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Abstract. We use tighter majorizing sequences than in earlier studies to provide a semilo-
cal convergence analysis for the secant method. Our sufficient convergence conditions are
also weaker. Numerical examples are provided where earlier conditions do not hold but for
which the new conditions are satisfied.
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1. Introduction

Let X , Y be Banach spaces and D be a convex subset in X . Let U(w,R) and

U(w,R) stand for the open and closed ball in X , respectively, with center w and
radius R > 0. Denote by L(X ,Y) the space of bounded linear operators from X
into Y. In the present paper we are concerned with the problem of approximating a
locally unique solution x⋆ of the equation

(1.1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on D with values in Y.
Many problems from computational sciences can be presented in the form of equa-

tion (1.1) using mathematical modelling [2], [5], [6]. The solution of these equations

can rarely be found in closed form. That is why the solution methods for these

equations are usually iterative. In particular, the practice of numerical analysis for

finding such solutions is essentially connected to Newton-like methods (see [2] and

the references therein). The study of convergence of iterative procedures is usu-

ally focused on two types: semilocal and local convergence analysis. The semilocal
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convergence is based on the information around an initial point, to give criteria en-

suring the convergence of iterative procedures; while the local one is based on the

information around a solution, to find estimates of the radii of convergence balls. A

plethora of sufficient conditions for the local as well as the semilocal convergence of

Newton-type methods as well as an error analysis for such methods can be found in

[1]–[24].

We consider the secant method in the form

x−1, x0 are initial points in D
xn+1 = xn − δF (xn−1, xn)

−1F (xn) for each n = 0, 1, . . . ,

where δF (x, y) ∈ L(X ,Y), x, y ∈ D, is a consistent approximation of the Fréchet-
derivative of F [2], [14]. A popular choice for δF (x, y) is given by

δF (x, y) =

∫ 1

0

F ′(x+ t(y − x)) dt.

Other popular choices for δF (x, y) can be found in [2], [5], [7], [8], [9], [6] and the

references therein (see also the examples at the end of this paper). The secant method

(1.2) is an alternative of Newton’s method

x0 is an initial point in D
xn+1 = xn − F ′(xn)

−1F (xn) for each n = 0, 1, . . .

Several studies were provided on the semilocal convergence analysis of the secant

method using Lipschitz and Hölder-type conditions. Bosarge and Falb [10], Laasonen

[15], Ortega and Rheinboldt [16], Dennis [11], Potra [17], [18], Potra and Pták [20],

[19], Hernández et al. [13], Argyros [2] and others [12], [24] have provided sufficient

convergence conditions for (1.2) based on Lipschitz-type conditions on δF (see also

relevant works in [4], [1], [6], [15], [19], [21], [22], [23]). The conditions usually

associated with the semilocal convergence of the secant method (1.2) in the above

mentioned references are:

(H1) F is a nonlinear operator defined on D with values in Y;
(H2) x−1 and x0 are two points belonging to the interior D0 of D and satisfying

‖x0 − x−1‖ 6 d;

(H3) F is Fréchet-differentiable on D0 and there exists an operator δF : D0×D0 →
L(X ,Y) such that the linear operator A = δF (x−1, x0) is invertible, its inverse

A−1 is bounded and
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‖A−1F (x0)‖ 6 η;

‖A−1(δF (x, y) − F ′(z))‖ 6 K(‖x− z‖+ ‖y − z‖), for all x, y, z ∈ D;

U(x0, r) ⊆ D0, for some r > 0 depending on K, d, η, and

Kd+ 2
√

Kη 6 1.(1.3)

The sufficient convergence condition (1.3) is easily violated. For example, let K =

0.97689, η = 0.17895 and d = 0.17956. Then, (1.3) is not satisfied, since

Kd+ 2
√

Kη = 1.011626765> 1.

Moreover, our recently found corresponding conditions are also violated [7]. Hence,

there is no guarantee that equation (1.1) has a solution that can be found using

the secant method. In [8], using a combination of Lipschitz and center-Lipschitz

conditions, we provided a semilocal convergence analysis for the secant method.

Error bounds in [8] are tighter and our convergence conditions hold in cases where

the corresponding hypotheses in earlier references [11], [13], [15], [16], [17], [18], [22],

[24], [23] are not satisfied.

