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The Regularity Properties on The Real Line

MIChAL STAš

košice

We present a summarization of results on measure and category, mainly of regularity prop-
erties as the Lebesgue measurableness, the Baire Property and the Perfect Set Property. We
work with the axiomatic set theory ZF and any using of the Axiom of Choice or any of its
weak form will be emphasized.

It is well known that one cannot prove in ZF that there exists a Lebesgue non-
measurable set or a set not possessing the Baire Property. For any such proof we
need additional assumption e.g. the Axiom of Choice AC. On the other side, by
J. Mycielski [5] if we assume that the Axiom of Determinacy AD holds true then
any set of reals is Lebesgue measurable and possess the Baire Property. The common
proofs of many topological results usually exploit AC in spite that one can prove them
in ZF or in ZF with some weak form of the Axiom of Choice.

Main aim of this note is to present relationships between LM, BP, PSP (definitions
see below) and additional corresponding assertions. We work with the Zermelo-
Fraenkel axiomatic set theory ZF and our attention is concentrated to needed as-
sumptions for a proof of the given statements, e.g. a necessity of the Weak Axiom
of Choice1 wAC or the Axiom of Dependent Choice DC. We shall use common set
theoretical terminology and notations, say those of [3] and [4].
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The paper is divided into two parts. In the first part we will present the neces-
sary definitions, elementary proofs of assertions from the set theory and some useful
facts about non-measurable sets. In the second part we survey known results concern-
ing models of ZF showing non-provability of some implications among investigates
properties. Finally, all studied properties with their relationships will be summarized
in Diagrams.

1. D e f i n i t i o n s a n d B a s i c p r o p e r t i e s

A real line is a linearly ordered field R = 〈R,=,≤,+, ·, 0, 1〉 satisfying the Bolzano
Principle saying that every non-empty subset of R bounded from above has a supre-
mum. In ZF one can prove that there exists a real line and, up to isomorphism, the
real line is unique, for more details see [2].

We shall consider the following statements
wCH there is no set X such that ℵ0 < |X| < c;

CH ℵ1 = c;
WR the set of reals R can be well-ordered;
VS there exists a selector for a Vitali decomposition;
FU there exists a free ultrafilter on ω;
Lk a set of cardinality k can be linearly ordered;2

InC ℵ1 and c are incomparable;
In1 c < k;
In2 ℵ1 < ℵ1 + c < ℵ1 + k;
In3 c � 2ℵ1 ;
BS there exists a Bernstein set;

LM every subset of reals is Lebesgue measurable;
BP every subset of reals possesses the Baire Property;

PSP every uncountable set of reals contains a perfect subset;3

LDe there exists a selector for the Lebesgue decomposition.4

A subset B ⊆ R is called a Bernstein set if |B| = |R \ B| = c and neither B nor
R \ B contains a perfect subset. There exist many different concepts how to construct
a Bernstein set with some special properties, but these methods are based on a well-
ordering of the real line.

Theorem 1 (F. Bernstein [1]) If the real line can be well-ordered, then there exists
a Bernstein set, i.e. WR→ BS.

A Bernstein set is a classical example of a non-measurable set.

2 Definition of a cardinality k is on the following page.
3 A perfect set is a non-empty closed set without isolated points.
4 The Lebesgue decomposition is a family {{A ⊆ ω : ot(ω, π−1(A)) = ξ} : ξ < ω1}, where π : ω ×ω→

→ ω is a pairing function.
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Theorem 2 (F. Bernstein [1]) A Bernstein set does not possess the Baire Property
and is not Lebesgue measurable, i.e. BP→ ¬BS and LM→ ¬BS.

In the next, we show that the opposite need not be true. By the definition of the
Bernstein set we have PSP→ ¬BS.

Let 〈X,+, 0〉 be an Abelian Topological Polish group. A set V ⊆ X is called a Vitali
set if there exists a countable dense subset D such that

(∀x, y) ((x, y ∈ V ∧ x � y)→ x − y � D),

(∀x ∈ X)(∃y ∈ V) x − y ∈ D.

