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The relation of rapid ultrafilters and Q-points  
to van der Waerden ideal

JANA FLAškoVá

Plzeň

We point out one of the differences between rapid ultrafilters and Q-points: Rapid ultrafil-
ters may have empty intersection with the van der Waerden ideal, whereas every Q-point
has a non-empty intersection with the van der Waerden ideal. Assuming Martin’s axiom
for countable posets we also construct a W -ultrafilter which is not a Q-point.

1. P r e l i m i n a r i e s

Let us first recall the definitions of the two classes of ultrafilters in question: An
ultrafilter U is a Q-point if for every partition {Qn : n ∈ ω} of ω into finite sets there
exists A ∈ U such that |A ∩ Qn| ≤ 1 for every n ∈ ω.
An ultrafilter U is a rapid ultrafilter if the enumeration functions of sets in U form
a dominating family in (ωω,≤∗), where the enumeration function of a set A is the
unique strictly increasing function eA from ω onto A.
Every Q-point is a rapid ultrafilter, but the converse is not true (see [Mi]).

Remember that a set A ⊆ ω is called an AP-set if it contains arbitrary long arith-
metic progressions. It follows from the van der Waerden theorem that sets which are
not AP-sets form a proper ideal on ω. We will refer to this ideal as van der Waerden
ideal and denote it by W . It is known that the van der Waerden ideal is an Fσ-ideal.
An ideal I on ω is tall if for every infinite A ⊆ ω there exists infinite B ⊆ A such that
B ∈ I . The van der Waerden ideal is clearly a tall ideal.
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An ideal I on ω is a P-ideal if for every An ∈ I , n ∈ ω there exists A ∈ I such that
An \ A is finite for all n ∈ ω. It is easy to see that the van der Waerden ideal is not a
P-ideal (consider e.g. sets An = {2i + n : i ∈ ω}).

Baumgartner introduced I -ultrafilters in [B]. We will repeat the definition and
introduce a weaker notion of weak I -ultrafilters. So, assume I is a tall ideal on ω:
An ultrafilter U on ω is called an I -ultrafilter if for every function f : ω→ ω there
exists U ∈ U such that f [U] ∈ I .
An ultrafilter U on ω is called a weak I -ultrafilter if for every finite-to-one function
f : ω→ ω there exists U ∈ U such that f [U] ∈ I .
It is obvious that every I -ultrafilter is a weak I -ultrafilter and every weak I -
ultrafilter has nonempty intersection with the ideal I .

2. Q - p o i n t s a n d t h e v a n d e r W a e r d e n i d e a l

In this section we examine the connection between Q-points and the van der Waer-
den ideal. First of all we prove that each Q-point not only has a nonempty intersection
with the van der Waerden ideal, but it is in fact a weak W -ultrafilter.

Proposition 2.1 Every Q-point is a weak W -ultrafilter.

Proof. Consider partition of ω into finite sets ω =
⋃

n∈ω In where I0 = {0, 1} and
In = [2n, 2n+1) for every n ≥ 1. Assume f : ω → ω is an arbitrary finite-to-one
function. If U is a Q-point then there exists U ∈ U such that |U ∩ f −1[In]| ≤ 1
for every n ∈ ω. Now enumerate (increasingly) f [U] = {un : n ∈ ω}. Either U0 =

= f −1{u2k : k ∈ ω} or U1 = f −1{u2k+1 : k ∈ ω} belongs to the ultrafilter U . Without
loss of generality we may assume U0 ∈ U . It follows from the definition that f [U0]
does not contain an arithmetic progression of length 3, thus f [U0] ∈ W . �

Weak W -ultrafilter in the previous proposition cannot be replaced with W -ultra-
filter because Q-points in general need not be W -ultrafilters. It follows from Propo-
sition 2.4.7 in [F] according to which assuming Martin’s axiom for countable posets
for every tall ideal I there exists a Q-point which is not an I -ultrafilter.

One can, of course, ask whether the implication in Proposition 2.1 can be reversed.
The answer is negative. If Martin’s axiom for countable posets holds then there exists
even a W -ultrafilter which is not a Q-point. We will construct such an ultrafilter in
the rest of this section starting with the following rather technical statement:

Proposition 2.2 (MActble) Assume F is a filter base of cardinality less than c with
the following property

(♠) (∀F ∈ F ) (∀k ∈ ω) (∃n ∈ ω) |F ∩ [2n, 2n+1)| ≥ k.