In the present paper, using more precise majorizing sequences we provide new

semilocal convergence criteria and a tighter semilocal convergence analysis for the

secant method (1.2) than in [7], [8], [11], [13], [15], [16], [17], [18], [22], [24], [23].

This way we expand the applicability of the secant method. Note that the global

convergence of the secant method can be considerably improved by using the trust

region strategy. Thus the iterative scheme (1.2) is practically never used.

The paper is organized as follows. In Section 2 we present our new semilocal

convergence results for the secant method using majorizing sequences. Section 3

contains applications, special cases and numerical examples.

2. Semilocal convergence analysis

We need the following results on majorizing sequences for the secant method.

Lemma 2.1. Let K0 > 0, K > 0, d > 0 and η > 0 be constants. Set

(2.1) α =
2K

K +
√
K2 + 4K0K

and

(2.2) α0 =

K
(

(d+ η)
1−K0d

1 −K0(d+ η)
− d

)

1−K0

(

(d+ η)
1−K0d

1−K0(d+ η)
+ η

)

.
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Suppose that the following conditions hold

K0(d+ 2η) < 1,(2.3)

K0

(

(d+ η)
1−K0d

1−K0(d+ η)
+ η

)

< 1,(2.4)

α0 6 α(2.5)

and

(2.6) (1 − α)(1−K0(d+ η))(K0(d+ 2η)− 1) + 2K2
0(d+ η)η 6 0.

Then, the scalar sequence {tn} (n > −1) given by

t−1 = 0, t0 = d, t1 = d+ η, t2 = d+ η +
K0(d+ η)η

1−K0(d+ η)
,(2.7)

tn+2 = tn+1 +
K(tn+1 − tn−1)(tn+1 − tn)

1−K0(tn+1 − t0 + tn)
for each n = 1, 2, . . .

is non-decreasing, bounded from above by

(2.8) t⋆⋆ = (d+ η)
(

1 +
1−K0d

(1− α)(1 −K0(d+ η))

)

and converges to its unique least upper bound t⋆, which satisfies t⋆ ∈ [0, t⋆⋆]. More-

over, the following estimates hold

(2.9) 0 < tn+2 − tn+1 6
K0(d+ η)η

1−K0(d+ η)
αn+1 for each n = 1, 2, . . .

P r o o f. We know that α ∈ (0, 1) by (2.1). The constant α0 is non-negative by

(2.3) and (2.4). Hypothesis (2.4) implies K0(t2 + t1 − t0) < 1, which together with

(2.3) and t−1 6 t0 6 t1 imply t2 6 t3. We use mathematical induction to prove that

the following holds:

(2.10) 0 6
K(tk+1 − tk−1)

1−K0(tk + tk−1 − d)
6 α for each k = 1, 2, . . .

Estimate (2.10) is true for k = 1 by (2.2). Then, we have by (2.7) that

0 6 t3 − t2 6 α(t2 − t1) =⇒ t3 6 t2 + α(t2 − t1)(2.11)

=⇒ t3 6 t2 + (1 + α)(t2 − t1)− (t2 − t1)

=⇒ t3 6 t1 +
1− α2

1− α
(t2 − t1) < t⋆⋆.
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Assume that (2.10) holds for all natural integers n 6 k. Then, we get by (2.7) and

(2.10) that

(2.12) 0 6 tk+2 − tk+1 6 αk(t2 − t1)

and

(2.13) tk+2 6 t1 +
1− αk+1

1− α
(t2 − t1) < t⋆⋆.

Evidently, estimate (2.10) is true if k is replaced by k + 1, provided that

K(tk+2 − tk) 6 α(1 −K0(tk+2 + tk+1 − t0))

or

K(tk+2 − tk+1) +K(tk+1 − tk) + αK0(tk+2 + tk+1)− α(1 +K0t0) 6 0

or

Kαk(t2 − t1) +Kαk−1(t2 − t1)(2.14)

+ αK0

(

t1 +
1− αk+1

1− α
(t2 − t1) + t1 +

1− αk

1− α
(t2 − t1)

)

− α(1 +K0t0) 6 0.

Estimate (2.14) motivates us to introduce recurrent functions defined on [0, 1) for

each k = 1, 2, . . . by

fk(s) = K(sk + sk−1)(t2 − t1) + sK0(1 + s+ . . .+ sk)(t2 − t1)(2.15)

+ sK0(1 + s+ . . .+ sk−1)(t2 − t1) + 2(K0t1 − 1−K0t0)s 6 0.

