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On some classes of spaces with the D-property

Juan Carlos Mart́ınez

Abstract. We shall prove that under CH every regular meta-Lindelöf P -space
which is locally D has the D-property. In addition, we shall prove that a regular
submeta-Lindelöf P -space is D if it is locally D and has locally extent at most ω1.

Moreover, these results can be extended from the class of locally D-spaces to the
wider class of D-scattered spaces. Also, we shall give a direct proof (without
using topological games) of the result shown by Peng [On spaces which are D,

linearly D and transitively D , Topology Appl. 157 (2010), 378–384] which states

that every weak θ-refinable D-scattered space is D.

Keywords: propertyD; meta-Lindelöf; weak θ-refinable; P -space; scattered space

Classification: 54D20, 54A35, 54G10

1. Introduction

All spaces under consideration are T1. Our terminology is standard. Terms
not defined here can be found in [4].

A neighbourhood assignment for a space X is a function η from X to the
topology of X such that x ∈ η(x) for every x ∈ X . If Y is a subset of X , we
write η[Y ] =

⋃

{η(y) : y ∈ Y }. Then, we say that X is a D-space, if for every
neighbourhood assignment η for X there is a closed discrete subset D of X such
that η[D] = X .

The notion of a D-space was introduced by van Douwen and Pfeffer in [7],
and it is a useful tool in the study of covering properties in topology. It is easy
to see that compact spaces and also σ-compact spaces have property D. Also,
it is known that (finite unions of) metric spaces and spaces satisfying certain
generalized metric properties are D (see [1], [2], [5], [9] and [15]).

However, it is not known whether every regular Lindelöf space is D. Neverthe-
less, it has been recently shown in [19] that under ♦ there is a Hausdorff heredi-
tarily Lindelöf space which is not D. Also, it is unknown whether the D-property
is implied by paracompactness, subparacompactness or metacompactness. These
problems have been the subject of much research. It was shown in [6] that on
the class of generalized ordered spaces paracompactness is equivalent to the D-
property, and it was proved in [9] that for subspaces of finite products of ordinals
property D is equivalent to metacompactness. On the other hand, it is known
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that a submetacompact space is D if it is scattered or locally D (see [16]). And
recently, it has been shown in [20] that under MA + ¬CH every submeta-Lindelöf
space of cardinality ≤ ω1 is D. However, it is not known whether it is consistent
that every paracompact space of cardinality ≤ ω2 is D. We refer the reader to the
survey paper [11] for further results on D-spaces as well as examples and basic
facts.

Recall that a topological space X is a P -space, if every Gδ-subset of X is open.
It is known that regular P -spaces are important in the study of rings of continuous
real-valued functions (see [10]). Since in a P -space every countable set of points
is closed discrete, it is obvious that every Lindelöf P -space is D. In fact, we have
that every Lindelöf P -space is Alster, a property that implies being productively
Lindelöf and being D (see [3]). However, it is not known whether every regular
meta-Lindelöf P -space is D. In connection with this question, we shall prove here
that under CH every regular meta-Lindelöf P -space which is locally D has the
D-property. In addition, we shall prove that a regular submeta-Lindelöf P -space
is D if it is locally D and every point of the space has a neighbourhood whose
extent is at most ω1. Moreover, these results can be extended from the class of
locally D-spaces to the wider class of D-scattered spaces.

Also, by means of stationary winning strategies in topological games, it was
shown by Peng in [16, Theorem 18] that every weak θ-refinableD-scattered space is
D (and so it is obtained as a consequence that every submetacompact D-scattered
space is D). Note that this theorem is best possible, because the construction car-
ried out in [8] provides us an example of a locally compact scattered (hereditarily)
weak θ-refinable space which is not D. Then, we shall give here an alternative
proof of Peng’s theorem, which we think is more direct and does not use topolog-
ical games.

We shall use without explicit mention the well-known facts that “D-space”,
“P -space”, “meta-Lindelöf” and “submeta-Lindelöf” are closed hereditary.

2. P -spaces

Recall that if U is an open cover of a space X , the order of a point x ∈ X in
U is ord(x,U) = |{U ∈ U : x ∈ U}|. A space X is meta-Lindelöf , if for every
open cover U of X there is an open refinement P such that every element of X
has countable order in P .

We say that a space X is locally D, if for every point x of X there is a neigh-
bourhood U of x such that U with the relative topology of X is D.

First, our aim is to prove the following result.