Note that, for every x ∈ X there exists exactly one y ∈ V such that x − y ∈ D. It is
easy to verify that the family {{y ∈ X : x − y ∈ D} : x ∈ X} is a decomposition of the
set X and we call it the Vitali decomposition. A selector for the Vitali decomposition
is a Vitali set.

Theorem 3 (G. Vitali [12]) If the real line can be well-ordered, then there exists
a Vitali set, i.e. WR→ VS.

A Vitali set is an another example of a non-measurable set

Theorem 4 (G. Vitali [12]) A Vitali set does not possess the Baire Property and is
not Lebesgue measurable, i.e. BP→ ¬VS and LM→ ¬VS.

Let us consider the family P(ω) of all subsets of ω. P(ω) is a Boolean algebra
and the set

Fin = {A ⊆ ω : |A| < ℵ0}
of all finite subsets of ω is an ideal of algebra P(ω). So we can consider the quotient
algebra P(ω)/Fin and we denote by k its cardinality

k = |P(ω)/Fin|.
We define relation� between cardinalities of sets as

|A| � |B| ≡ (∃ f ) ( f : B
onto−→ A).

The relation � is reflexive and transitive. Evidently |A| ≤ |B| implies |A| � |B|, and
by AC we have the opposite implication.

Theorem 5 The inequalities c ≤ k and k � c hold true in ZF. Moreover, if the set
P(ω) can be well-ordered, then k = c, i.e. In1→ ¬WR.

Proof. Since <ωω is countable, we can construct a family F ⊆ [<ωω]ω of cardi-
nality c by setting

F = {{s ∈ <ωω : s ⊆ f } : f ∈ ωω}.
Then |{s ∈ <ωω : s ⊆ f1∩ f2}| < ℵ0 for any f1, f2 ∈ ωω, f1 � f2. The second inequality
follows from definitions. �
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Note the following: if A, B are sets such that |A| ≤ |B|, |B| � |A| then A can be
well-ordered if and only if B can be well-ordered.

Corollary 6 A set of cardinality k can be well-ordered if and only if the set of reals
R can be well-ordered.

Corollary 7 If a set of cardinality k cannot be linearly ordered, then ℵ1 < ℵ1+ c <
< ℵ1 + k,5 i.e. ¬Lk→ In2.

Proof. Assume that a set of cardinality k cannot be linearly ordered. Since a well-
ordered set is linearly ordered, by Corollary 6 we have ℵ1 < ℵ1 + c and the second
inequality follows from a linear ordering of the real line. �

The implication In2→ In1 is trivial by a linear ordering of the real line.

Remark 8 The following holds true
(1) Let D = {x ∈ ω2 : {n : x(n) = 1} ∈ [ω]<ω} be countable dense set. Then a

selector for the Vitali decomposition ω2/D = {{y ∈ ω2 : {n : x(n) � y(n)} ∈
∈ [ω]<ω} : x ∈ ω2} is a set of cardinality k.

(2) Let D be the set of all dyadic numbers. Then a selector for the Vitali decom-
position T/D = {{y ∈ T : x − y ∈ D} : x ∈ T},6 is a set of cardinality k.

(3) Let Q be the set of all rational numbers. Then a selector for the Vitali decom-
position T/Q = {{y ∈ T : x − y ∈ Q} : x ∈ T} is the set of cardinality k.

Proof.
(1) We can identify the sets P(ω) and ω2 in a natural way, i.e. a sequence
{an}∞n=0 ∈ ω2 is identified with the set A = {n ∈ ω : an = 1}. So there
exists a bijection f

f : P(ω)/Fin
1−1−→
onto

ω2/D.