We need the relationship between two consecutive functions fk. We have that

fk+1(s) = fk(s)− fk(s) +K(sk+1 + sk)(t2 − t1)(2.16)

+ sK0(1 + s+ . . .+ sk+1)(t2 − t1)

+ sK0(1 + s+ . . .+ sk)(t2 − t1) + 2(K0t1 − 1−K0t0)s

= fk(s) + g(s)sk−1(t2 − t1),

where

(2.17) g(s) = K0s
3 + (K0 +K)s2 −K.

Note that α given in (2.1) is the only positive root of polynomial g. In view of (2.14)

and (2.15), we must prove that

(2.18) fk(α) 6 0 for each k = 1, 2, . . .
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However, we have by (2.16) and (2.17) that

(2.19) fk+1(α) = fk(α) for each k = 1, 2, . . .

We define the function f∞ on [0, 1) by

(2.20) f∞(s) = lim
k−→∞

fk(s).

Therefore, we must only show

(2.21) f∞(α) 6 0.

But, we have by (2.14), (2.15) and (2.20) that

(2.22) f∞(α) = α
(

2K0

(

t1 +
t2 − t1
1− α

)

− (1 +K0t0)
)

.

Inequality (2.21) is then true by (2.6) and (2.22). The induction for (2.10) is com-

plete. It then follows from (2.12) and (2.13) that the sequence {tn} is non-decreasing,
bounded from above by t⋆⋆ given in (2.8) and thus it converges to t⋆ ∈ [0, t⋆⋆]. The

proof of Lemma 2.1 is complete. �

Lemma 2.2. Under hypotheses (2.3)–(2.5) suppose further that

(2.23) (2K0 +K)(t2 − (d+ η)) +K0(d+ 2η) < 1

and

(2.24) f1(α) = K0(t2−t1)α2+((2K0+K)(t2−t1)+K0(2t1−t0)−1)α+K(t2−t1) 6 0

hold, where t2 is given by (2.7). Then, the conclusions of Lemma 2.1 hold.

P r o o f. Simply notice that (2.18) holds by (2.15) (for k = 1), (2.19), (2.23),

and (2.24). The proof of Lemma 2.2 is complete. �

We also have the following useful generalizations of Lemmas 2.1 and 2.2.
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Lemma 2.3. Let K0 > 0, K > 0, d > 0 and η > 0 be constants. Let also

N = 0, 1, . . . be fixed. Set

(2.25) αN =

K
( 1−K0tN
1−K0tN+1

tN+1 − tN

)

1−K0

( 1−K0tN
1−K0tN+1

tN+1 + tN+1 − tN

)

.

Suppose that the following conditions hold

K0(2tN+1 − tN ) < 1,(2.26)

K0

( 1−K0tN
1−K0tN+1

tN+1 + tN+1 − tN

)

< 1,(2.27)

αN 6 α,

(1− α)(1 −K0tN+1)(K0(2tN+1 − tN )− 1) + 2K2
0(tN+1 − tN )tN+1 6 0,(2.28)

t1 6 t2 < . . . 6 tN+1,(2.29)

and

(2.30) K0(tN + tN+1) < 1 +K0d,

where α is defined by (2.1). Then, the scalar sequence {tn} (n > −1) given by (2.7)

is non-decreasing, bounded from above by

(2.31) t⋆⋆N =
(

1 +
1−K0tN

(1− α)(1 −K0tN+1)

)

tN+1

and converges to its unique least upper bound t⋆N , which satisfies t
⋆
N ∈ [0, t⋆⋆N ].

Moreover, the following estimates hold

(2.32) 0 < tN+n − tN+n−1 6 (tN+1 − tN )αn−1 for each n = 1, 2, . . .

P r o o f. Simply replace d, η, d + η, d+ 2η, α0, t
⋆, t⋆⋆ by tN , tN+1 − tN , tN+1,

2tN+1 − tN , αN , t
⋆
N , t

⋆⋆
N , respectively, in the proof of Lemma 2.1. The proof of

Lemma 2.3 is complete. �

Lemma 2.4. Under hypotheses (2.26), (2.27), (2.29), and (2.30) suppose further

that the following conditions hold:

(2.33) (2K0 +K)(tN+2 − tN+1) +K0(2tN+1 − tN ) < 1
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and

f1(α) = K0(tN+2 − tN+1)α
2 + ((2K0 +K)(tN+2 − tN+1)(2.34)

+K0(2tN+1 − tN)− 1)α+K(tN+2 − tN+1) 6 0.