Theorem 2.1. Assume CH and that X is a regular meta-Lindelöf P -space such

that X is locally D. Then X is D.

Proof: Suppose that X is a regular meta-Lindelöf P -space such that X is lo-
cally D. To prove that X is D, assume that η is a neighbourhood assignment
for X . As X is regular and locally D, we may assume that ClX(η(x)) is D for
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every x ∈ X . Since X is meta-Lindelöf, there is a point-countable open refinement
P of η.

Proceeding by induction on 0 < n < ω, it is not difficult to construct a closed
discrete subset En of X such that {x ∈ X : ord(x,P) ≤ n} ⊆ η[En]. However,
if we put V = η[

⋃

{En : n < ω}], we cannot assume that X \ V is a discrete
union of D-subspaces, because if x, y ∈ X \ V with x 6= y, it may happen that
{U ∈ P : x ∈ U} & {U ∈ P : y ∈ U}. Then, in order to construct the required
closed discrete subset D for η, first we fix an enumeration {xα : α < γ} of X .
For each α < γ, we define Pα = {U ∈ P : xα ∈ U} and Zα =

⋂

{U ∈ P : xα ∈
U}∩

⋂

{X \U : U ∈ P , xα /∈ U}. Our purpose is to define for each α < γ a closed
discrete subset Dα of X such that the following conditions hold:

(1) Dα ∩ η[
⋃

{Dβ : β < α}] = ∅;
(2) for every δ < γ with Pδ ⊆ Pα, Zδ ⊆ η[

⋃

{Dβ : β ≤ α}].

So, assume that α < γ and Dβ has been constructed for every β < α. Let

Uα = η[
⋃

{Dβ : β < α}].

If for every δ < γ with Pδ ⊆ Pα we have that Zδ ⊆ Uα, we define Dα = ∅. So,
suppose that there is a δ < γ with Pδ ⊆ Pα and Zδ 6⊆ Uα. Since we are assuming
CH, there is an enumeration {Pδξ : ξ < ζ} with ζ ≤ ω1 of {Pδ : δ < γ,Pδ ⊆
Pα, Zδ 6⊆ Uα}. Without loss of generality, we may assume that ζ = ω1. Note that
for δ < γ with Pδ ⊆ Pα, ClX(Zδ) is D because Zδ is contained in some element of
the cover {η(x) : x ∈ X} and ClX(η(x)) is D for every x ∈ X . Then, proceeding
by transfinite induction on ξ < ω1, it is easy to construct a closed discrete subset

E
(α)
ξ of X such that the following holds:

(a) E
(α)
ξ ∩ (Uα ∪ η[

⋃

{E
(α)
µ : µ < ξ}]) = ∅;

(b) E
(α)
ξ ⊆ ClX(Zδξ) ⊆ Uα ∪ η[

⋃

{E
(α)
µ : µ ≤ ξ}].

We define Dα =
⋃

{E
(α)
ξ : ξ < ω1}. We need to show that Dα is closed discrete

in X . For this, assume that Dα 6= ∅ and x ∈ X . If x ∈ η[
⋃

{Dβ : β < α}], we
are done by condition (a). And if x ∈ η[Dα], we are done by condition (a) and
the assumption that X is a P -space. So, assume that x /∈ η[

⋃

{Dβ : β ≤ α}]. Let
δ < γ such that x = xδ. Clearly Zδ 6⊆ Uα, and hence Pδ 6⊆ Pα by condition (b).
Let Ux =

⋂

{U ∈ P : x ∈ U}. Then since Pδ 6⊆ Pα, Ux ∩ ClX(Zδξ) = ∅ for every

ξ < ω1, hence Ux ∩ E
(α)
ξ = ∅ for every ξ < ω1, and so Ux ∩Dα = ∅.

Finally, we put D =
⋃

{Dα : α < γ}. By condition (2), for every α < γ,
xα ∈ η[

⋃

{Dβ : β ≤ α}] ⊆ η[D], and hence η[D] = X . To check that D is closed
discrete in X , consider a point x ∈ X . Let α < γ such that x ∈ η[Dα]. Since Dα is
closed discrete in X , there is a neighbourhood V of x such that (V \{x})∩Dα = ∅.
Also, by the argument given above,

⋂

{U ∈ P : x ∈ U}∩Dβ = ∅ for every β < α.
And by condition (1), we see that η[Dα] ∩Dβ = ∅ for every β > α. Therefore, x
is not an accumulation point of D. �



250 J.C. Mart́ınez

Recall that a space X is submeta-Lindelöf , if for every open cover U of X there
is a sequence of open refinements {Pn : n ∈ ω} such that every element of X has
countable order in some Pn.