(2) There exists a bijection ω2/D onto T/D.
(3) Since Q, D are subgroups of T and D is subgroup of Q, therefore by the sec-

ond factor’s isomorphism theorem we obtain T/Q � (T/D)/(Q/D). Thus, k =
= ℵ0.|T/Q|. By assumption we have k ≤ ℵ0.|T/Q| ≤ c ≤ k.

�

Another essential notion for a construction of a non-measurable set is a tail-set.
A set A ⊆ T7 is called a tail-set if the set {r ∈ T : A + r = A} contains a countable
subset dense in T. By the Zero-One Law Theorems saying that

5 If a set of cardinality k cannot be linearly ordered then ℵ1 and c can be incomparable (Solovay model
[10]) or comparable (Shelah model [8]). Thus, we cannot replace ℵ1 < ℵ1 + c by ℵ1 < c.

6 The quotient group T = R/Z is identified with the unit interval [0, 1], in which we have identified
the points 0 and 1. The topology of T is induced by metric ρ(x, y) = ‖x − y‖, where ‖a‖ is the distance of
the real a to the nearest integer.

7 In the definition of a tail-set, the torus T can be replaced by the Cantor space ω2 for which the Zero-
One Theorems hold true in similar sense.



77

Theorem 9 If the set A ⊆ T is a tail-set, then the outer Lebesgue measure λ∗(A) is
either 0 or 1.

Theorem 10 If a tail-set A possesses the Baire Property, then A is either meager
or comeager.

we obtain

Theorem 11 (J. Mycielski [5]) If AC2 holds true,8 then there exist a Lebesgue
non-measurable set of reals and a set which does not possess the Baire Property, i.e.
LM→ ¬AC2 and BP→ ¬AC2.

Proof. Let p : P(ω)
onto→ P(ω)/Fin be the quotient mapping. Thus p(x) = {y ∈

∈P(ω) : (x \ y) ∪ (y \ x) ∈ Fin}. For a set x ⊆ ω we denote m(x) = {p(x), p(ω \ x)}.
By AC2 there exists a selector F for the family

M = {m(x) : x ⊆ ω} ⊆ [P(ω) \ Fin]2.

Then the sets

A = {x ⊆ ω : p(x) ∈F },B = {x ⊆ ω : p(x) �F }

are tail-sets and A ∩B = ∅,A ∪B =P(ω) ≈ ω2. By the Zero-One Law Theorems
the sets A ,B are non-measurable and does not possess the Baire Property. �

Similarly by the same argument we have

Theorem 12 (J. Mycielski [5]) If a set of cardinality k is linearly ordered, then
there exist a Lebesgue non-measurable set of reals and a set which does not possess
the Baire Property, i.e. LM→ ¬Lk and BP→ ¬Lk.

Proof. If the set P(ω)/Fin can be linearly ordered, then one could define a selec-
tor for the family M of the proof of Theorem 11. �

Notion of a tail-set, having special properties by the Zero-One Law Theorems, can
be used to prove assertion for a free ultrafilter on ω, i.e. a filter J ⊆ P(ω) does
not containing any finite set and for every A ⊆ ω, either A ∈J or ω \ A ∈J .

Theorem 13 (W. Sierpiński [9]) A free ultrafilter on ω is a Lebesgue non-measur-
able set and does not possess the Baire Property, i.e. LM→ ¬FU and BP→ ¬FU.

Proof. Since we can identify the sets ω2 and P(ω), we consider P(ω) with the
topology induced from the Cantor space. Moreover, x +I = I for any finite x ⊆ ω
and free ultrafilter I . Therefore a free ultrafilter on ω considered as a subset of
ω2 is a tail-set and also its complement. They have equal outer measure and are
homeomorphic, so the statement follows from the Zero-One Law Theorems. �

8 The Axiom of Choice AC2 says that for every family of two elements sets there exists a selector.
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Let us remark that by transfinite induction we can construct a non-measurable tail-
set which does not possess a Baire Property and is not a free ultrafilter on ω.