Then, the conclusions of Lemma 2.3 hold.

P r o o f. Simply replace t0, t1, t2, d + η, d + 2η by tN , tN+1, tN+2, tN+1,

2tN+1 − tN , respectively, in the proof of Lemma 2.2. The proof of Lemma 2.4 is

complete. �

R em a r k 2.5. Hypotheses (2.3)–(2.6), (2.23), and (2.24) are used to determine

the size of η and d. These are essentially linear or quadratic inequalities that can be

solved for η. However, we decided to leave them uncluttered. Moreover, note that

the verification of these inequalities requires only computations at the initial data d,

η, K0 and K.

Set

(2.35) L =
K

1 +K0d
, L1 =

K0

1 +K0d
and L0 = 2L1.

If the sequence {tn} is non-decreasing, then we have for each n = 1, 2, . . .

tn+2 = tn+1 +
L(tn+1 − tn−1)(tn+1 − tn)

1− L1(tn+1 + tn)
(2.36)

6 tn+1 +
L(tn+1 − tn−1)(tn+1 − tn)

1− L0tn+1

.

Then, we have the following result for computing upper bounds on t⋆.

Lemma 2.6 ([9]). Let a, b, c be real constants, K0 > 0, L0 as given in (2.35) and

λ ∈ [0, 1/L0]. Define quadratic polynomials p, q on (−∞,+∞) and functions f , g

on [0, 1/L0) by

p(t) = at2 + bt+ c,(2.37)

f(t) =
p(t)

1− L0t
,

g(t) = t+ f(t),(2.38)

and

(2.39) q(t) = (1− L0t)
2g′(t) = L0(L0 − a)t2 − 2(L0 − a)t+ 1 + b+ L0c.
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Suppose that the polynomial p has a unique root ̺ in the interval [λ, 1/L0],

p(λ) > 0,(2.40)

p(1/L0) 6 0,(2.41)

and

(2.42) q(t) > 0 for each t ∈ [λ, ̺].

Then, function g is non-decreasing and bounded from above by ̺ for each t ∈ [λ, ̺].

The root ̺ is given by

(2.43) ̺ =
−b± (b2 − 4ac)1/2

2a
.

P r o o f. The expression under the radical in (2.43) is non-negative, since p has

a unique root ̺ in [λ, 1/L0]. Polynomial p is obviously non-negative on the interval

[λ, ̺), since ̺ is the only root of p in [λ, ̺]. Moreover, the function f is non-negative

on [λ, ̺] with the only exception of ̺ = 1/L0; but the l’Hospital’s theorem implies

that f admits a continuous extension on the interval [λ, ̺]. We must prove that

function g is non-decreasing on the interval [λ, ̺]. In fact, its derivative is given by

(2.44) g′(t) = 1 + f ′(t) =
q(t)

(1 − L0t)2
.

It follows from (2.42) and (2.44) that g′(t) > 0 for each t ∈ [λ, ̺]. Therefore, we have

for each t ∈ [λ, ̺] that

(2.45) g(t) = t+ f(t) 6 ̺+ f(̺) = ̺.

That completes the proof of Lemma 2.6. �

Lemma 2.7. Let K > 0, K0 > 0 be constants and L, L0 as given in (2.35).

Suppose that hypotheses of Lemma 2.6 hold. Define functions ϕ and ψ on I =

[λ, s]× [r, t]× [t, ̺] for each t ∈ [λ, ̺] by

(2.46) ϕ(r, s, t) = t+
L(t− r)(t − s)

1− L0t

and

(2.47) ψ(r, s, t) =

{

(L− a)t2 − (L(r + s) + b)t+ Lrs− c if t 6= ̺,

0 if t = ̺.
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Moreover, suppose that

(2.48) ψ(r, s, t) 6 0 for each (r, s, t) ∈ I.

Then, the following assertion holds

(2.49) ϕ(r, s, t) 6 g(t) for each t ∈ [λ, ̺].

