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The fixed point property in

a Banach space isomorphic to c0

Costas Poulios

Abstract. We consider a Banach space, which comes naturally from c0 and it ap-
pears in the literature, and we prove that this space has the fixed point property
for non-expansive mappings defined on weakly compact, convex sets.

Keywords: non-expansive mappings; fixed point property; Banach spaces iso-
morphic to c0

Classification: Primary 47H10, 47H09, 46B25

1. Introduction

Let K be a weakly compact, convex subset of a Banach space X . A mapping
T : K → K is called non-expansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for any x, y ∈ K.
In the case where every non-expansive map T : K → K has a fixed point, we
say that K has the fixed point property. The space X is said to have the fixed
point property if every weakly compact, convex subset of X has the fixed point
property.

A lot of Banach spaces are known to enjoy the aforementioned property. The
earlier results show that uniformly convex spaces have the fixed point property
(see [3]) and this is also true for the wider class of spaces with normal structure
(see [7]). The classical Banach spaces ℓp, Lp with 1 < p < ∞ are uniformly
convex and hence they have the fixed point property. On the contrary, the space
L1 fails this property (see [1]).

The proofs of many positive results depend on the notion of minimal invariant
sets. Suppose that K is a weakly compact, convex set, T : K → K is a non-
expansive mapping and C is a nonempty, weakly compact, convex subset ofK such
that T (C) ⊆ C. The set C is called minimal for T if there is no strictly smaller
weakly compact, convex subset of C which is invariant under T . A straightforward
application of Zorn’s lemma implies that K always contains minimal invariant
subsets. So, a standard approach in proving fixed point theorems is to first assume
that K itself is minimal for T and then use the geometrical properties of the space
to show that K must be a singleton. Therefore, T has a fixed point.

Although a non-expansive map T : K → K does not have to have fixed points,
it is well-known that T always has an approximate fixed point sequence. This
means that there is a sequence (xn) in K such that limn→∞ ‖xn − Txn‖ = 0. For
such sequences, the following result holds (see [6]).
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Theorem 1.1. Let K be a weakly compact, convex set in a Banach space, let

T : K → K be a non-expansive map such that K is T -minimal, and let (xn) be
any approximate fixed point sequence. Then, for all x ∈ K,

lim
n→∞

‖x− xn‖ = diam(K).

Although from the beginning of the theory it became clear that the classical
spaces ℓp, Lp, 1 < p < ∞ have the fixed point property, the case of c0 remained
unsolved for some period of time. The geometrical properties of this space are
not very nice, in the sense that c0 does not possess normal structure. However,
it was finally proved that the geometry of c0 is still good enough and it does not
allow the existence of minimal sets with positive diameter, that is, c0 has the fixed
point property. This was done by B. Maurey [8] (see also [4]) who also proved
that every reflexive subspace of L1 has the fixed point property.

Theorem 1.2. The space c0 has the fixed point property.

The proof of Theorem 1.2 is based on the fact that the set of approximate
fixed point sequences is convex in a natural sense. More precisely, we have the
following ([8], [4]).

Theorem 1.3. Let K be a weakly compact, convex subset of a Banach space

which is minimal for a non-expansive map T : K → K. Let (xn) and (yn) be

approximate fixed point sequences for T such that limn→∞ ‖xn−yn‖ exists. Then

there is an approximate fixed point sequence (zn) in K such that

lim
n→∞

‖xn − zn‖ = lim
n→∞

‖yn − zn‖ =
1

2
lim
n→∞

‖xn − yn‖.