Assume f ∈ ωω. Then there exists G ∈ [ω]ω such that f [G] ∈ W and the filter base
generated by F and G has property (♠).
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Proof. If there exists F ∈ F such that f [F] ∈ W , let G = F. If there exists
K ∈ [ω]<ω such that the filter base generated by F and f −1[K] has property (♠), then
put G = f −1[K]. In the following we will assume that no such K exists. From this
assumption it follows that for every K ∈ [ω]<ω and for every F ∈ F and for every
k ∈ ω there exists n ∈ ω such that |

(
F \ f −1[K]

)
∩ [2n, 2n+1)| ≥ k. We construct a

suitable G eventually making use of Martin’s axiom.

Consider the set

P = {K ∈ [ω]<ω : f [K] contains no arithmetic progressions of length 3}

equipped with a partial order ≤P defined in the following way: K ≤P L if and only
if K = L or K ⊃ L and min(K \ L) > max L. For F ∈ F and k ∈ ω define
DF,k = {K ∈ P : (∃n ∈ ω) |K ∩ F ∩ [2n, 2n+1)| ≥ k}.

Claim: DF,k is a dense subset of (P,≤P) for every F ∈ F , k ∈ ω.

Proof of the Claim. Let L ∈ P be arbitrary. We want to find K ∈ DF,k such that
K ≤P L. Let n0 = max{n ∈ ω : L ∩ [2n, 2n+1]) � ∅}.

Case I. supn∈ω | f [F ∩ [2n, 2n+1)]| = m < ∞
For N = {i ∈ ω : i ≤ 3 ·max f [L]} there exists n(N) > n0 such that |

(
F \ f −1[N]

)
∩

∩ [2n(N), 2n(N)+1)| ≥ k · (m + 1). According to the assumption of Case I. | f [F ∩
∩ [2n(N), 2n(N)+1)]| ≤ m. Now, it follows from Dirichlet’s box principle that there exist

l ∈ f [F ∩ [2n(N), 2n(N)+1)] and L′ ⊆
(
F \ f −1[N]

)
∩ [2n(N), 2n(N)+1)

such that |L′| ≥ k, f [L′] = {l} and l > 3 · max f [L]. Put K = L ∪ L′. It remains to
verify that K is as required:

(1) Observe that K ∈ P. Any arithmetic progression of length 3 in f [K] contains
l (otherwise f [L] contains an arithmetic progression of length 3 in contradic-
tion to the assumption L ∈ P). However, for every a, b ∈ f [L] we have

l −max{a, b} > 2 ·max f [L] > max f [L] > |a − b|.

Thus a, b and l cannot form an arithmetic progression.
(2) Obviously, K ∈ DF,k because

|K ∩ F ∩ [2n(N), 2n(N)+1)| ≥ |L′ ∩ F ∩ [2n(N), 2n(N)+1)| ≥ k.

(3) Notice that K ≤P L because n(N) > n0 and consequently

min(K \ L) = min L′ > max L.

Case II. supn∈ω | f [F ∩ [2n, 2n+1)]| = ∞
According to the assumption of Case II. there exists n1 > n0 such that | f [F ∩

∩ [2n1 , 2n1+1)]| ≥ 3 ·max f [L] + (|L| + k)2. Let

A0 = {m ∈ f [F ∩ [2n1 , 2n1+1)] : m > 3 ·max f [L]}.
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Obviously, |A0| ≥ (|L| + k)2. Now, choose li ∈ A0 for i = 0, . . . , k−1 so that f [L]∪{li :
: i < k} contains no arithmetic progressions of length 3. This can be done by induction
on i:

For i = 0 let l0 = min A0. The set B1 = f [L] ∪ {l0} does not contain arithmetic
progressions of length 3 because f [L] did not and for arbitrary a, b ∈ f [L]

l0 −max{a, b} > 2 ·max f [L] > max f [L] > |a − b|.
If 0 < i < k − 1 and l j ∈ A0 for j < i are already known such that Bi = f [L] ∪ {l j :

: j < i} contains no arithmetic progressions of length 3, define

Ai = {m ∈ A0 : (∃a, b ∈ Bi) a, b,m form an arithmetic progression}.
Since |Bi| = |L|+i the set Ai has at most 1

2 (|L|+i)(|L|+i−1) elements. So A0\Ai � ∅ and
we may define li = min(A0 \ Ai). It follows from the construction that Bi+1 = Bi ∪ {li}
contains no arithmetic progressions of length 3.

