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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 2 , PAGES 2 4 6 – 2 6 7

A COMPARISON OF EVIDENTIAL NETWORKS
AND COMPOSITIONAL MODELS

Jiřina Vejnarová

Several counterparts of Bayesian networks based on different paradigms have been proposed
in evidence theory. Nevertheless, none of them is completely satisfactory. In this paper we will
present a new one, based on a recently introduced concept of conditional independence. We
define a conditioning rule for variables, and the relationship between conditional independence
and irrelevance is studied with the aim of constructing a Bayesian-network-like model. Then,
through a simple example, we will show a problem appearing in this model caused by the use
of a conditioning rule. We will also show that this problem can be avoided if undirected or
compositional models are used instead.
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1. INTRODUCTION

When applying models of artificial intelligence to any practical problem one must cope
with two basic problems: uncertainty and multidimensionality. The most widely used
models managing these issues are, at present, so-called probabilistic graphical Markov
models.

The problem of multidimensionality is solved in these models with the help of the
notion of conditional independence, which enables factorisation of a multidimensional
probability distribution into small parts, usually marginal or conditional low-dimensional
distributions (e. g. in Bayesian networks), or generally into low-dimensional factors
(e. g. in decomposable models). Such a factorisation not only decreases the storage
requirements for representation of a multidimensional distribution but it usually also
induces efficient computational procedures allowing inference from these models.

Probably the most popular representatives of these models are Bayesian networks,
while from the computational point of view so-called decomposable models are the most
advantageous. Naturally, several attempts to construct an analogy of Bayesian networks
have also been made in other frameworks as in, for example, possibility theory [5],
evidence theory [4] or in the more general frameworks of valuation-based systems [15]
and credal sets [7], while counterparts of decomposable models are, more or less, omitted.
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In this paper, summarizing results published in several conference proceedings [21, 22,
23] we confine ourselves to evidence theory. Previously proposed counterpart of Bayesian
networks, so-called directed evidential networks [4], does not seem to us satisfactory
because of the conditional independence concept (or its misinterpretation), as we will
demonstrate on a simple example. We will present a new concept of evidential networks
based on the independence concept introduced in [18] (see also [11]). For this purpose
a new conditioning rule for variables is proposed to enable a reasonable relationship
between conditional independence and irrelevance based on this rule. Nevertheless,
problems exist also in this type of models, caused by the use of a conditioning rule.
Again, this problem will be demonstrated through a simple example, which also indicates
that this problem can be avoided if undirected or compositional models are used instead.

The paper is organised as follows. After a brief overview of basic concepts neces-
sary for understanding the paper in Section 2, Section 3 is devoted to conditioning
in evidence theory, especially from the viewpoint of evidential networks (including the
definition of a new conditioning rule for variables and proof of its correctness). In Sec-
tion 4 conditional independence and irrelevance are recalled and their relationship as
it applies to the above-mentioned conditioning rule is studied. Finally, in Section 5,
after demonstrating the problems connected with directed evidential networks, we will
recall compositional models and we will compare evidential networks with compositional
models (and decomposable models).

2. BASIC CONCEPTS

In this section we will recall, as briefly as possible, basic concepts from evidence theory
[14] concerning sets and set functions.

2.1. Set projections and extensions

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be a system of variables, each Xi having
its values in a finite set Xi. In this paper we will deal with a multidimensional frame of
discernment1

XN = X1 ×X2 × . . .×Xn,

and its subframes (for K ⊆ N)

XK =×i∈KXi.

When dealing with groups of variables on these subframes, XK will denote a group
of variables {Xi}i∈K throughout the paper.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK will be denoted x↓K , i. e. , for
K = {i1, i2, . . . , ik}

x↓K = (xi1 , xi2 , . . . , xik
) ∈ XK .

Analogously, for M ⊂ K ⊆ N and A ⊂ XK , A↓M will denote a projection of A into
XM . In this case

A↓M = {y ∈ XM | ∃x ∈ A : y = x↓M}.
1Let us note that already Kong [13] dealt with multidimensional belief functions.
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In addition to the projection, in this text we will also need an inverse operation that
is usually called a cylindrical extension. The cylindrical extension of A ⊂ XK to XL

(K ⊂ L) is the set
A↑L = {x ∈ XL : x↓K ∈ A}.

Clearly
A↑L = A×XL\K .

A more complex case is to make a common extension of two sets, which will be called
a join [1]. By a join of two sets A ⊆ XK and B ⊆ XL (K, L ⊆ N), we will understand
a set

A ./ B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that, for any C ⊆ XK∪L, naturally C ⊆ C↓K ./ C↓L, but generally
C 6= C↓K ./ C↓L.

Let us also note that if K and L are disjoint, then the join of A and B is just their
Cartesian product, A ./ B = A× B, and if K = L then A ./ B = A ∩ B. If K ∩ L 6= ∅
and A↓K∩L ∩B↓K∩L = ∅ then A ./ B = ∅ as well. Generally,

A ./ B = (A×XL\K) ∩ (B ×XK\L),

i. e. , a join of two sets is the intersection of their cylindrical extensions.

2.2. Set functions

In evidence theory [14], two dual measures are used to model the uncertainty: belief and
plausibility measures. Each of them can be defined with the help of another set function
called a basic (probability or belief) assignment m on XN , i. e. ,

m : P(XN ) −→ [0, 1],

where P(XN ) is the power set of XN , and∑
A⊆XN

m(A) = 1.

