a)+ f(c), f(b) + f(O)} = {(f + Tpe)@),(f + 0fc))(b)}, and hence
{u,v} £ {f(a+c), f(b+c)and (a+c,b+c) €ay,. O

5.2 Lemma. Let u,v € M, u # v, and let B, be the transitive closure of the relation
@y.y. Then By, is a congruence of the semimodule s M.

Proof. 1t follows easily from 5.1. O

5.3 Lemma. Let u,v € M, u # v. The following conditions are equivalent:
(1) Ayy = 1dM
(11) ﬁu,v = ldM
(iii) For all a,b € M, a # b, there is at least one f € S such that {u,v} =
={f@), f(W)}.

Moreover, if these equivalent conditions are satisfied then either u < v orv < u.

Proof. 1t is easy (choose a < D). O

5.4 Remark. Using 5.3, one sees easily that the condition (C) is true if and only if
.,y =1dy forall u,v € M, u < v.

5.5 Lemma. Let u,v,w € M be such that u # v and (u,w) € a,,.
) If f € S is such that f(u) = u then f(w) # v.
@) If f € S is such that f(u) = v then f(w) # u.

Proof. Tt is easy. O

Consider the following condition:
(C1) For all a,b,c € M such that a < b and a < c there is at least one f € S such
that f(a) = a and f(b) = c.
Clearly, (C) implies (C1).
5.6 Lemma. The following conditions are equivalent:
(1) (C1) is true.
(i1) (u,w) ¢ a,, whenever u <vand u < w.
(iii) (u,w & By, whenever u < v and u < w.

Proof. Clearly, (i) is equivalent to (ii) and (iii) implies (ii). It remains to show
that (ii) implies (iii). For, suppose that (ii) is true and (u,w) € S,,. Then there are

Up,Uy,...,uy, n > 1, such that ug = u, u, = w and (u;,u) € «,, for
i=0,1,...,n—1. Since ¢,, is stable, we get (z;,zi+1) € @y, fori =0,1,...,n -1,
where zo = up = uand z; = 3 ;;u; fori > 1. Of course, zo < 71 <22 < -+ < zp,
zo=uandw =u, <z, andthereisksuchthat 0 <k <nandzgp=z = - =z =u
and zg.1 # u. Now, (¢, Zx+1) € @, and u < zi41, a contradiction with (ii). O
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5.7 Proposition. Assume that the semimodule s M is congruence-simple. Then (C) is
true if and only if (C1) is true.

Proof. The direct implication is trivial. Now, let (C1) be true and let a, b,c,d € M
be such that @ < b and ¢ < d. By 5.6, (¢,d) ¢ Bcq and so B.q # M X M. But 5.4
is a congruence of ¢ M and, since s M is congruence-simple, we have 8.4 = idy. In
particular, (a, b) ¢ .4, and hence (a, b) ¢ a. 4 either. That is, {c,d} C {f(a), f(b)} for
some f € S. Since ¢ < d and a < b, we conclude that f(a) = ¢ and f(b) = d. We
have proved that (C) is true. m]

5.8 Proposition. The following conditions are equivalent:
(1) sM is congruence-simple and (C1) is true.
@i1) (C) is true.

Proof. Combine 5.7 and 4.17. O

5.9 Proposition. [f the semiring S is congruence-simple and (C1) is true then (C) is
true.

Proof. By 4.5, the semimodule g M is congruence-simple and 5.8 applies. O

5.10 Lemma. Assume that the condition(C1) is satisfied. Let o be a congruence of
sM, o #idy, M X M. Then:

(i) There is an ideal A of M such that o = (A X A) Uidy (M +A = A).

(i) A # M and |A| > 2.