Finally, let L′ = F ∩ [2n1 , 2n1+1) ∩ f −1[{li : i < k}] and put K = L ∪ L′. It remains
to verify that K is as required:

(1) Obviously, K ∈ P because f [K] = f [L]∪{li : i < k} and the latter set contains
no arithmetic progressions of length 3.

(2) Observe that K ∈ DF,k because

|K ∩ F ∩ [2n1 , 2n1+1)| ≥ |L′| ≥ k.

(3) Notice that K ≤P L because n1 > n0 and consequently
min(K \ L) = min L′ > max L. � Claim.

Since the family D = {DF,k : F ∈ F , k ∈ ω} consists of dense subsets of the
countable poset P and |D | < c, it follows from Martin’s axiom for countable posets
that there is a D-generic filter G .

Let G =
⋃{K : K ∈ G }. It remains to verify that G is as required, i.e.

a) f [G] contains no arithmetic progressions of length 3, thus f [G] ∈ W ;
b) (∀F ∈ F ) (∀k ∈ ω) (∃n ∈ ω) |F ∩G ∩ [2n, 2n+1)| ≥ k.

For a): Consider a, b, c ∈ f [G] arbitrary. There exist Ka, Kb, Kc ∈ G such that
a ∈ f [Ka], b ∈ f [Kb] and c ∈ f [Kc]. Since G is a filter, there exists K0 ∈ G which is
≤P-below all three sets Ka, Kb, Kc. Thus a, b, c ∈ f [K0]. Because K0 is an element
of P, the set f [K0] contains no arithmetic progressions of length 3. In particular a, b
and c do not form an arithmetic progression.

For b): Take k ≥ 1 arbitrary. For every K ∈ G ∩ DF,k we have G ⊇ K and |F ∩ G ∩
∩ [2n, 2n+1)| ≥ |F ∩ K ∩ [2n, 2n+1)| ≥ k for some n. �

Lemma 2.3 Every filter base F which has property (♠) introduced in Proposition
2.2 can be extended into an ultrafilter which is not a Q-point.

Proof. The family {[2n, 2n+1) : n ∈ ω} is a partition of ω into finite sets witnessing
the fact that an ultrafilter with property (♠) is not a Q-point. Therefore we will show
that every filter base F with property (♠) can be extended into an ultrafilter with
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property (♠). This can be accomplished by transfinite induction on α < c where in
each non-limit step one subset of ω is considered and the filter base is extended by
either the set itself or its complement.

To this end, consider a filter base F with property (♠) and A ⊆ ω: Either (∀F ∈
∈ F ) (∀k ∈ ω) (∃n ∈ ω) |F ∩ A ∩ [2n, 2n+1)| ≥ k and then the filter base F ′ generated
by F and A has property (♠).
Or (∃F0 ∈ F ) (∃k0 ∈ ω) (∀n ∈ ω) |F0∩A∩ [2n, 2n+1)| < k0 and then the filter base F ′

generated by F andω\A has property (♠). Indeed, since F has property (♠) for every
F ∈ F and for every k ∈ ω there exists n ∈ ω such that |F ∩ F0 ∩ [2n, 2n+1)| ≥ k + k0.
However, |F ∩ F0 ∩ A ∩ [2n, 2n+1)| < k0 and so |F ∩ (ω \ A) ∩ [2n, 2n+1)| ≥ |F ∩ F0 ∩
∩ (ω \ A) ∩ [2n, 2n+1)| ≥ k. �

Theorem 2.4 (MActble) There is a W -ultrafilter which is not a Q-point.

Proof. Enumerate ωω as { fα : α < c}. By transfinite induction on α < c we will
construct filter bases Fα so that the following conditions are satisfied:

(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γFα for γ limit

(iv) (∀α) |Fα| ≤ (|α| + 1) · ω
(v) (∀α) Fα has property (♠)
(vi) (∀α) (∃F ∈ Fα+1) fα[F] ∈ W

Condition (i) starts the induction and (ii), (iv) allow it to keep going. Limit stages
are taken care of by condition (iii) so it remains to show that successor stages can be
handled.

Successor stage: Suppose we already know Fα. If there is A ∈ Fα such that
fα[A] ∈ W then simply put Fα+1 = Fα. If fα[F] � W for every F ∈ Fα then apply
Proposition 2.2 to the filter base Fα and the function fα. Let Fα+1 be the filter base
generated by Fα and G.