Furthermore, we assume that m(∅) = 0.2

A set A ∈ P(XN ) is a focal element if m(A) > 0. Let F denote the set of all focal
elements: a focal element A ∈ F is called an m−atom if for any B ⊆ A either B = A or
B ∈/ F . In other words, m−atom is a setwise-minimal focal element.

Belief and plausibility measures are defined for any A ⊆ XN by the equalities

Bel(A) =
∑
B⊆A

m(B), P l(A) =
∑

B∩A 6=∅

m(B), (1)

respectively. It is well-known (and evident from these formulae) that for any A ∈ P(XN )

Bel(A) ≤ Pl(A), P l(A) = 1−Bel(AC), (2)
2This assumption is not generally accepted, e. g. , in [2] it is omitted. The consequences of this

omission will be mentioned several times throughout this paper.
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where AC is the set complement of A ∈ P(XN ). Furthermore, basic assignment can be
computed from the belief function via Möbius inverse:

m(A) =
∑
B⊆A

(−1)|A\B|Bel(B), (3)

i. e. , any of these three functions is sufficient to determine values of the remaining two.
For a basic assignment m on XK and M ⊂ K, a marginal basic assignment of m on

XM is defined (for each A ⊆ XM ) by the equality

m↓M (A) =
∑

B⊆XK

B↓M=A

m(B). (4)

Having two basic assignments m1 and m2 on XK and XL, respectively (K, L ⊆ N),
we say that these assignments are projective if

m↓K∩L
1 = m↓K∩L

2 ,

which occurs if and only if there exists a basic assignment m on XK∪L such that both
m1 and m2 are marginal assignments of m.

Dempster’s rule of combination [14] has, from the time it first appeared, been fre-
quently criticised by many authors. Therefore, many alternatives to it were suggested
by various authors. From the viewpoint of this paper, the most important is the con-
junctive combination rule [3], which is, in fact, an unnormalised Dempster’s rule defined
for m1 and m2 on the same space XK by the formula

(m1 ∩©m2)(C) =
∑

A,B⊆XKA∩B=C

m1(A)m2(B).

The result of this rule is one of the examples of unnormalised basic assignment.
It can easily be generalised [3] to the case when m1 is defined on XK and m2 is

defined on XL (K 6= L) in the following way (for any C ∈ XK∪L):

(m1 ∩©m2)(C) =
∑

A⊆XK ,B⊆XL

A↑L∪K∩B↑L∪K=C

m1(A)m2(B). (5)

3. CONDITIONING

Conditioning is one of the most important topics of any theory dealing with uncertainty.
When studying Bayesian-network-like multidimensional models one can hardly avoid it.

3.1. Conditioning of events

In evidence theory the “classical” conditioning rule is the so-called Dempster’s rule of
conditioning [14] defined for any ∅ 6= A ⊆ XN and B ⊆ XN such that Pl(B) > 0 by the
formula

m(A|DB) =

∑
C⊆XN :C∩B=A

m(C)

Pl(B)
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and m(∅|DB) = 0. This conditioning rule can be viewed as a special case of Dempster’s
rule of combination.

From this formula one can immediately obtain:

Bel(A|DB) =
Bel(A ∪BC)−Bel(BC)

1−Bel(BC)
,

P l(A|DB) =
Pl(A ∩B)

Pl(B)
. (6)

This is not the only possible way to perform conditioning. Another – in a way
symmetric – conditioning rule is the following one, called focusing [10], defined for any
∅ 6= A ⊆ XN and B ⊆ XN such that Bel(B) > 0 by the formula

m(A|F B) =


m(A)

Bel(B)
if A ⊆ B,

0 otherwise.

From the following two equalities one can see in which sense these two conditioning
rules are symmetric:

Bel(A|F B) =
Bel(A ∩B)

Bel(B)
, (7)

Pl(A|F B) =
Pl(A ∪BC)− Pl(BC)

1− Pl(BC)
.

These are, of course, only examples of conditioning rules, there exist a great number
of them, see e. g. [8].

3.2. Conditional variables

In [20] we presented the following two definitions of conditioning by variables, based
on the Dempster conditioning rule and focusing, we proved that these definitions are
correct, i. e. , these rules define (generally different) basic assignments (for more details
see [20]). As we recently realized, Xu and Smets [24] dealt with similar problem, however
they avoided normalization.

Nevertheless, the usefulness of the above-mentioned conditioning rules for multidi-
mensional models is rather questionable, as we shall see in Section 4.3. This fact led us
to the following proposal of a new conditioning rule.

Definition 3.1. Let XK and XL (K ∩ L = ∅) be two groups of variables with values
in XK and XL, respectively. Then the conditional basic assignment of XK given XL ∈
B ⊆ XL (for B such that m↓L(B) > 0) is defined as follows:

mXK |XL
(A|B) =

∑
C⊆XK∪L:

C↓K=A&C↓L=B

m(C)

m↓L(B)
(8)

for any A ⊆ XK .
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Although this conditioning rule does not have its event preimage, it is sensible in
conditioning of variables (in other words, it is correctly defined) as expressed by Theo-
rem 3.2.

Theorem 3.2. The set function mXK |XL
defined for any fixed B ⊆ XL such that

m↓L(B) > 0 by Definition 3.1 is a basic assignment on XK .

P r o o f . Let B ⊆ XL be such that m↓L(B) > 0. As nonnegativity of
mXK |XL

(A|B) for any A ⊆ XK and the fact that mXK |XL
(∅|pB) = 0 follow directly

from the definition, to prove that mXK |XL
is a basic assignment it is enough to show

that ∑
A⊆XK

mXK |XL
(A|B) = 1.