In the present paper, we define a Banach space X isomorphic to c0 and we
prove that this space has the fixed point property. Our interest in this space
derives from several reasons. Firstly, the space X comes from c0 in a natural
way. In fact, the Schauder basis of X is equivalent to the summing basis of c0.
Secondly, the space X is close to c0 in the sense that the Banach-Mazur distance
between the two spaces is equal to 2. It is worth mentioning that from the proof
of Theorem 1.2 we can conclude that whenever Y is a Banach space isomorphic to
c0 and the Banach-Mazur distance between Y and c0 is strictly less than 2, then
Y has the fixed point property. In our case, the Banach-Mazur distance is equal
to 2, that is the space X lies on the boundary of what is already known. This fact
should also be compared with the following question in metric fixed point theory:
Find a nontrivial class of Banach spaces invariant under isomorphism such that
each member of the class has the fixed point property (a trivial example is the
class of spaces isomorphic to ℓ1). We shall see that even for spaces close to c0,
such as the space X , the situation is quite complicated and this points out the
difficulty of the aforementioned question. Finally, the space X has been used in
several places in the study of the geometry of Banach spaces (for instance see
[5], [2]). More precisely, the well-known Hagler Tree space (HT ) [5] contains
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a plethora of subspaces isometric to X . Nevertheless, we do not know if HT has
the fixed point property.

2. Definition and basic properties

We consider the vector space c00 of all real-valued finitely supported sequences.
We let (en)n∈N stand for the usual unit vector basis of c00, that is en(i) = 1 if
i = n and en(i) = 0 if i 6= n. If S ⊂ N is any interval of integers and x = (xi) ∈ c00
then we set S∗(x) =

∑

i∈S xi. We now define the norm of x as follows

‖x‖ = sup|S∗(x)|

where the supremum is taken over all finite intervals S ⊂ N. The space X is the
completion of the normed space we have just defined.

It is easily verified that the sequence (en) is a normalized monotone Schauder
basis for the space X . In the following, (e∗n)n∈N denotes the sequence of the
biorthogonal functionals and (Pn)n∈N denotes the sequence of the natural projec-
tions associated to the basis (en). That is, for any x =

∑

∞

i=1 xiei ∈ X we have
e∗n(x) = xn and Pn(x) =

∑n

i=1 xiei.
Furthermore, if S ⊂ N is any interval of integers (not necessarily finite), we

define the functional S∗ : X → R by S∗(x) = S∗(
∑

∞

i=1 xiei) =
∑

i∈S xi. It is
easy to see that S∗ is a bounded linear functional with ‖S∗‖ = 1. In the special
case where S = N, the corresponding functional is denoted by B∗ (instead of the
confusing N

∗). Therefore, B∗(x) =
∑

∞

i=1 xi for any x =
∑

∞

i=1 xiei ∈ X .
The following proposition provides some useful properties of the space X and

demonstrates the relation between X and c0. We remind that for any pair E,F
of isomorphic normed spaces, the Banach-Mazur distance between E and F is
defined as follows

d(E,F ) = inf{‖T ‖ · ‖T−1‖ | T : E → F is an isomorphism from E onto F}.

Proposition 2.1. The following holds.

(1) The space X is isomorphic to c0 and in particular the basis of X is

equivalent to the summing basis of c0.
(2) The subspace of X∗ generated by the sequence of the biorthogonal func-

tionals has codimension 1. More precisely, X∗ = span{e∗n}n∈N ⊕ 〈B∗〉.
(3) The Banach-Mazur distance d(X, c0) between X and c0 is equal to 2.

Proof: We define the linear operator

Φ : X → c0

x = (xi) 7→
(

∞
∑

i=1

xi,

∞
∑

i=2

xi, . . .
)

.

It is easily verified that Φ is an isomorphism from X onto c0 with ‖Φ‖ = 1,
‖Φ−1‖ = 2 and Φ maps the basis of X to the summing basis of c0. This proves
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the first assertion. The second assertion is an immediate consequence of the
relation between X and c0 established above.

It remains to show that the Banach-Mazur distance d = d(X, c0) is equal to 2.
Firstly, we observe that the isomorphism Φ defined above implies that d ≤ 2. In
order to prove the reverse inequality we fix a real number ǫ > 0. Then there exists
an isomorphism T : X → c0 from X onto c0 such that ‖x‖ ≤ ‖Tx‖c0 ≤ (d+ ǫ)‖x‖
for any x ∈ X . We now consider the normalized sequence (xn) in X where
xn = (xn(i))i∈N is defined by

xn(2n− 1) = −1, xn(2n) = 1, xn(i) = 0 otherwise.