Properties of measure and topological properties that are connected with the Baire
Property and the first Baire category offer us that there exists some kind of duality
between measure and category. A great deal of dual results holds true but yet it is not
in general. J. Raisonnier [7] proved in the theory ZF + wAC that

Theorem 14 (J. Raisonnier) If ℵ1 ≤ c, then there is a Lebesgue non-measurable
set, i.e. LM→ InC.

In the next we will mention that parallel theorem on the Baire Property is not
provable in ZF + wAC.

Theorem 15 If wCH holds true, then the following are equivalent:
WR the set of reals R can be well-ordered;
¬InC ℵ1 and c are comparable, i.e ℵ1 ≤ c;
LDe there exists a selector for the Lebesgue decomposition.

Proof. LDe → ¬InC : A selector of the Lebesgue decomposition is a set of reals
of cardinality ℵ1.

WR→ LDe : If the set of reals R were well-ordered, then we can define a selector
for the Lebesgue decomposition.
¬InC→WR : If c and ℵ1 were comparable, then wCH implies that ℵ1 = c. �

By an elementary cardinal arithmetic we already know that if ℵ1 and c are incom-
parable, then c < 2ℵ1 . Thus, we get InC → In3. Further it is easy to verify that
wCH→ In3, since ℵ1 < 2ℵ1 .

Theorem 16 If every uncountable set of reals contains a perfect subset, then there
is no set X such that ℵ0 < |X| < c, i.e. PSP→ wCH.

Proof. If an uncountable set of reals contains a perfect subset, i.e. a subset of
cardinality c, then there exists no uncountable set of cardinality smaller than c. �

Corollary 17 If every uncountable set of reals contains a perfect subset, then ℵ1
and c are incomparable, i.e. PSP→ InC.

Proof. We already know that PSP → ¬BS → ¬WR and according to Theo-
rems 15, 16 we are done. �

2. C o n s i s t e n c y a n d M o d e l s

We assume that a reader is acquainted with the axiomatic set theory. We will
suppose that ZF is consistent although it is impossible to show it. According to
Theorem 15 is wCH equivalent to CH in the theory ZFC or ZF+WR. Thus, in any
model of ZF + CH we have

wCH� ¬WR,wCH� InC,wCH� ¬LDe,
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In3� ¬WR, In3� InC, In3� ¬LDe.
The Axiom of Determinacy9, denoted AD, was proposed as an alternative to the

Axiom of Choice by J. Mycielski and H. Steinhaus [6], but it is not possible to prove
the consistency of ZF+AD with respect to ZF. Note that the consistency strength of
AD is indicated as much high in due to results by Solovay and mainly by T. Jech [3].
We remind some consequences of AD

Theorem 18 (J. Mycielski, R. Solovay) If AD holds true, then
a) wAC, PSP, LM, BP hold true,
b) AC fails,
c) there exists a surjection of P(ω) onto P(ω1), i.e. 2ℵ1 � c.

By R. Solovay [10] and S. Shelah [8] the following theories are equiconsistent10:
(a) ZFC + IC;11

(b) ZFC + every Σ1
3-set of reals is Lebesgue measurable;

(c) ZF + DC + LM.
We already know that wAC implies that ℵ1 is a regular cardinal, therefore by Shelah’s
argument in his Remark (1), Chapter 5 of [8], the theory

ZF + wAC +LM

is equiconsistent with the previous theories. S. Shelah proved that the consistency of
ZF implies the consistency of ZF + DC + BP, i.e. the theories

(d) ZFC;
(e) ZF + DC + BP

are equiconsistent. Therefore the consistency strength of ZF +wAC +LM is strictly
greater than that of ZF + wAC + BP. By Solovay’s model the consistency of ZF +
+wAC+LM is greater than that of ZF+wAC+PSP. Thus, a natural question arises.

Is consistency of an existence of an inaccessible cardinal necessary for PSP?

We give a positive answer to this question

Theorem 19 If PSP holds true and ℵ1 is a regular cardinal, then ℵ1 is an inac-
cessible cardinal in the constructible universe L.