Proof. First, let A be a block of o such that |A| > 2. Of course, A is a non-trivial
subsemilattice of M and we claim that M + A = A. For, take a € A, a # 04. Then
a < b for some b € A and we have (a,b) € o. If ¢ € M is such that a < ¢ then there
is f € § with f(a) = a and f(b) = c¢. Now, (a,c) = (f(a), f(b) € o0, and therefore
ce€A Thus M +a C A. If o € A thena < o4 for some a € A (since |[A| > 2)
and M +04 =M +a+o04 CA+o0x ={0a}. We have proved that M + A C A (then
M + A = A and 04 = 0y). Now, if B is a block of o with |B| > 2 then B is an ideal as
well, and hence ) # A+ B € AN B and A = B. Consequently, o = (AX) U idy,. Since
0 # M X M, we have A # M and the proof is finished. O

5.11 Remark. Consider the situation from 5.10. If f € S then either f(A) C A or
|f(A)] = 1. In the latter case, f(A) = {u} andifa € Aand b € Mthena+b € A
andu = fa+b) = fa) + f(b) = u+ f(b). Thus f < o, and f € E®. Put
So={fe€SI|f(A) € A}. Clearly, S, is a subsemiring of § and o, € S, for every
a € A. Now, A becomes a left S ,-semimodule. If a,b,c € A are such that a < b and
a < cthen f(a) = a, f(b) = c for some f € §,.

(i) Assume that the S ,-semimodule A is congrneunce-simple. Then, for all a, b, c,d €
€ Asuch thata < b and ¢ < d, there is f € §, such that f(a) = ¢ and f(b) = d (see
the proof of 5.7).
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Let « be a non-identical congruence of the semiring S,. Proceeding similarly as
in 4.1, we get (0, 05) € aforall a,b € A.

Define a relation a; on S, by (f, g) € a; iff f|A = g|A. Then a; is a congruence of
S, and (o, 0p) ¢ 1 whenever a, b € A are such that a # b. Consequently, a; = ids
and A is a faithful § ,-semimodule.

Now, consider again the congruence . Let f,g € S, and a, b € A be such that a <
< f(x) < g(x) < bforevery x € A. We have (0, 0p) € @, and hence (f+0, f+0}p) €
€ aand (g + 04,8 + 0p) € a. Furthermore, (f + 0,)|A = flA, (f + 0p)lA = T}|A,
(g +04)|A = glA and (g + 0)|A = 0|A. Since A is a faithful S ,-semimodule, we
conclude that f + o, = f, f+0p = 0p, g+ 0, = gand g + 0 = 0p. Thus
(f,op) € @, (g,0p) € a and (f,g) € a. Now, more generally, let f,g € S, and
ai,ax,b1,by € A be such that a; < f(x) < by and a; < g(x) < b, for every x € A.
Thena; < f(x) < (f+g)(x) < by+by, and hence (f, f+g) € . Similarly, (g, f+g) € «
and we get (f, g) € a.

(ii) Assume that the S ,-semimodule A is congruence-simple and that for every f € S,
there are elements a € A and b € M such that a < f(x) < b for every x € A (then, in
fact, b € A). Then the semiring S, is congruence-simple (use (i)).

(i) Put 7 = EMUS,U (S, + EWY). Itis immediately clear that T is a subsemiring of
EandthatS, C T C S. Moreover, T} = EVU(S, +E") is a bi-ideal of the semiring
T.Clearly, T, = T iff S, C E“.

(a) Now, let T be a congruence of the semiring 7 such that S, X S, € 7. Take a € M,
beAand f €S, Thena < a+ b € A and, using (Cl), we find g € S, such that
gla) =aand gla+b) =a+b(see 5.11; g = 0, € S, if a = a + b). Furthermore,
(g,04+p) € T, and hence (0, 0 yip) = (804, Turp04) € T. Since (f, 0y4p) € T, We get
(04, f) € 7. Now, it is easy to conclude that E(]) X El) Crtand,infact, 7=T7T X T.
(b) Define a relation 6 on T by (f, g) € 6 iff, for every x € M, we have either f(x) =
= g(x) or f(x),g(x) € A. Then 0 is a congruence of the semiring T (cf. 4.3). We have
(0q,0p) € O for all a,b € A, and hence 6 N (S, X §,) # ids,. On the other hand, if
ceAandd e M\ Athen (0.,04) ¢ 6. Consequently, idy # 6 # T X T and it follows
that the semiring 7 is not congruence-simple.