The description of X∗ given by the second assertion implies that any bounded
sequence (tn)n∈N of elements of X converges weakly to 0 if and only if e∗m(tn) → 0
for every m ∈ N and B∗(tn) → 0. It follows that the sequence (xn)n∈N defined
above is weakly null. Now we set yn = T (xn) for any n ∈ N and we have
1 ≤ ‖yn‖c0 ≤ d + ǫ and (yn)n∈N converges weakly to 0. Therefore, we find
k1 ∈ N such that the vectors y1 and yk1

have essentially disjoint supports. More
precisely, since y1 ∈ c0, there exists N1 ∈ N such that |y1(i)| < ǫ for any i > N1.
Since yn → 0 weakly, we find k1 so that |yk1

(i)| < ǫ for any i ≤ N1. It follows
that ‖y1 − yk1

‖c0 ≤ max{‖y1‖c0 , ‖yk1
‖c0} + ǫ ≤ d + 2ǫ. On the other hand,

‖x1 − xk1
‖ = 2. Therefore,

2 = ‖x1 − xk1
‖ ≤ ‖y1 − yk1

‖c0 ≤ d+ 2ǫ.

If ǫ tends to 0, we obtain 2 ≤ d as we desire. �

3. The fixed point property

This section is entirely devoted to the proof of the fixed point property for the
space X . First we need to establish some notation. If S, S′ ⊂ N are intervals
we write S < S′ to mean that maxS < minS′. Moreover, if k ∈ N, we write
k < S (resp., S < k) to mean k < minS (resp., maxS < k). Finally, for any
x = (xi) ∈ X , supp(x) = {i ∈ N | xi 6= 0} denotes the support of x.

Theorem 3.1. The space X has the fixed point property.

Proof: We follow the standard approach. We assume that K is a weakly com-
pact, convex subset of X which is minimal for a non-expansive map T : K → K.
Using the geometry of the space X , we have to show that K is a singleton, that
is diam(K) = 0. Let us suppose that diam(K) > 0 and now we have to reach a
contradiction. Without loss of generality we may assume that diam(K) = 1.

Let (xn)n∈N be an approximate fixed point sequence for the map T in the
set K. By passing to a subsequence and then using some translation, we may
assume that 0 ∈ K and (xn) converges weakly to 0. Theorem 1.1 implies that
limn ‖xn‖ = diam(K) = 1.
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Furthermore, using a standard perturbation argument we may assume that
(xn) is a finitely supported approximate fixed point sequence. Indeed, we induc-
tively construct a subsequence (xqn) of (xn) and integers l0 = 0 < l1 < l2 < . . .
such that for every n ∈ N, ‖Pln−1

(xqn)‖ < 1/n and ‖xqn − Pln(xqn)‖ < 1/n.
We start with xq1 = x1 and l0 = 0. Suppose that q1 < q2 < . . . < qn and
l0 < l1 < . . . < ln−1 have been defined. Then there exists ln > ln−1 such that
‖xqn −Pln(xqn)‖ < 1/n. Since (xn) is weakly null, it follows that Pm(xn) → 0 for
every m ∈ N. Therefore, there exists qn+1 > qn such that ‖Pln(xqn+1

)‖ < 1
n+1 .

The construction of (xqn) and (ln) is complete. Consequently, by passing to the
subsequence (xqn) and perturbing (xqn), if necessary, we may assume that for the
original sequence (xn) we have supp(xn) ⊂ (ln−1, ln] for every n ∈ N, that is, (xn)
consists of finitely supported vectors.

We next consider the subsequences (zn) = (x2n−1) and (yn) = (x2n) and we
also set l2n−1 = kn, l2n = mn for every n ∈ N and m0 = l0. The properties of the
sequence (xn) imply that the following holds.

(1) (zn) and (yn) are approximate fixed point sequences for the map T and
lim ‖zn‖ = lim ‖yn‖ = 1.

(2) (zn) and (yn) converge weakly to 0.
(3) supp(zn) ⊂ (mn−1, kn] and supp(yn) ⊂ (kn,mn] for every n ∈ N.
(4) lim ‖zn − yn‖ = 1.