Finally, let F =
⋃
α<cFα. Since the filter base F has property (♠), it can be

extended into an ultrafilter which is not a Q-point according to Lemma 2.3. It is a
W -ultrafilter which is not a Q-point because each ultrafilter which extends F is a
W -ultrafilter due to condition (vi). �

3. R a p i d u l t r a f i l t e r s a n d t h e v a n d e r W a e r d e n i d e a l

In this section we prove that rapid ultrafilters, unlike Q-points, may have an empty
intersection with the van der Waerden ideal. We will construct such an ultrafilter as-
suming Martin’s axiom for countable posets in Theorem 3.4, which is actually slightly
stronger.

Let us start with the definition of summable ideals. They play an important role in
an alternative characterization of rapid ultrafilters, which we use later in the proof.
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For a function g : ω→ (0,∞) such that
∑

n∈ω
g(n) = +∞ the family

Ig = {A ⊆ ω :
∑
a∈A

g(a) < +∞}

is a summable ideal on ω determined by function g. A summable ideal Ig is tall if
and only if lim

n→∞
g(n) = 0.

A characterization of rapid ultrafilters involving summable ultrafilters can be found
e.g. in [M-A] as Theorem 2.8.10. We restate it here in terms of weak I -ultrafilters.

Proposition 3.1 ([M-A]) The following statements are equivalent for an ultrafilter
U ∈ ω∗:

(1) U is a rapid ultrafilter
(2) U is a weak Ig-ultrafilter for every tall summable ideal Ig

(3) U is a weak I -ultrafilter for every tall analytic P-ideal I

Notice that analytic ideals in the third clause of the previous proposition are P-
ideals. Since the van der Waerden ideal is not a P-ideal, the theorem does not contra-
dict the existence of rapid ultrafilters, whose intersection with the van der Waerden
ideal is empty.

Rapid ultrafilters which are disjoint with the van der Waerden ideal, i.e. rapid
ultrafilters which contain only AP-sets, do actually exist if we assume Martin’s axiom
for countable posets. Under the same assumption even more is true and there exist
hereditarily rapid ultrafilters consisting of AP-sets. Hereditarily rapid ultrafilters, as
the name suggests, form a subclass of rapid ultrafilters, which we define as follows:
An ultrafilter U is a hereditarily rapid ultrafilter if it is a rapid ultrafilter such that
the ultrafilter f (U ) generated by the sets { f [U] : U ∈ U } is again a rapid ultrafilter
for every f ∈ ωω.
The characterization of rapid ultrafilters in Proposition 3.1 can be easily reformulated
to hereditarily rapid ultrafilters:

Proposition 3.2 The following statements are equivalent for U ∈ ω∗:
(1) U is a hereditarily rapid ultrafilter
(2) U is an Ig-ultrafilter for every tall summable ideal Ig

(3) U is an I -ultrafilter for every tall analytic P-ideal I

We will concentrate on the first two clauses of the previous proposition and we will
construct our ultimate goal – a hereditarily rapid ultrafilter which does not intersect
the van der Waerden ideal – as an ultrafilter which is an Ig-ultrafilter for every tall
summable ideal Ig. The following lemma is crucial for the successor stages of the
construction:

Lemma 3.3 (MActble) Let Ig be a tall summable ideal. Assume F is a filter base,
|F | < c, F ∩ W = ∅ and f ∈ ωω. Then there exists G ∈ [ω]ω such that f [G] ∈ Ig

and F ∩G is an AP-set for every F ∈ F .
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Proof. If there exists F ∈ F such that f [F] ∈ Ig, put G = F. If there exists
K ∈ [ω]<ω such that F ∩ f −1[K] is an AP-set for every F ∈ F , then put G = f −1[K].
In the following we will assume that no such set exists, i.e.

(♣) for every K ∈ [ω]<ω there is FK ∈ F such that FK ∩ f −1[K] ∈ W .

This also means that F \ f −1[K] is an AP-set for every F ∈ F .
Consider the set

P = {K ∈ [ω]<ω :
∑

a∈ f [K]

g(a) ≤
(
2 − 1

2|K|

)
· max

a∈ f [K]
g(a)}

with a partial order ≤P defined by: K ≤P L if and only if K = L or K ⊃ L and
min(K \ L) > max L. Now, for every F ∈ F and every k ≥ 1 define DF,k = {K ∈ P :
: K ∩ F contains an arithmetic progression of length k}.

Claim. DF,k is dense in P for every F ∈ F and k ≥ 1.
Proof of the Claim. Take L ∈ P arbitrary. Since limn→∞ g(n) = 0 there exists nL ∈ ω
such that for every n > nL

g(n) <
1

2|L|+1 · k · max
a∈ f [L]

g(a).