Proof. Assume that ℵ1 is not inaccessible in L. If ℵ1 is a regular cardinal, hence
being a successor, (µ+)L = ℵ1

V, so ℵ1
L[a] = ℵ1 for some real a, which codes a well-

ordering of ω of the ordinal type µ (for more details see [8], Remark 4.1 A). Thus,
there exists a set X ⊆ ω2 of cardinality ℵ1 and by Corollary 17 then there exists an
uncountable set of reals which does not contain a perfect set. �

9 AD states that every two-person games of length ω in which both players choose integers is deter-
mined; that is, one of the two players has a winning strategy.

10 Equiconsistent in the sense that each of the theories (a)-(c) has a model in another one.
11 IC denote statement “there exists a strongly inaccessible cardinal”, i.e. a limit regular cardinal κ

such that for any λ < κ we have 2λ < κ.
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So we obtain that the theory ZF+ℵ1 is regular +PSP is equiconsistent with the the-
ories (a)–(c). Note that the theories (d)–(e) are equiconsistent with the theory ZF +
+ wCH. Thus, the consistency of ZF + wAC + PSP is strictly greater than that of

ZF + wAC + wCH.
S. Shelah [8] showed that Theorem 14 on the Baire Property is not provable in

the theory ZF + DC. He constructed a model possessing BP in which there exists a
set of reals of cardinality ℵ1. Thus, we get BP � InC. Since BP implies trivially
¬WR, we obtain ¬WR � InC, and according to Theorem 15 we get BP � wCH.
By Theorem 16 we know that PSP → wCH, and therefore BP � PSP. However,
according to Theorem 14 we have BP� LM.

By similar arguments we can easily verify that

¬BS� wCH, ¬BS� InC, ¬BS� LM, ¬BS� PSP,
¬Lk� wCH, ¬Lk� InC, ¬Lk� LM, ¬Lk� PSP,
¬FU� wCH, ¬FU� InC, ¬FU� LM, ¬FU� PSP

according to Theorems 2, 12 and 13, respectively.
J. Mycielski [5] has mentioned the following result by E. Specker [11] without any

proof. We present

Lemma 20 If there is no selector for the Lebesgue decomposition and ℵ1 is a reg-
ular cardinal, then ℵ1 is an inaccessible cardinal in the constructible universe L.

Proof. Assume that ℵ1 is not inaccessible in L. If ℵ1 is a regular cardinal, then
ℵ1

L[a] = ℵ1 for some real a. Moreover, for a pairing function π : ω ×ω→ ω and any
A ⊆ ω, A ∈ L[a]
〈
ω, π−1(A)

〉
is well-ordered in L[a] if and only if

〈
ω, π−1(A)

〉
is well-ordered in V.

If π−1(A) is a well-ordering of ω of the ordinal type ξ in L[a], then there exists f ∈
∈ L[a] such that f : ω 1−1−→

onto
ξ ∈ On. Since f ∈ V,

〈
ω, π−1(A)

〉
is also well-ordered

in V. If
〈
ω, π−1(A)

〉
is not well-ordered in L[a], then there exists a decreasing chain

in L[a], so in V too.
Moreover order type of π−1(A) in L[a] is same as in V and a selector of the

Lebesgue decomposition in L[a] is a selector of the Lebesgue decomposition in V
as well. Since the Axiom of Choice AC holds true in L[a] we are done. �

Since ℵ1 is not inaccessible in L in the Shelah’s above mentioned model, we obtain
BP� ¬LDe and therewith LDe�WR.

The relationships between assertions that can be proved in the theory ZF are sum-
marized in a Diagram 1.
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Diagram 1

According to the existence of models of mentioned in Part 2, we have a Diagram
2 in which none of the indicated implications is provable in the theory ZF.

Diagram 2

The arrows that follow from a transitive law are missing in the Diagram 1 and 2 from
a typographical reason (they are mentioned above in the text).
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