In order to justify the fourth conclusion, we first observe that lim sup ‖zn− yn‖ ≤
diam(K) = 1. On the other hand, by the definition of the norm of the space X ,
for every n ∈ N there exists a finite interval En ⊂ N such that ‖zn‖ = |E∗

n(zn)|.
Clearly we may assume that En ⊂ (mn−1, kn]. Then ‖zn− yn‖ ≥ |E∗

n(zn− yn)| =
‖zn‖. Since lim ‖zn‖ = 1, it emerges that lim inf ‖zn − yn‖ ≥ 1 and finally
lim ‖zn − yn‖ = 1.

We are ready now to apply Maurey’s theorem (Theorem 1.3). To this end, we
fix a positive integer N ≥ 4, we set ǫ = 2−N and we iteratively use Theorem 1.3 as
follows. Firstly, we consider the sequences (zn) and (yn). Applying Theorem 1.3
we obtain an approximate fixed point sequence (v1n)n∈N in the set K such that
lim ‖v1n − yn‖ = 1

2 lim ‖zn − yn‖ = 1
2 and lim ‖v1n − zn‖ = 1

2 lim ‖zn − yn‖ = 1
2 .

Assume now that in the i-th step of this procedure we find an approximate fixed
point sequence (vin)n∈N satisfying lim ‖vin−zn‖ = 2−i and lim ‖vin−yn‖ = 1−2−i.
Then, Theorem 1.3 implies that “halfway” between (zn) and (vin) there exists an
approximate fixed point sequence (vi+1

n )n∈N, that is, lim ‖vi+1
n −vin‖ = 1

2 lim ‖vin−

zn‖ = 2−(i+1) and lim ‖vi+1
n − zn‖ = 1

2 lim ‖vin− zn‖ = 2−(i+1). Now, we estimate

the distance between vi+1
n and yn. We have

‖vi+1
n − yn‖ ≤ ‖vi+1

n − vin‖+ ‖vin − yn‖ and

‖vi+1
n − yn‖ ≥ ‖zn − yn‖ − ‖vi+1

n − zn‖.

Therefore, it follows that lim ‖vi+1
n − yn‖ = 1− 2−(i+1). After N iterated applica-

tions of Theorem 1.3 we find a sequence (vn)n∈N = (vNn )n∈N in the setK satisfying
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the following: (vn) is an approximate fixed point sequence for the map T (which
implies that lim ‖vn‖ = 1) and further lim ‖vn−zn‖ = ǫ and lim ‖vn−yn‖ = 1−ǫ.
Therefore, for all sufficiently large n ∈ N the following holds:

(1) ‖vn‖ > 1− ǫ
2 ;

(2) ‖vn − zn‖ < 3ǫ/2 and ‖vn − yn‖ < 1− ǫ
2 ;

(3) |B∗(zn)| < ǫ/2 (since (zn) is weakly null).

We also set Sn = (mn−1, kn] so that we have S1 < S2 < . . . Concerning the se-
quence (vn) in the set K and the sequence of intervals (Sn) we prove the following
two claims.

Claim 1. For all sufficiently large n, the support of vn is essentially contained
in the interval Sn, in the sense that if S is any interval with S ∩ Sn = ∅ then
|S∗(vn)| < 3ǫ/2.

Indeed, we know that supp(zn) ⊂ (mn−1, kn] = Sn. Therefore, if S is any
interval with S ∩ Sn = ∅ then S∗(zn) = 0 and hence

|S∗(vn)| = |S∗(vn − zn)| ≤ ‖vn − zn‖ <
3ǫ

2
.

Claim 2. For all sufficiently large n, there exist intervals Ln < Rn such that
Sn = Ln ∪Rn and L∗

n(vn) < −1 + 7ǫ, R∗

n(vn) > 1− 2ǫ.