For every spaceX , we denote by e(X) the extent of X , i.e. the supremum of the
cardinalities of the closed discrete subsets of X . If λ is an infinite cardinal, we say
that a space X has locally extent ≤ λ, if for every x ∈ X there is a neighbourhood
U of x with e(U) ≤ λ.

Now, our purpose is to prove the following result.

Theorem 2.2. Suppose that X is a regular submeta-Lindelöf P -space such that

X is locally D and has locally extent ≤ ω1. Then X is D.

In fact, we can show the following more general result, whose proof is a refine-
ment of the argument given in [17, Lemma 25]. In the proof, we will use ideas
given in the construction carried out in [14, Section 3].

Lemma 2.1. Assume that there is a sequence {Pk : k ∈ ω} of open covers of a

P -space X such that every point of X has order ≤ ω1 in some Pk and in such a

way that for every U ∈
⋃

{Pk : k ∈ ω}, ClX(U) is a D-subspace whose extent is

at most ω1. Then X is D.

Proof: In order to show that X is D, suppose that η is a neighbourhood as-
signment for X . Put X = {xα : α < γ}. For each α < γ, we construct a closed
discrete subset Dα of X such that the following conditions are satisfied:

(1) xα ∈ η[
⋃

{Dβ : β ≤ α}];
(2) Dα ∩ η[

⋃

{Dβ : β < α}] = ∅;
(3) if x ∈ X \ η[

⋃

{Dβ : β ≤ α}] and V =
⋂

{Vk : k ∈ ω} where x ∈ Vk ∈ Pk for
each k ∈ ω, then V ∩

⋃

{Dβ : β ≤ α} = ∅.

Note that conditions (2) and (3) imply that
⋃

{Dβ : β < α} is closed for limit α.
So, assume that α < γ and Dβ has been constructed for every β < α. Our aim

is to construct Dα. Put Uα = η[
⋃

{Dβ : β < α}]. If xα ∈ Uα, we put Dα = ∅.
So, assume that xα /∈ Uα. Let {Iξ : ξ < ω1} be a partition of ω1 into subsets of
size ω1. In order to constructDα, we will define a sequence {Eξ : ξ < ω1} of closed
discrete subsets of X , we will define a strictly increasing function s : ω1 → ω1

and we will construct a sequence {Vξ : ξ < ω1} of collections of open sets of
⋃

{Pk : k ∈ ω} such that each Vξ is enumerated by {Vi : i ∈ Iξ, i > s(ξ)} and in
such a way that, for every ξ < ω1, the following conditions hold:

(a) Eξ ∩ (Uα ∪ η[
⋃

{Eµ : µ < ξ}]) = ∅;
(b) if Vi ∈ Vζ for ζ < ξ and i ≤ s(ξ), then Vi ⊆ Uα ∪ η[

⋃

{Eµ : µ ≤ ξ}];
(c) if V ∈ Vξ, then there is some k < ω such that V ∈ Pk and V ∩ {x ∈ Eξ :

ord(x,Pk) ≤ ω1} 6= ∅.

Let F = ClX(V ) where xα ∈ V ∈
⋃

{Pk : k ∈ ω} . Since F is a D-subspace
whose extent is at most ω1, there is a closed discrete subset E0 of F \ Uα such

that F \ Uα ⊆ η[E0] and |E0| ≤ ω1. For every k ∈ ω, let E
(k)
0 = {x ∈ E0 :

ord(x,Pk) ≤ ω1}. Clearly, E0 =
⋃

{E
(k)
0 : k ∈ ω}. Now, for k ∈ ω let V

(k)
0 =
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{V ∈ Pk : V ∩ E
(k)
0 6= ∅}. Let V0 =