To check it, let us sum up the values in the numerator in (8)∑
A⊆XK

∑
C⊆XK∪L:

C↓K=A&C↓L=B

m(C) =
∑

C⊆XK∪L

C↓L=B

m(C)

= m↓L(B),

where the last equality follows directly from (4). �

The difference among Dempster conditioning rule, focusing and conditioning rule
introduced in Definition 3.1 is illustrated by the following simple example.

Example 3.3. Let X1, X2 and X3 be three binary variables with values in Xi =
{ai, āi}, i = 1, 2, 3, and m be a basic assignment on X1 ×X2 ×X3 defined as follows

m(X1 ×X2 × {ā3}) = .5, (9)
m({(a1, a2, ā3), (ā1, ā2, a3)}) = .5. (10)

Let us compute conditional basic assignments of X1 and X2 given X3 for the above
mentioned conditioning rules. Marginal basic assignment of X3 is

m({ā3}) = .5, m(X3) = .5.

From these values one gets

Bel({ā3}) = .5, Bel(X3) = 1

and

Pl({a3}) = .5, P l({ā3}) = 1, P l(X3) = 1.

Therefore, one can perform conditioning by {ā3} and X3 for any conditioning rule (and
also by {a3} by Dempster’s rule). Doing that one obtains:

m(X1 ×X2|{ā3}) = 1,

m({(a1, a2), (ā1, ā2)}|X3) = 1,
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while
m(X1 ×X2|F {ā3}) = 1,

m({(a1, a2), (ā1, ā2)}|F X3) = .5,

m(X1 ×X2|F X3) = .5,

and

m(X1 ×X2|D{ā3}) = 1,

m({(a1, a2), (ā1, ā2)}|D{ā3}) = 1,

m({(a1, a2), (ā1, ā2)}|DX3) = .5,

m(X1 ×X2|DX3) = .5,

from which the difference can be seen. ♦

The main disadvantage of the new conditioning rule is, that conditional by the whole
subframework need not be identical with the marginals (as e. g. , in the above example).
In this respect it differs from both Dempster conditioning rule and focusing. It is caused
by the fact, that conditioning via (8) means that the value of XL belongs exactly to B
(and not to any other set), while in focusing it may belong to any subset of B and using
Dempster rule even to any subset intersecting it.

4. CONDITIONAL INDEPENDENCE AND IRRELEVANCE

Independence and irrelevance need not be (and usually are not) distinguished in the
probabilistic framework, as they are almost equivalent to each other. Similarly, in possi-
bilistic framework adopting De Cooman’s measure-theoretical approach [9] (particularly
his notion of almost everywhere equality), we proved that the analogous concepts are
equivalent (for more details see [17]).

4.1. Independence

In evidence theory the most common notion of independence is that of a random set
independence [6]. It has already been proven [18] that it is also the only sensible one, as,
e. g. , application of strong independence to two bodies of evidence may generally lead
to a model which is beyond the framework of evidence theory.

Definition 4.1. Let m be a basic assignment on XN and K, L ⊂ N be disjoint. We say
that groups of variables XK and XL are independent3 with respect to a basic assignment
m (in notation K ⊥⊥ L [m]) if

m↓K∪L(C) = m↓K(C↓K) ·m↓L(C↓L)

for all C ⊆ XK∪L for which C = C↓K × C↓L, and m(C) = 0 otherwise.

3This independence concept is a generalization of the concept of evidential independence on different
frameworks, i. e. joint basic assignment can be obtained from the marginals using Dempster rule.
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This notion can be generalised in various ways [3, 15, 18]; the concept of conditional
non-interactivity from [3], based on conjunctive combination rule (5), is used for con-
struction of directed evidential networks in [4] (cf. also Section 5.1). In this paper we
will use the concept of conditional independence introduced in [11, 18], utilizing the
concept of a join as a generalization of Cartesian product (cf. also end of Section 2.1).

Definition 4.2. Let m be a basic assignment on XN and K, L, M ⊂ N be disjoint,
K 6= ∅ 6= L. We say that groups of variables XK and XL are conditionally independent
given XM with respect to m (and denote it by K ⊥⊥ L|M [m]), if the equality

m↓K∪L∪M (C) ·m↓M (C↓M ) = m↓K∪M (C↓K∪M ) ·m↓L∪M (C↓L∪M ) (11)

holds for any C ⊆ XK∪L∪M such that C = C↓K∪M ./ C↓L∪M , and m(C) = 0 otherwise.

It has been proven in [18] that this conditional independence concept satisfies the
so-called semi-graphoid properties taken as reasonable to be valid for any conditional
independence concept and it has been shown in which sense this conditional indepen-
dence concept is superior to previously introduced ones [3, 15]. Contrary to these condi-
tional independence concepts, it is consistent with marginalisation [16]; in other words,
the multidimensional model of conditionally independent variables keeps the original
marginals (for more details see [18]).

4.2. Irrelevance

Irrelevance is usually considered to be a weaker notion than independence (see, e. g. ,
[6]). It expresses the fact that a new piece of evidence concerning one variable cannot
influence — in other words, is irrelevant to — the evidence concerning the other variable.

More formally: the group of variables XL is irrelevant to XK (K ∩ L = ∅) with
respect to m if for any B ⊆ XL such that the left-hand side of the equality is defined

mXK |XL
(A|B) = m(A) (12)

for any A ⊆ XK .4

It follows from the definition of irrelevance that it need not be a symmetric relation.
Let us note that in the framework of evidence theory, neither irrelevance based on the
Dempster conditioning rule nor that based on focusing, imply independence even in
cases when the relation is symmetric, as can be seen from examples in [20].