P r o o f. The inequality (2.49) follows immediately from the definition of func-

tions g, ϕ, ψ and hypothesis (2.48). The proof of Lemma 2.7 is complete. �

Lemma 2.8. Let N = 0, 1, 2, . . . be fixed. Under the hypotheses of Lemma 2.6

with λ = tN , suppose further that

(2.50) t1 6 t2 6 . . . 6 tN 6 tN+1 6 ̺

and

(2.51) p(tN+1) > 0.

Then, the sequence {tn} generated by (2.7) is non-decreasing, bounded by ̺ and

converges to its unique least upper bound t⋆, which satisfies t⋆ ∈ [tN , ̺].

P r o o f. We can write

(2.52) tn+1 = ϕ(tn−1, tn, tn+1).

Using (2.45), (2.49), and (2.52), we get that

(2.53) tN+2 = ϕ(tN−1, tN , tN+1) 6 g(tN+1) 6 ̺.

Moreover, we get by (2.50) and (2.51) that tN+1 6 tN+2. The proof of Lemma 2.8

is complete. �

R em a r k 2.9.

(a) Interval I can also be replaced by the more practical J = [λN , ̺]
3.

(b) Let us define function ψN on [λ, ̺] by

ψN (t) = (L− a)t2 − (b + 2LtN)t+ L̺2 − c.

Then, since −(b+L(r+ s)) 6 −(b+2LtN) for each r, s > tN and for r 6 s 6 ̺,

function ψN can replace ψ in hypothesis (2.48).
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(c) Hypotheses of Lemma 2.6 are satisfied in many interesting cases. Let

(2.54) a =
K

1 +K0d
, b = − 1 +Kd

1 +K0d
, c =

d+ η

1 +K0d
, and λ = t1.

Then, by (2.7) and (2.54) the sequence {tn} can be written as

s−1 = 0, s0 = d, s1 = c+ η, s2 = d+ η +
K0(d+ η)η

1−K0(d+ η)
,(2.55)

sn+2 = sn+1 +
K(sn+1 − sn−1)(sn+1 − sn)

1−K0(sn + sn+1 − d)

= sn+1 +
Ks2n+1 − (1 +Kd)sn+1 + d+ η

1−K0(sn + sn+1 − d)
for each n = 1, 2, . . .

Moreover, if K0 = K, the sequence {sn} reduces to {un} given by

u−1 = 0, u0 = d, u1 = d+ η,(2.56)

un+2 = un+1 +
K(un+1 − un−1)(un+1 − un)

1−K(un + un+1 − d)

= un+1 +
Ku2n+1 − (1 +Kd)un+1 + d+ η

1−K(un + un+1 − d)
for each n = 0, 1, . . .

The sequence {un} has been used by many authors, e.g. [2], [14], [16], [22].
Hypotheses of Lemma 2.6 are then satisfied if (2.54) holds. Clearly, sequences

{tn} and {sn} are tighter than {un} if K0 < K. In fact a simple inductive

argument shows that for each n = 2, 3, . . .

tn < un, sn < un, tn+1 − tn < un+1 − un,

sn+1 − sn < un+1 − un and t⋆ 6 u⋆ = lim
n→∞

un.

(d) Polynomial p can even be a function, preferably in closed form, with a unique

zero on [0, 1/L0] in Lemmas 2.6–2.8.

We shall study the secant method for triplets (F, x−1, x0) belonging to the class

C(K,K0, η, d) defined as follows:

Definition 2.10. Let K, K0, η, d be non-negative constants satisfying the hy-

potheses of Lemma 2.1. A triplet (F, x−1, x0) belongs to the class C(K,K0, η, d)

if

(A1) F is a nonlinear operator defined on D with values in Y;
(A2) x−1 and x0 are two points belonging to the interior D0 of D and satisfying

‖x0 − x−1‖ 6 d;
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(A3) F is Fréchet-differentiable on D0, there exists an operator δF : D0 × D0 →
L(X ,Y) such that A−1 = δF (x−1, x0)

−1 ∈ L(Y,X ) and for all x, y, z ∈ D, the
following conditions hold:

‖A−1F (x0)‖ 6 η,

‖A−1(δF (x, y)− F ′(z))‖ 6 K(‖x− z‖+ ‖y − z‖),

and

‖A−1(δF (x, y)− F ′(x0))‖ 6 K0(‖x− x0‖+ ‖y − x0‖);

(A4)

U(x0, t
⋆) ⊆ Dc = {x ∈ D : F is continuous at x} ⊆ D,

where t⋆ is given in Lemma 2.1.