According to the assumption (♣) there exists FnL ∈ F such that FnL ∩ f −1[0, nL] ∈
∈ W . It follows that AnL = (F ∩ FnL ) \ f −1[0, nL] is an infinite AP-set, thus one can
choose an arithmetic progression L′ ⊂ AnL such that |L′| = k and min L′ > max L. Let
K = L ∪ L′. Observe that due to the choice of L′ one has max

a∈ f [K]
g(a) = max

a∈ f [L]
g(a). To

see that K ∈ P notice that
∑

a∈ f [K]

g(a) ≤
∑

a∈ f [L]

g(a) +
∑

a∈ f [L′]

g(a) ≤

≤
(
2 − 1

2|L|

)
· max

a∈ f [L]
g(a) + |L′| · max

a∈ f [L′]
g(a) ≤

≤
(
2 − 1

2|L|

)
· max

a∈ f [L]
g(a) + k · 1

2|L|+1 · k · max
a∈ f [L]

g(a) ≤

≤
(
2 − 1

2|L|+1

)
max
a∈ f [L]

g(a) ≤
(
2 − 1

2|K|

)
max

a∈ f [K]
g(a)

It is obvious that K ≤P L. Also K ∈ DF,k because K ∩ F ⊇ L′ ∩ F contains an
arithmetic progression of length k. � Claim.

Since the family D = {DF,k : F ∈ F , k ≥ 1} consists of dense subsets of the
countable poset P and |D | < c, it follows from Martin’s axiom for countable posets
that there is a D-generic filter G .

Let G =
⋃{K : K ∈ G }. It remains to verify that G is as required:
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a) f [G] ∈ Ig, i.e.
∑

a∈ f [G] g(a) < +∞
b) (∀F ∈ F ) G ∩ F is an AP-set

For a): Enumerate f [G] = {un : n ∈ ω}. For every n there exists Kn ∈ G such that
un ∈ f [Kn]. We may assume Kn+1 ≤P Kn (and thus f [Kn+1] ⊇ f [Kn]) for every n ∈ ω
because G is a filter. Since f [G] =

⋃
n∈ω f [Kn], we get

∑
a∈ f [G]

g(a) = lim
n→∞

∑
a∈ f [Kn]

g(a) ≤ lim
n→∞

(2 − 1
2|Kn |

) max
a∈ f [Kn]

g(a) ≤ 2 ·max
a∈ω

g(a).

For b): Take k ≥ 1 arbitrary. For every K ∈ G ∩ DF,k we have G ⊇ K and K ∩ F
contains an arithmetic progression of length k. Hence G ∩ F contains arithmetic
progressions of arbitrary length, i.e. G ∩ F is an AP-set. �

Theorem 3.4 (MActble) There is a hereditarily rapid ultrafilter U such that U ∩
∩ W = ∅.

Proof. Enumerate as {〈 fα, gα〉 : α < c} all pairs 〈 fα, gα〉 where fα ∈ ωω and Igα is
a tall summable ideal. By transfinite induction on α < c we will construct filter bases
Fα so that the following conditions are satisfied:

(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γFα for γ limit

(iv) (∀α) |Fα| ≤ (|α| + 1) · ω
(v) (∀α) (∀F ∈ Fα) F is an AP-set
(vi) (∀α) (∃F ∈ Fα+1) fα[F] ∈ Igα

Condition (i) starts the induction and (ii), (iv) allow it to keep going. Limit stages
are taken care of by condition (iii) so it remains to show that successor stages can be
handled.

Successor stage: Suppose we already know Fα. If there is A ∈ Fα such that
fα[A] ∈ Igα then simply put Fα+1 = Fα. If fα[F] � Igα for every F ∈ Fα then apply
Lemma 3.3 to the ideal Igα , the filter base Fα and the function fα. Let Fα+1 be the
filter base generated by Fα and G.

Finally, let F =
⋃
α<cFα. Since F is an AP-set for every F ∈ F the filter base

F can be extended to an ultrafilter U which does not intersect the van der Waerden
ideal. Every ultrafilter which extends F , however, is an Igα-ultrafilter for every
tall summable ideal Igα because of condition (vi). Thus U is a hereditarily rapid
ultrafilter satisfying U ∩W = ∅. �

Corollary 3.5 (MActble) There exists a rapid ultrafilter U such that U contains
only AP-sets. �
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