Generalisation of this concept to conditional irrelevance may be done as follows. A
group of variables XL is conditionally irrelevant to XK given XM (K, L, M disjoint,
K 6= ∅ 6= L) if

mXK |XLXM
(A|B) = mXK |XM

(A|B↓M ) (13)

is satisfied for any A ⊆ XK and B ⊆ XL∪M such that both sides are defined.
Let us note that the conditioning in equalities (12) and (13) stands for an abstract

conditioning rule (any of those mentioned in the previous section or elsewhere [8]).
4Let us note that a somewhat weaker definition of irrelevance can be found in [2], where equality is

substituted by proportionality. The reason for this weakening is the simple fact that the authors do not
require normality. This notion has later been generalised using the conjunctive combination rule [3].
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However, the validity of (12) and (13) may depend on the choice of the conditioning
rule, as we showed in [20] — more precisely, irrelevance with respect to one conditioning
rule need not imply irrelevance with respect to the other.

4.3. Relationship between independence and irrelevance

As mentioned at the end of the preceding section, different conditioning rules lead to
different irrelevance concepts. Nevertheless, when studying the relationship between
(conditional) independence and irrelevance based on the Dempster conditioning rule
and focusing, we realised that they do not differ too much from each other, as suggested
by the following summary of results presented in [20].

For both conditioning rules:
• Irrelevance is implied by independence.
• Irrelevance does not imply independence.
• Irrelevance is not symmetric, in general.
• Even in case of symmetry it does not imply independence.
• Conditional independence does not imply conditional irrelevance.

The only difference between these conditioning rules is expressed by the following
theorem, proven in [20].

Theorem 4.3. Let XK and XL be conditionally independent groups of variables given
XM under joint basic assignment m on XK∪L∪M (K, L, M disjoint, K 6= ∅ 6= L). Then

mXK |F XLXM
(A|F B) = mXK |F XM

(A|F B↓M ) (14)

for any m↓L∪M -atom B ⊆ XL∪M such that B↓M is m↓M -atom and A ⊆ XK .

From this point of view, focusing seems to be slightly superior to the Dempster
conditioning rule, but it is still not satisfactory. However, the new conditioning rule
introduced by Definition 3.1 is more promising, as we can see in the following theorem.

Theorem 4.4. Let K, L, M be disjoint subsets of N such that K, L 6= ∅. If XK and
XL are independent given XM (with respect to a joint basic assignment m defined on
XK∪L∪M ), then XL is irrelevant to XK given XM under the conditioning rule given by
Definition 3.1.

P r o o f . Let XK and XL be conditionally independent given XM ; then for any A ⊆
XK∪L∪M such that A = A↓K∪M ./ A↓L∪M

m(A) ·m↓M (A↓M ) = m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M )

and m(A) = 0 otherwise. From this equality we immediately obtain that for all A such
that m↓L∪M (A↓L∪M ) > 0 (it also implies that m↓M (A↓M ) > 0) equality

m(A)
m↓L∪M (A↓L∪M )

=
m↓K∪M (A↓K∪M )

m↓M (A↓M )
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is satisfied. Let us note that the left-hand side of this equality is equal to
mXK |XL∪M

(A↓K |A↓L∪M ), because of the fact that A is the only focal element whose pro-
jections on XK and XL∪M are equal A↓K and A↓L∪M , respectively. Under similar con-
siderations one arrives to the fact that the right-hand side equals mXK |XM

(A↓K |A↓M ),
which means that XL is irrelevant to XK given XM . �

The reverse implication is not valid in general, as suggested by the following exam-
ple, which expresses the expected property: conditional independence is stronger than
conditional irrelevance.

Example 4.5. Let X1 and X2 be two binary variables (with values in Xi = {ai, āi})
with joint basic assignment m defined as follows:

m({a1a2}) = .25,

m({a1} ×X2) = .25,

m(X1 × {a2}) = .25,

m(X1 ×X2 \ {ā1ā2}) = .25.

From these values one can obtain

m↓2({a2}) = m↓2(X2) = .5.

Evidently, it is not possible to condition by {ā2}; so we have to confine ourselves to
conditioning by {a2} and X2:

mX1|X2({a1}|{a2}) = mX1|X2({a1}|X2) = .5 = m↓1({a1}),
mX1|X2({ā1}|{a2}) = mX1|X2({ā1}|X2) = 0 = m↓1({ā1}),
mX1|X2(X1|{a2}) = mX1|X2(X1|X2) = .5 = m↓1(X1),

i. e. , X1 and X2 are irrelevant. But they are not independent, as the focal elements are
not rectangles, which contradicts Definition 4.1. ♦

However, in Bayesian networks the reverse implication also plays an important role:
as for the inference, the network is usually transformed into a decomposable model.
Nevertheless, the following assertion holds true.

Theorem 4.6. Let K, L, M be disjoint subsets of N such that K, L 6= ∅; mXK |XM

be a (given) conditional basic assignment of XK given XM ; and mXL∪M
be a basic

assignment of XL∪M . If XL is irrelevant to XK given XM under the conditioning rule
given by Definition 3.1, then XK and XL are independent given XM (with respect to a
joint basic assignment m = mXK |XM

·mXL∪M
5 defined on XK∪L∪M ).

5Let us note that due to Theorem 3.2 mXL∪M
is marginal to m and mXK |XM

can be re-obtained
from m via Definition 3.1.
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P r o o f . Irrelevance of XL to XK given XM means that for any A ⊆ XK and any
B ⊆ XL∪M such that m↓L∪M (B) > 0

mXK |XL∪M
(A|B) = mXK |XM

(A|B↓M ).