The semilocal convergence theorem for the secant method is as follows.

Theorem 2.11. If (F, x−1, x0) ∈ C(K,K0, η, d), then the sequence {xn} (n >

−1) generated by the secant method is well defined, remains in U(x0, t
⋆) for each

n = −1, 0, . . . and converges to a unique solution x⋆ ∈ U(x0, t
⋆) of (1.1). Moreover,

the following estimates hold for each n = 0, 1, . . .

(2.57) ‖xn − xn−1‖ 6 tn − tn−1

and

(2.58) ‖xn − x⋆‖ 6 t⋆ − tn,

where {tn} (n > −1) is given by (2.7). Furthermore, if there exists R such that

(2.59) U(x0, R) ⊆ D, R > t⋆ − d, and K0(t
⋆ − d+ ‖A−1(F ′(x0)−A)‖) < 1,

then the solution x⋆ is unique in U(x0, R).

P r o o f. First, we show that R = δF (xk, xk+1) is invertible for xk, xk+1 ∈
U(x0, t

⋆). By (A2) and (A3), we have that

‖I −A−1R‖ = ‖A−1(R−A)‖(2.60)

6 ‖A−1(R− F ′(x0))‖ + ‖A−1(F ′(x0)−A)‖
6 K0(‖xk − x0‖+ ‖xk+1 − x0‖+ ‖x0 − x−1‖)
6 K0(tk − t0 + tk+1 − t0 + d) < 1 (by (2.11)).
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Using the Banach lemma on invertible operators [2], [5], [14] and (2.60), R is invert-
ible and

(2.61) ‖R−1A‖ 6 (1−K0(tk+1 + tk − t0))
−1.

By (A3), we get that

(2.62) ‖A−1(F ′(u)− F ′(v))‖ 6 2K‖u− v‖, u, v ∈ D0.

We can write the identity F (x)− F (y) =
∫ 1

0
F ′(y + t(x− y)) dt(x− y), then, for all

x, y, u, v ∈ D0, we obtain that

(2.63) ‖A−1(F (x) − F (y)− F ′(u)(x− y))‖ 6 K(‖x− u‖+ ‖y − u‖)‖x− y‖

and

‖A−1(F (x) − F (y)− δF (u, v)(x− y))‖(2.64)

6 K(‖x− v‖ + ‖y − v‖+ ‖u− v‖)‖x− y‖.

By a continuity argument, (2.62)–(2.64) remain valid if x and/or y belong to Dc.

Now we show (2.57). If (2.57) holds for all n 6 k and if {xn} (n > 0) is well defined

for each n = 0, 1, 2, . . . , k, then

(2.65) ‖xn − x0‖ 6 tn − t0 < t⋆ − t0 for each n 6 k.

That is, (1.2) is well defined for n = k+ 1. For n = −1 and n = 0, (2.57) reduces to

‖x−1 − x0‖ 6 d and ‖x0 − x1‖ 6 η. Suppose (2.57) holds for each n = −1, 0, 1, . . . , k

(k > 0). By (2.61), (2.64), and

(2.66) F (xk+1) = F (xk+1)− F (xk)− δF (xk−1, xk)(xk+1 − xk),

we obtain the following estimates

‖A−1F (xk+1)‖ 6 K(‖xk+1 − xk‖+ ‖xk − xk−1‖)‖xk+1 − xk‖
6 K(tk+1 − tk + tk − tk−1)(tk+1 − tk)

and

‖xk+2 − xk+1‖ = ‖δF (xk, xk+1)
−1F (xk+1)‖(2.67)

6 ‖δF (xk, xk+1)
−1A‖ ‖A−1F (xk+1)‖

6
K(‖xk+1 − xk‖+ ‖xk − xk−1‖)

1−K0(‖xk+1 − x0‖+ ‖xk − x0‖+ d)
‖xk+1 − xk‖

6
K(tk+1 − tk−1)

1−K0(tk+1 − t0 + tk − t−1)
(tk+1 − tk)

= tk+2 − tk+1,
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where

K =

{

K0 if k = 0,

K if k 6= 0.