We fix a sufficiently large positive integer n. Since ‖vn‖ > 1 − ǫ
2 , it follows

that there exists a finite interval Fn ⊂ N such that |F ∗

n (vn)| > 1− ǫ
2 . If kn < Fn,

we know by the previous claim that |F ∗

n(vn)| < 3ǫ/2, which is a contradiction.
Moreover, if we assume that Fn ≤ kn then Fn ∩ (kn,mn] = ∅ and the choice of
(yn) implies F ∗

n(yn) = 0. Thus,

|F ∗

n(vn)| = |F ∗

n(vn − yn)| ≤ ‖vn − yn‖ < 1−
ǫ

2
,

which is also a contradiction. By this discussion it is clear that minFn ≤ kn <
maxFn. Now we set Rn = Fn ∩ [1, kn] and we estimate

1−
ǫ

2
< |F ∗

n(vn)| ≤ |R∗

n(vn)|+ |(Fn \Rn)
∗(vn)| < |R∗

n(vn)|+
3ǫ

2
,

where the last inequality follows from Claim 1. Therefore, |R∗

n(vn)| > 1 − 2ǫ.
Passing to a subsequence, we may assume that either R∗

n(vn) > 1 − 2ǫ for all
sufficiently large n or R∗

n(vn) < −1 + 2ǫ for all sufficiently large n. We suppose
that the first possibility happens, as the second one is treated similarly (by in-
terchanging the roles of Ln and Rn). Consequently, for the interval Rn we have
maxRn = kn and R∗

n(vn) > 1− 2ǫ.
On the other hand, we observe that

|B∗(vn)| ≤ |B∗(vn − zn)|+ |B∗(zn)| ≤ ‖vn − zn‖+
ǫ

2
< 2ǫ.
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We note that the sequence (vn) is not necessarily weakly null. However, vn is close
to zn and hence |B∗(vn)| is very small. We next set Gn = [1,minRn) (possibly
empty) and Wn = (kn,+∞). Then,

2ǫ > |B∗(vn)| = |G∗

n(vn) +R∗

n(vn) +W ∗

n(vn)|

≥ R∗

n(vn)− |G∗

n(vn)| − |W ∗

n(vn)|

> 1− 2ǫ− |G∗

n(vn)| −
3ǫ

2
.

Therefore Gn is non-empty and |G∗

n(vn)| > 1− 11ǫ
2 . However, if G∗

n(vn) > 1− 11ǫ
2 ,

then it would follow

|B∗(vn)| ≥ R∗

n(vn) +G∗

n(vn)− |W ∗

n(vn)| ≥ 2− 9ǫ,

which is a contradiction. Hence, G∗

n(vn) < −1 + 11ǫ
2 . Further, we observe that

we cannot have Gn < Sn, since in this case it would follow |G∗

n(vn)| <
3ǫ
2 . Conse-

quently, maxGn > mn−1 which clearly implies minRn > mn−1 + 1. Finally, we
set Ln = Gn ∩ (mn−1, kn] and we estimate

−1 +
11ǫ

2
> G∗

n(vn) = L∗

n(vn) + (Gn \ Ln)
∗(vn) ≥ L∗

n(vn)−
3ǫ

2
.

We deduce that L∗

n(vn) < −1 + 7ǫ. Therefore, the intervals Ln < Rn satisfy the
following: Sn = Ln ∪ Rn, R

∗

n(vn) > 1 − 2ǫ and L∗

n(vn) < −1 + 7ǫ. The proof of
the claim is now complete.

Using the construction and the properties of the sequences (vn) and (Sn), we
can reach the final contradiction and finish the proof of the theorem. Our goal is
to show that for all sufficiently large n ∈ N, ‖vn− vn+1‖ ≥ 5/4 > 1, contradicting
the assumption diam(K) = 1. Indeed, we fix a sufficiently large n ∈ N and we
consider the intervals D = (kn,mn] and S = Rn∪D∪Ln+1. Then, using Claim 1
and Claim 2 we have

S∗(vn) = R∗

n(vn) + (D ∪ Ln+1)
∗(vn) > 1− 2ǫ−

3ǫ

2
= 1−

7ǫ

2

S∗(vn+1) = (Rn ∪D)∗(vn+1) + L∗

n+1(vn+1) <
3ǫ

2
− 1 + 7ǫ = −1 +

17ǫ

2
.

Therefore,

‖vn − vn+1‖ ≥ |S∗(vn − vn+1)| = |S∗(vn)− S∗(vn+1)| ≥ 2− 12ǫ.

The choice of ǫ implies that ‖vn−vn+1‖ ≥ 5/4 > 1 for all sufficiently large n ∈ N,
hence we obtain the desired contradiction. �
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