Multiplying both sides of this equality by m↓L∪M (B) ·m↓M (B↓M ) one obtains

mXK |XL∪M
(A|B) ·m↓L∪M (B) ·m↓M (B↓M )

= mXK |XM
(A|B↓M ) ·m↓L∪M (B) ·m↓M (B↓M ),

which is equivalent to

m(A×B) ·m↓M (B↓M ) = m↓K∪M (A×B↓M ) ·m↓L∪M (B).

Therefore, the equality (11) is satisfied for C ⊆ XK∪L∪M such that C = A× B, where
A ⊆ XK and B ⊆ XL∪M . Due to Theorem 3.2 it is evident that∑

A⊆XK ,B⊆XL∪M

m(A×B) = 1,

and therefore equality (11) is also trivially satisfied for any other C =
= C↓K∪M ./ C↓L∪M , and m(C) = 0 otherwise as well. Therefore, XK and XL are
independent given XM with respect to a joint basic assignment m=mXK |XM

·mXL∪M
.
�

This theorem makes it possible to define evidential networks in a way analogous to
Bayesian networks, but simultaneously a question arises: are these networks advan-
tageous in comparison with other multidimensional models in this framework? The
following section (more precisely, its last subsection) brings at least a partial answer to
this question.

5. EVIDENTIAL NETWORKS AND COMPOSITIONAL MODELS

In this section we will deal with directed evidential networks [4] and evidential networks
studied in Section 5.3. These two models differ not only in the conditioning rule, but
also, and it seems to be more important, by the interpretation of the graph structure of
the model, as we shall see later.

5.1. Directed evidential networks

In this subsection we will deal with directed evidential networks which differ, as al-
ready mentioned at the beginning of this section, by the conditioning rule and by the
interpretation of the graph structure of the model.

In directed evidential networks [4] conditional beliefs are assigned to arcs, i. e. , as
many conditionals are assigned to every node as is the number of its parents. These
conditionals are subsequently combined by the conjunctive combination rule (5).

In this section we will, using a simple example, demonstrate problems caused by this
approach.
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A ⊆ Ci mi(A) {h2} {t2} {h2, t2}
{hi} .49 {h1} .24 .24 .01
{ti} .49 {t1} .24 .24 .01

{hi, ti} .02 {h1, t1} .01 .01 ∼ 0

Tab. 1. Basic assignments mi and joint basic assignments

m12 = m1 · m2.

m {b} {b̄} {b, b̄}
{h2} {t2} {h2, t2} {h2} {t2} {h2, t2} {h2} {t2} {h2, t2}

{h1} .24 0 0 0 .24 0 0 0 .01
{t1} 0 .24 0 .24 0 0 0 0 .01

{h1, t1} 0 0 0 0 0 0 .01 .01 ∼ 0

Tab. 2. Joint basic assignment m of variables C1, C2 and B.

Example 5.1. Let us consider two fair coin tosses expressed by variables C1 and C2

with values in C1 and C2, respectively (Ci = {hi, ti}), and the basic assignments m1

and m2 (contained in the left part of Table 1) expressing the fact that the result of any
toss may from time to time be unknown. The results of tossing two coins are usually
considered to be independent, therefore the joint basic assignment m12 is just a product
of these m1 and m2 (cf. definition of a random set independence at the beginning of
Section 4 and the right part of Table 1).

Now, let us consider one more variable, B, expressing the fact that the bell is ringing,
i. e. , B = {b, b̄}. It happens only if the result on both coins is the same (two heads or
two tails). It is evident that B depends on both C1 and C2, which corresponds to the
graph in Figure 1 and (due to deterministic dependence of the values of B on the values
of C1 and C2) the joint basic assignment of the three variables is in Table 2.

���� ����
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C1 C2

B

Fig. 1. Directed graph from Example 2.

The approach suggested by Ben Yaghlane et al [4] starts from belief functions of C1

and C2 and conditional belief functions of B given C1 and C2, respectively. To make the
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A ⊆ Ci mi(A) D ⊆ B m.|i(D)
{hi} .49 {b} .49
{t1} .49 {b̄} .49

{h1, t1} .02 {b, b̄} .02

Tab. 3. Basic assignments mi and conditional basic assignments m.|i.

m {b∗} {b, b̄}
{h2} {t2} {h2, t2} {h2} {t2} {h2, t2}

{h1} .0624 .0624 .0025 .0001 .0001 ∼ 0
{t1} .0624 .0624 .0025 .0001 .0001 ∼ 0

{h1, t1} .0025 .0025 .0001 ∼ 0 ∼ 0 ∼ 0

Tab. 4. Joint basic assignment of variables C1, C2 and B based on

the conjunctive combination rule; b∗ stands for either b or b̄.

problem caused by this approach more apparent, we will use basic assignments instead
of belief functions (belief functions, nevertheless, can be easily obtained from them by
(1)). The conditional basic assignments of B given Ci, i = 1, 2 can be found in the right
part of Table 3. Let us note that these conditional basic assignments do not depend
on the condition, as the results of tossing two coins are independent and therefore the
event that the bell rings also does not depend on the result of one coin.

The values of joint basic assignments are computed from Table 3 using the (non-
normalised) conjunctive combination rule. Results of these computations can be found
in Table 4.

It is evident that the independence (non-interactivity) between coins C1 and C2 has
been substituted by conditional non-interactivity, which does not make sense, as C1 is
strongly dependent on C2 whenever B is known. ♦

In the last subsection of this section we will show how to model this problem using
our approach to evidential networks. Before doing that we have to recall the concept of
compositional models.