That is, the induction for (2.57) is completed. It follows from (2.57) and Lemma 2.1

that {xn} (n > −1) is Cauchy in a Banach space X and therefore it converges
to some x⋆ ∈ U(x0, t

⋆) (since U(x0, t
⋆) is a closed set). By letting k → ∞ in

(2.67), we obtain F (x⋆) = 0. Estimate (2.58) follows from (2.57) by using standard

majoration techniques [2], [5], [6], [14]. Finally, to show the uniqueness in U(x0, t
⋆),

let y⋆ ∈ U(x0, t
⋆) be a solution of (1.1). SetM =

∫ 1

0
F ′(y⋆ + t(y⋆ − x⋆)) dt. It then

follows by (A3) and (2.59) that

‖A−1(A−M)‖ = K0(‖y⋆ − x0‖+ ‖x⋆ − x0‖) + ‖A−1(F ′(x0)−A)‖(2.68)

6 K0((t
⋆ − t0) +R) + ‖A−1(F ′(x0)−A)‖ < 1.

It follows from (2.68) and the Banach lemma on invertible operators that M−1

exists on U(x0, t
⋆). Using the identity F (x⋆)−F (y⋆) = M(x⋆ − y⋆), we deduce that

x⋆ = y⋆. The proof of Theorem 2.11 is complete. �

3. Numerical examples

In this section, we present some numerical examples.

E x am p l e 3.1. (a) Let K = 0.97689, K0 = 0.845658, η = 0.17895 and d =

0.1677019. Then, (1.3) is not satisfied, since

Kd+ 2
√

Kη = 1.000042706> 1.

Using hypotheses of Lemma 2.1, we have that

α = 0.6425703944 and α0 = 0.5018963491.

Hypotheses (2.3)–(2.6) hold since

K0(d+ 2η) = 0.4444794516< 1,

K0

(

(d+ η)
1−K0d

1 −K0(d+ η)
+ η

)

= 0.5072400253< 1,

0.50189634916 0.6425703944,

and

(1− α)(1 −K0(d+ η))(K0(d+ 2η)− 1) + 2K2
0 (d+ η)η = −0.5162722924e− 1 6 0.
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Consequently, Lemma 2.1 is applicable but the condition (1.3) used in [11], [13], [15],

[16], [17], [18], [22], [24], [23] is not satisfied.

(b) Let K = 0.97689, K0 = 0.845658, η = 0.17895 and d = 0.12956. Then, (1.3)

is satisfied, since

Kd+ 2
√

Kη = 0.9627822650< 1.

Using hypotheses of Lemma 2.1, we have that

α = 0.6425703944 and α0 = 0.4426273722.

Hypotheses (2.3)–(2.6) hold since

K0(d+ 2η) = 0.4122244487< 1,

K0

(

(d+ η)
1−K0d

1 −K0(d+ η)
+ η

)

= 0.4656419678< 1,

0.44262737226 0.6425703944,

and

(1− α)(1 −K0(d+ η))(K0(d+ 2η)− 1) + 2K2
0 (d+ η)η = −0.7631517220e− 1 6 0.

Consequently, Lemma 2.1 is applicable. We can now compare our results of

Lemma 2.1 (see also the sequence {tn} given by (2.7)) to the ones in [11], [13],
[15], [16], [17], [18], [22], [24], [23] (see also the sequence {un} given by (2.56))
Comparison Table 1 shows that our error bounds using sequence {tn} are tighter
than those given in [11], [13], [15], [16], [17], [18], [22], [24], [23].

n tn un tn+1 − tn un+1 − un
1 .30851 .0631668111 .30851 .1698509943

2 .3716768111 .0272575738 .4783609943 .0889850115

3 .3989343849 .0039292768 .5673460058 .0250726474

4 .4028636617 .0001884943 .5924186532 .0027762907

5 .4030521560 .0000011884 .5951949439 .0000731295

6 .4030533444 3e -10 .5952680734 1.966e-7

7 .4030533447 0 .5952682700 0

8 ∼ ∼ ∼
Comparison Table 1

Finally, we present examples where K0 < K. The divided difference is defined by

δF (x, y) =

∫ 1

0

F ′(y + t(x − y)) dt for each x, y ∈ D.
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E x am p l e 3.2. Define the scalar function F by F (x) = c0x + c1 + c2 sin e
c3x,

x0 = 0, where ci, i = 0, 1, 2, 3 are given parameters. Then, it can easily be seen that

for c3 large and c2 sufficiently small, K/K0 can be arbitrarily large.