⋃

{V
(k)
0 : k ∈ ω}. Since every point of E

(k)
0

has order ≤ ω1 in Pk and |E
(k)
0 | ≤ ω1, we deduce that |V

(k)
0 | ≤ ω1 for every k ∈ ω,

and hence |V0| ≤ ω1. We enumerate V0 by {Vi : i ∈ I0 \ {0}}. We put s(0) = 0.
Now, assume that 0 < ξ < ω1, Eµ and Vµ have been constructed for µ < ξ

and s has been defined for every µ < ξ. If V ⊆ Uα ∪ η[
⋃

{Eµ : µ < ξ}] for every
V ∈

⋃

{Vµ : µ < ξ}, we define Dα =
⋃

{Eµ : µ < ξ}. Otherwise, we consider the
least ordinal i ∈

⋃

{Iµ : µ < ξ} such that Vi 6⊆ Uα ∪ η[
⋃

{Eµ : µ < ξ}]. We put
V = Vi and s(ξ) = i. We show that s(µ) < s(ξ) for every µ < ξ. First, assume
that ξ = ζ+1 is a successor ordinal. Note that if V ∈ Vζ , then s(ζ) < s(ξ) because
Vζ is enumerated by {Vj : j ∈ Iζ , j > s(ζ)}, and hence s(µ) < s(ξ) for every µ < ξ
by the induction hypotheses. So, suppose that V ∈ Vµ for some µ < ζ. Note
that, by condition (b), Vs(ζ) ⊆ Uα ∪ η[

⋃

{Eµ : µ < ξ}], and hence s(ζ) 6= s(ξ).
Then, by the election of V and the definition of s(ζ), it follows that s(ζ) < s(ξ).
Now, assume that ξ is a limit ordinal. Let ζ < ξ such that V = Vi ∈ Vζ . As
V 6⊆ Uα ∪ η[

⋃

{Eµ : µ < ξ}], it follows that i = s(ξ) > s(µ) for ζ < µ < ξ, and so
s(ξ) > s(µ) for every µ < ξ by the induction hypotheses. Now, let F = ClX(V ).
Since F is a D-subspace whose extent is at most ω1, there is a closed discrete
subset Eξ of F \ (Uα∪η[

⋃

{Eµ : µ < ξ}]) such that F \ (Uα∪η[
⋃

{Eµ : µ < ξ}]) ⊆

η[Eξ] and |Eξ| ≤ ω1. For k < ω, let E
(k)
ξ = {x ∈ Eξ : ord(x,Pk) ≤ ω1} and

V
(k)
ξ = {V ∈ Pk : V ∩E

(k)
ξ 6= ∅ and V /∈ Vµ for µ < ξ}. Let Vξ =

⋃

{V
(k)
ξ : k ∈ ω}.

Since every point of E
(k)
ξ has order ≤ ω1 in Pk and |E

(k)
ξ | ≤ ω1, we deduce that

Vξ has size at most ω1. We enumerate Vξ by {Vi : i ∈ Iξ, i > s(ξ)}.
Without loss of generality, we may assume that for every ξ < ω1 there is an

element V ∈
⋃

{Vµ : µ < ξ} such that V 6⊆ Uα ∪ η[
⋃

{Eµ : µ < ξ}]. Otherwise,
Dα is a countable union

⋃

{Eµ : µ < ξ} for some ξ < ω1 and the argument
is easier. We define Dα =

⋃

{Eξ : ξ < ω1}. We show that Dα is a closed
discrete subset of X . First, assume that x ∈ Uα ∪ η[Dα]. Then since X is a
P -space, by condition (a), it follows that x is not an accumulation point of Dα.
So, assume that x /∈ Uα ∪ η[Dα]. For each k ∈ ω let Wk ∈ Pk with x ∈ Wk.
Let W =

⋂

{Wk : k ∈ ω}. We show that W ∩ Dα = ∅. For this, assume on the
contrary that W ∩Dα 6= ∅. Let ξ be the least µ < ω1 such that W ∩Eµ 6= ∅. So,

there is an m ∈ ω such that W ∩E
(m)
ξ 6= ∅. Therefore, Wm ∩E

(m)
ξ 6= ∅. It follows

that Wm ∈ Vζ for some ζ ≤ ξ. Let i ∈ Iζ such that Wm = Vi. Since s is strictly
increasing, there is an ordinal δ < ω1 such that i < s(δ). Note that ζ < δ, because
if δ ≤ ζ, then s(δ) ≤ s(ζ) < i, which contradicts the election of δ. Now, by the
definition of s(δ), we deduce that Vi = Wm ⊆ Uα∪η[

⋃

{Eµ : µ < δ}] ⊆ Uα∪η[Dα],
which contradicts our assumption on x.

So, we have shown that Dα is a closed discrete subset of X . Clearly, the
family {Dβ : β ≤ α} satisfies conditions (1) and (2). And by using the induction
hypotheses and the argument given in the preceding paragraph, we can see that
it also satisfies condition (3).