5.2. Compositional models

Compositional models are based on the concept of the operator of composition of basic
assignments, introduced in [12] in the following way.

Definition 5.2. For two arbitrary basic assignments m1 on XK and m2 on XL a com-
position m1 . m2 is defined for all C ⊆ XK∪L by one of the following expressions:
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(a) if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K ./ C↓L then

(m1 . m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;

(b) if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K ×XL\K then

(m1 . m2)(C) = m1(C↓K);

(c) in all other cases
(m1 . m2)(C) = 0.

From the basic properties of this operator (proven in [11, 12]) it follows that the
operator of composition is not commutative in general, but it preserves the first marginal
(in case of projective basic assignments both of them). In both of these aspects it differs
from the conjunctive combination rule. Let us illustrate this fact by the following simple
example.

Example 5.3. Let X1, X2 and X3 be three binary variables with values in X1 =
{a1, ā1},X2 = {a2, ā2}, X3 = {a3, ā3} and m1 and m2 be two basic assignments on
X1 ×X3 and X2 ×X3 respectively, both of them having only two focal elements:

m1({(a1, ā3), (ā1, ā3)})= .5,

m1({(a1, ā3), (ā1, a3)})= .5, (15)
m2({(a2, ā3), (ā2, ā3)})= .5,

m2({(a2, ā3), (ā2, a3)})= .5.

Since their marginals are projective

m
↓3

1 ({ā3})=m
↓3

2 ({ā3}) = .5,

m
↓3

1 ({a3, ā3})=m
↓3

2 ({a3, ā3}) = .5,

there exists (at least one) common extension of both of them.
Applying (5) to the marginals (15) one obtains

(m1 ∩©m2)(X1 ×X2 × {ā3})= .25,

(m1 ∩©m2)(X1 × {a2} × {ā3})= .25, (16)
(m1 ∩©m2)({a1} ×X2 × {ā3})= .25,

(m1 ∩©m2)({(a1, a2, ā3), (ā1, ā2, a3)})= .25

with marginal basic assignments

(m1 ∩©m2)↓13({(a1, ā3), (ā1, ā3)})= .5,

(m1 ∩©m2)↓13({(a1, ā3)})= .25,

(m1 ∩©m2)↓13({(a1, ā3), (ā1, a3)})= .25,

(m1 ∩©m2)↓23({(a2, ā3), (ā2, ā3)})= .5,

(m1 ∩©m2)↓23({(a2, ā3)})= .25,

(m1 ∩©m2)↓23({(a2, ā3), (ā2, a3)})= .25.
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On the other hand, composition of basic assignments m1 and m2 defined by (15) is by
Definition 5.2

(m1 . m2)(X1 ×X2 × {ā3}) = .5, (17)
(m1 . m2)({(a1, a2, ā3), (ā1, ā2, a3)}) = .5, (18)

which keeps, due to projectivity, both marginals. ♦

Furthermore, the operator of composition is not associative and therefore its iterative
applications must be made carefully, as we will see later.

A lot of other properties possessed by the operator of composition can be found in
[11, 12]; here we will confine ourselves to the following theorem (proven in [11]) expressing
the relationship between conditional independence and the operator of composition.

Theorem 5.4. Let m be a joint basic assignment on XM , K, L ⊆ M. Then (K \ L) ⊥⊥
(L \K)|(K ∩ L) [m] if and only if

m↓K∪L(A) = (m↓K . m↓L)(A)

for any A ⊆ XK∪L.

Now, let us consider a system of low-dimensional basic assignments m1,m2, . . . , mn

defined on XK1 ,XK2 , . . . ,XKn , respectively. Composing them together by multiple ap-
plications of the operator of composition, one gets a multidimensional basic assignment
on XK1∪K2∪...∪Kn

. However, since we know that the operator of composition is nei-
ther commutative nor associative, we have to properly specify what “composing them
together” means.

To avoid using too many parentheses let us adopt the following convention. Whenever
we write the expression m1 . m2 . . . . . mn we will understand that the operator of
composition is performed successively from left to right:6

m1 . m2 . . . . . mn = (. . . ((m1 . m2) . m3) . . . .) . mn. (19)

Therefore, multidimensional model (19) is specified by an ordered sequence of low-
dimensional basic assignments – a generating sequence m1,m2, . . . ,mn.

5.3. Evidential network generated by a perfect sequence

From the point of view of artificial intelligence models used to represent knowledge in a
specific area of interest, a special role is played by the so-called perfect sequences, i. e. ,
generating sequences m1,m2, . . . ,mn, for which

m1 . m2 = m2 . m1,

m1 . m2 . m3 = m3 . (m1 . m2),
...

m1 . m2 . . . . . mn = mn . (m1 . . . . . mn−1).
6Naturally, we will use parentheses to change the ordering in which the operators are to be performed.



A comparison of evidential networks and compositional models 261

The property explaining why we call these sequences “perfect” is expressed by the
following assertion proven in [11].

Theorem 5.5. A generating sequence m1,m2, . . . ,mn is perfect if and only if all as-
signments m1,m2, . . . ,mn are marginal assignments of the multidimensional assignment
m1 . m2 . . . . . mn:

(m1 . m2 . . . . . mn)↓Kj = mj ,

for all j = 1, . . . , n.

Now, let us present a simple algorithm for the construction of an evidential network
from a perfect sequence of basic assignments.