(iv) Define a relation u of S, by (f,g) € u iff, for every x € M, we have either
f(x) = g(x) or f(x),g(x) € A (of course, u = N (S, XS,)). Then u is a congruence
of the semiring S,. We have (o0, 0}) € uforall a,b € A, and hence u # idg, .

Now, leta € M and b € A. Thena < a + b € A and, using (C1), we find fes
such that f(a) = aand fla+b) =a+b(f = o,ifa =a+b). Of course, f € §,
andifa € M \ A then f(a) ¢ A and f(a) # 04p(a). Consequently, (f, 04p € 1 and
u# S8, %xS,. Thus the semiring S, is not congruence-simple (cf. (ii)).

5.12 Remark. 5.11 continued. Now, denote by S, the set of all endomorphisms
f € S8, such that there is an element a € A with a < f(x) for every x € A. It is easy
to see that S, is a bi-ideal (and hence a subsemiring) of the semiring S, and that
o4 €S, foreverya € A.

(1) So1 = S, provided that the semiring S, is bi-ideal-simple.
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(i1) Let a, b,c € Abe such that a < b and a < c. Since the condition (C1) is true, there
is f € §, such that f(a) = aand f(b) = c(see5.11). If g = f+0, € S, then g(a) = a
and g(b) = ¢ +a = c. Clearly, a < g(x) forevery x € M and we getg € S, ;.

(iii) Assume that the S, -semimodule A is congruence-simple. Then, for all
a,b,c,d € A such that a < b and ¢ < d, there is f € S, with f(a) = ¢ and
f(b) = d (see the proof of 5.7). Furthermore, if @ is a non-identical congruence of the
semiring S, then (o,,0p) € a forall a,b € A. The S, ;-semimodule A is faithful
(see 5.11(i)). Assume, moreover, that for every f € S, there is an element a € M
such that f(x) < a for every x € A (this condition is satisfied, provided that 0y, € M).
Then the semiring S, ; is congruence-simple (see 5.11).

5.13 Remark. 5.11 and 5.12 continued. Let S,> be the set of all endomorphisms
f € S, such that there are elements a € A and b € M with a < f(x) < b for every
x € A (then b € A). Itis easy to see that S, » is a subsemiring of the semiring S, ; and
that o, € S, for every a € A. Besides, S, is an ideal of the semiring S, (and S, 1,
t00).

(1) So2 = S,.1, provided that 0y, € M.

(ii) Spo = Sp1 = S, provided that the semiring S, is ideal-simple.

(iii) S o2 = S,,1, provided that the semiring S, ; is ideal-simple.

(iv) Sp2 = So1 =S, provided that 0y € M and the semiring S, is bi-ideal-simple.
(V) Sp2 = S,.1, provided that S € E©.

(vi) If Sy» = §,,1 and the S, ;-semimodule A is congruence-simple then the semiring
So,1 1s congruence-simple (see 5.12(iii)).

5.14 Remark. 5.11 continued. Let o; be a non-identical congruence of the S ,-
semimodule A. Proceeding similarly as in 5.10, we find that o1 = (A; X A}) U idy,
where A is anon-trivial ideal of A. Then A; is anideal of M and A; # A iff o1 # AXA.

Let f € §. If f € S, then f(A) C A, and hence either f(A;) € A; or f(Ay) = {v}
forsomeve A\ A;. If f € 5§\ S, then f(A)) = f(A) = {u} for some u € M \ A. The
set S, ={f€S|f(A) C Ay}isasubsemiring of S,.
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