E x am p l e 3.3 (Newton’s method case). Let X = Y = C[0, 1], equipped with
the max-norm. Let θ ∈ [0, 1] be a given parameter. Consider the “cubic” integral

equation

(3.1) u(s) = u3(s) + λu(s)

∫ 1

0

K(s, t)u(t) dt+ y(s)− θ.

Nonlinear integral equations of the form (3.1) are considered Chandrasekhar-type

equations [2], [5], [6] and they arise in the theories of radiative transfer, neutron

transport and in the kinetic theory of gasses. Here, the kernel K(s, t) is a continuous

function of two variables (s, t) ∈ [0, 1]× [0, 1] satisfying

(i) 0 < K(s, t) < 1,

(ii) K(s, t) +K(t, s) = 1.

The parameter λ is a real number called the “albedo” for scattering; y(s) is a given

continuous function defined on [0, 1] and x(s) is the unknown function sought in

C[0, 1]. For simplicity, we choose

u0(s) = y(s) = 1 and K(s, t) =
s

s+ t
for all (s, t) ∈ [0, 1]× [0, 1] (s+ t 6= 0).

Let D = U(u0, 1− θ) and define the operator F on D by

(3.2) F (x)(s) = x3(s)− x(s) + λx(s)

∫ 1

0

K(s, t)x(t) dt+ y(s)− θ for all s ∈ [0, 1].

Then every zero of F satisfies equation (3.1). We obtain using, (3.2) and [2], [5], [6],

that

[F ′(x)v](s) = λx(s)

∫ 1

0

K(s, t)v(t) dt+ λv(s)

∫ 1

0

K(s, t)x(t) dt

+ 3x2(s)v(s) − I(v(s)).

Therefore, the operator F ′ satisfies the conditions of Theorem 2.11, with

η =
|λ| ln 2 + 1− θ

2(1 + |λ| ln 2) , K =
|λ| ln 2 + 3(2− θ)

1 + |λ| ln 2 , and K0 =
2|λ| ln 2 + 3(3− θ)

2(1 + |λ| ln 2) .

It follows from our main results that if our conditions holds, then problem (3.1) has a

unique solution near u0. This assumption is weaker than the one given before using
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the Newton-Kantorovich hypothesis. Note also that K0 < K for all θ ∈ [0, 1] (see

also Fig. 1).

0
0.5

1

00.51

2

4

6

λθ

Figure 1. Functions K0 and K in 3d with respect to (λ, θ) in (0, 1)× (0, 1), K is above K0.

E x am p l e 3.4 (Secant method case). Let X and Y be defined as in Example 3.3.
Consider the following nonlinear boundary value problem [2], [5], [6]:

{

u′′ = −u3 − γu2,

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

(3.3) u(s) = s+

∫ 1

0

Q(s, t)(u3(t) + γu2(t)) dt,

where Q is the Green function given by

Q(s, t) =

{

t(1− s) if t 6 s,

s(1− t) if s < t.

Then problem (3.3) is in the form (1.1), where F : D −→ Y is defined as

[F (x)](s) = x(s)− s−
∫ 1

0

Q(s, t)(x3(t) + γx2(t)) dt.
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Set u0(s) = s and D = U(u0, R0). The Fréchet derivative of F is given by (see [2],

[5], [6])

[F ′(x)v](s) = v(s) −
∫ 1

0

Q(s, t)(3x2(t) + 2γx(t))v(t) dt.

It is easy to verify that U(u0, R0) ⊂ U(0, R0 + 1) since ‖u0‖ = 1. If 2γ < 5, the

conditions of Theorem 2.11 hold with

η =
1 + γ

5− 2γ
, K =

γ + 6R0 + 3

8(5− 2γ)
, and K0 =

2γ + 3R0 + 6

16(5− 2γ)
.

Note that K0 < K (see also Fig. 2).

0

1

2 0

5

10

4

8

R0
γ

Figure 2. Functions K0/2 and K/2 in 3d with respect to (γ,R0) in (0, 2.5) × (0, 10), K/2
is also above K0/2.

Conclusion

New sufficient convergence conditions for the secant method are provided. Using

Lipschitz and center-Lipschitz conditions on the divided difference operator, we ob-

tained the semilocal convergence analysis of the secant method. Our error bounds

are more precise than in earlier studies such as [7], [8], [11], [13], [15], [16], [17], [18],

[22], [24], [23]. Applications and numerical examples are also provided in this study.
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