Having a perfect sequence m1,m2, . . . ,mn (m` being the basic assignment of XK`
),

we first order all the variables for which at least one of the basic assignments m` is
defined in such a way that first we order (in an arbitrary way) variables for which m1 is
defined, then variables from m2 which are not contained in m1, etc.7 Finally we have

{X1, X2, X3, . . . , Xk} = {Xi}i∈K1∪...∪Kn .

Then we get a graph of the constructed evidential network in the following way:

1. the nodes are all the variables X1, X2, X3, . . . , Xk;

2. there is an edge (Xi → Xj) if there exists a basic assignment m` such that both
i, j ∈ K`, j 6∈ K1 ∪ . . . ∪K`−1 and either i ∈ K1 ∪ . . . ∪K`−1 or i < j.

Evidently, for each j the requirement j ∈ K`, j 6∈ K1∪. . .∪K`−1 is met exactly for one
` ∈ {1, . . . , n}. It means that all the parents of node Xj must be from the respective set
{Xi}i∈K`

and therefore the necessary conditional basic assignments mj|pa(j) can easily
be computed from basic assignment m` via (8).

Example 5.6. Let us illustrate this simple procedure for reconstruction of the evidential
network from the perfect sequence of distributions

m1(T ),m2(G, B),m3(D,T,G),m4(R,B),m5(W,R, D).

Regarding the described process we have to start by ordering the variables. The first
variable must be T , as m1 contains only this variable. The second one must be B or G,
as both are contained in m2 and none of them in m1, and the third one the other. Let
us choose first G and then B. The fourth must be D, as it is the only variable contained
in m3 and neither in m1 nor in m2. Analogously, fifth one must be R and the last one
W . Hence, we have the ordering

T,G, B,D,R, W.

Node T first appears among the variables of m1. As this distribution is defined only
for this single variable there is no edge leading to this node. The second variable G

7Let us note that variables X1, X2, . . . , Xk may be ordered arbitrarily, nevertheless, for the chosen
ordering proof of Theorem 5.7 is much simpler than in the general case.
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Fig. 2. Acyclic directed graph of an evidential network reconstructed

from a perfect sequence m1, m2, m3, m4, m5.

appears first in distribution m2(G, B). The arrow (B → G) would be inserted into the
graph if either B would be before variable G in the selected ordering, or, if it were among
the variables for which some of the preceding distributions would be defined. None of
these conditions is met and therefore the edge (B → G) is not included into the graph.
The third variable B appears again among the variables for which m2 is defined. This
time, however, G precedes B in the chosen ordering of the variables, and therefore edge
(G → B) is included into the graph.

Variable D appears first among the arguments of m3. Both the remaining variables
T,G are among the arguments of the preceding distributions (m1 and m2, respectively)
and therefore we have to define both the edges (T → D) and (G → D). Similarly,
we have to include edges (B → R) (B is among the variables for which m2 is defined)
and (D → W ) and (R → W ) (D and R are among the arguments of m3 and m4,
respectively). The resulting graph is in Figure 2.

The only arbitrariness in the ordering of variables is that of ordering of those from
m2, as none of them appeared in preceding basic assignment. If we use the ordering
T,B,G,D,R, W , then the arrow (B → G) will be included instead of (G → B). ♦

Generally, if both i and j are in the same basic assignment and not in previous ones,
then the direction of the arc depends only on the ordering of the variables. This might
lead to different independences. Nevertheless, the following theorem sets forth that any
of them is induced by the perfect sequence.

Theorem 5.7. For a belief network defined by the above-described procedure the fol-
lowing independence statements are satisfied for any j = 2, . . . k:

{j} ⊥⊥ ({i : i < j} \ pa(j)) | pa(j), (20)

where pa(j) is the set of parents of the node j.

P r o o f . Let j ∈ K`, j 6∈ K1 ∪ . . . ∪K`−1. Due to the fact that

m1 . m2 . . . . . m`−1 . m` = (· · · (m1 . m2) . · · · . m`−1) . m`
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and Theorem 5.4 we have that

K` \ (K1 ∪ . . . ∪K`−1) ⊥⊥ (K1 ∪ . . . ∪K`−1) \K` |K` ∩ (K1 ∪ . . . ∪K`−1) . (21)

It is evident that (K1 ∪ . . . ∪K`−1) \K` = {i : i < j} \ pa(j), let us denote this set by
L. Now, there are two possibilities: either K` ∩ (K1 ∪ . . .∪K`−1) = pa(j) (if j does not
have any parents appearing first in K`) or K` ∩ (K1 ∪ . . . ∪K`−1) ⊂ pa(j) (otherwise).

In the first case either K`\(K1∪. . .∪K`−1) = {j} and we immediately obtain (20), or
K` \ (K1 ∪ . . . ∪ K`−1) ⊃ {j} and (20) follows from (21)
due to K ∪ M ⊥⊥ L|I [m] ⇒ K ⊥⊥ L|I [m] (following for any mutually
disjoint sets I, K,L,M from semi-graphoid properties), where K = {j},
M = K` \ (K1 ∪ . . . ∪K`−1) \ {j} and I = K` ∩ (K1 ∪ . . . ∪K`−1) = pa(j).

In the latter case, we start by application of the implication
K ∪M ⊥⊥ L|I [m] ⇒ K ⊥⊥ L|M ∪ I [m], whose validity for any mutually disjoint sets
I,K,L,M again follows from the semi-graphoid properties, to
K = K` \ (K1 ∪ . . . ∪K`−1) \ pa(j),M = (K` \ (K1 ∪ . . . ∪K`−1)) ∩ pa(j) and
I = K` ∩ (K1 ∪ . . . ∪K`−1). As M ∪ I = pa(j), we can then proceed analogous to
the previous paragraph to obtain (20). �

Example 5.6. (Continued) Let us note that basic assignments m1, m2 and m3 form
a perfect sequence. The graph in Figure 1 can easily be obtained from this perfect
sequence via the algorithm presented above. Together with the system of (conditional)
basic assignments m1, m2 and mB|C1C2 contained in Table 5 (due to a lack of space, xi

stands for either hi or ti, i = 1, 2, the remaining values of conditional basic assignment
are undefined) it forms an evidential network.

{h1h2} {h1t2} {t1h2} {t2t2} {x1h2, x1t2} {h1x2, t1x2} C1 ×C2

{b} 1 0 0 1 0 0 0
{b̄} 0 1 1 0 0 0 0
{b, b̄} 0 0 0 0 1 1 1

Tab. 5. Conditional basic assignment mB|C1C2 of variable B given

C1 and C2.

From Table 5 the difference between the approach of Ben Yaghlane et al. [4] and our
models is evident. Here the conditional dependence between the results on the two coins
given the ringing of the bell (or not) is kept. The resulting model clearly coincides with
values contained in Table 2. ♦

5.4. Evidential network vs. compositional model

At the end of Section 4 we asked the question whether evidential networks are advanta-
geous in comparison with other multidimensional models in this framework.
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In the preceding subsection we showed that they are more powerful than directed
evidential networks, as they are able to distinguish between conditional and uncondi-
tional independence. Nevertheless, the following example demonstrates that although
any compositional model can be transformed into an evidential network, it may happen
that the latter is more imprecise than the former.

Example 5.8. Let X1, X2 and X3 be three binary variables with values in Xi =
{ai, āi}, i = 1, 2, 3, and m be a basic assignment on X1 ×X2 ×X3 defined as follows

m(X1 ×X2 × {ā3}) = .5, (22)
m({(a1, a2, ā3), (ā1, ā2, a3)}) = .5. (23)

Variables X1 and X2 are conditionally independent given X3 with respect to m. There-
fore X2 is also irrelevant to X1 given X3, i. e. ,

mX1|X23(A|B) = mX1|X3(A|B
↓{3}), (24)

for any focal element B of m↓{23}. As m↓{23} has only two focal elements, namely
X2×{ā3} and {(a2, ā3), (ā2, a3)}, and m↓{3} has also only two focal elements: {ā3} and
X3, we have

mX1|X23(X1|X2 × {ā3}) = mX1|X3(X1|{ā3}) = 1, (25)
mX1|X23(X1|{(a2, ā3), (ā2, a3)}) = mX1|X3(X1|X3) = 1. (26)

Using these conditionals and the marginal basic assignment m↓{23}, we get a basic
assignment m̃ different from the original one, namely

m̃(X1 ×X2 × {ā3}) = .5,
m̃(X1 × {(a2, ā3), (ā2, a3)}) = .5.

Furthermore, if we interchange X1 and X2, we get yet another model, namely

m̂(X1 ×X2 × {ā3}) = .5,
m̂(X2 × {(a1, ā3), (ā1, a3)}) = .5.

The conditional independence of X1 and X2 given X3 and relation (24) correspond to
a directed graph in Figure 3, which leads to the following system of (conditional) basic
assignments:

m↓2(X2) = 1,
mX3|X2({ā3}|X2) = mX3|X2(X3|X2) = 1,

and mX1|X3 as suggested in the right-hand side of (25) and (26).
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--X2 X3 X1

Fig. 3. Graph G from Example 5.8.
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The final model

m̌(X1 ×X2 × {ā3}) = .5, (27)
m̌(X1 ×X2 ×X3) = .5. (28)

is again different, since instead of basic assignment m↓23 we used its marginal and
conditional.

Therefore it is clearly seen that evidential networks are less powerful than, e. g. ,
compositional models [11], as any of these three-dimensional basic assignments can be
obtained from two two-dimensional ones using the operator of composition. ♦

Let us also note that both the original model (22) and (23), as well as the last one
(27) and (28), can be expressed with the help of an undirected graph. Both of these
models factorise with respect to the graph in Figure 4.

�
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��
X2 X3 X1

Fig. 4. Undirected graph G.

The difference between compositional models and undirected models is due to the
fact that compositional models are defined also for non-projective basic assignments, in
contrast to decomposable models.

6. CONCLUSIONS

This paper is devoted to two kinds of multidimensional models with directed graph
structure, namely, directed evidential networks [4] and evidential networks. While the
former models are mentioned only marginally, as a motivation for our research, the latter
are studied in more detail.

In directed evidential networks, the graph structure is used in a sense different from
Bayesian networks (it rather resembles the so-called pseudobayesian networks), which
may lead to senseless results, as we demonstrated by a simple example.

We presented a new conditioning rule for variables, which appeared to be suitable
for the definition of (conditional) irrelevance having a sensible relationship with condi-
tional independence. This allows us to define evidential networks in a way analogous to
Bayesian networks.

Despite the fact that these models are able to distinguish between unconditional and
conditional independence, they are still not an optimal model. Their weakness consists
in conditioning, which may destroy the structure of the original focal elements and may
lead to more imprecise models.

From this point of view, compositional models or those based on undirected graphs
seem to be more appropriate multidimensional models in the framework of evidence
theory than these two kinds of networks.
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the Czech Republic, Pod Vodárenskou věž́ı 4, 182 08 Praha 8. Czech Republic.

e-mail: vejnar@utia.cas.cz


		webmaster@dml.cz
	2016-01-03T22:17:54+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