252 J.C. Mart́ınez

Now, we can check that D =
⋃

{Dα : α < γ} is as required. By condition (1),
η[D] = X . To verify that D is closed discrete in X , consider a point x ∈ X . Let
α < γ such that x ∈ η[Dα]. Since Dα is closed discrete in X , by using conditions
(2) and (3), it is easy to see that there is a neighbourhood U of x such that
(U \ {x}) ∩D = ∅. �

Proof of Theorem 2.2: Since X is regular, locally D and has locally extent
≤ ω1, for every x ∈ X there is an open neighbourhood Ux of x such that ClX(Ux)
is a D-subspace whose extent is at most ω1. As X is submeta-Lindelöf, there is
a sequence {Pk : k ∈ ω} of open refinements of {Ux : x ∈ X} such that every
element of X has countable order in some Pk. Clearly, the sequence {Pk : k ∈ ω}
satisfies the requirements of Lemma 2.1. �

Also, since every Lindelöf P -space is D and has countable extent, the following
result is an immediate consequence of Theorem 2.2.

Corollary 2.1. Every regular submeta-Lindelöf locally Lindelöf P -space is D.

3. D-scattered spaces

Recall that a space X is scattered , if every non-empty closed subspace of X
has an isolated point. And a space X is C-scattered , if every non-empty closed
subspace Y of X has a point with a compact neighbourhood in Y . Clearly,
the class of C-scattered spaces contains every locally compact space and every
scattered space. And we say that a space X is D-scattered , if every non-empty
closed subspace Y of X has a point with a D-neighbourhood in Y . Note that the
class of D-scattered spaces contains every locally D-space and every C-scattered
space. These notions of scattered spaces have been useful in the study of D-spaces
(see [12], [13], [15], [16] and [17]).

We define the D-derivative X∗ of a space X as the set of all x ∈ X such that
x does not have a D-neighbourhood in X . We can extend the Cantor-Bendixson
process for topological spaces by using the notion of D-derivative. If X is a space
and α is an ordinal, we define Xα as follows. X0 = X ; if α = β+1, Xα = (Xβ)∗;
and if α is a limit, Xα =

⋂

{Xβ : β < α}. It is easy to check that a space X is
D-scattered iff there is an ordinal α such that Xα = ∅. Then, we define the rank

of a D-scattered space X by rank(X) = the least ordinal α such that Xα = ∅.
Note that if X 6= ∅, then X is locally D iff rank(X) = 1.

In [17], Peng proved that if X is a regular meta-Lindelöf D-scattered space
with locally countable extent, then X is a D-space.

We want to remark that the notion of a locally D-space is strictly stronger
than the notion of a D-scattered space. For this, we construct a regular scattered
space X which is not locally D. First, for each n < ω we consider a copy Xn of
the ordinal ω1 with the order topology in such a way that Xn∩Xm = ∅ if n 6= m.
The underlying set of X is {x∗} ∪

⋃

{Xn : n < ω} where x∗ /∈ Xn for n < ω. If
x ∈ Xn, a basic neighbourhood of x in X is a basic neighbourhood of x in Xn.
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And a basic neighbourhood of x∗ in X is a set of the form {x∗}∪
⋃

{Xn : n > m}
where m < ω. It is easy to check that X is as required.

The following proposition will be useful to extend Theorems 2.1 and 2.2 from
the class of locally D-spaces to the class of D-scattered spaces.

Proposition 3.1. Let K be a class of regular spaces that is closed hereditary

such that every locally D-space in K is a D-space. Then, every D-scattered space

in K is a D-space.

Proof: Let X be a D-scattered space in K. We proceed by transfinite induction
on the rank α of X . If α = 0, then X = ∅, and so we are done. Suppose that
α = β + 1 is a successor ordinal. Let η be a neighbourhood assignment for X .
Put Z = Xβ. We see that Z is a closed locally D-subspace of X , hence Z is a
locally D-space of K, and so Z is a D-space. Let D be a closed discrete subset of
Z such that

⋃

{η(x)∩Z : x ∈ D} = Z. Let Y = X \ η[D]. Since Y is closed in X
and rank(Y ) < α, it follows that Y is D by the induction hypotheses. Let E be
a closed discrete subset of Y such that

⋃

{η(x) ∩ Y : x ∈ E} = Y . Clearly, D ∪E
is as required.

Now, assume that α is a limit ordinal. Since X is regular, for every x ∈ X
there is an open neighbourhood Ux of x such that ClX(Ux) is a subset of X \Xβ

for some β < α. By the induction hypotheses, ClX(Ux) is D for every x ∈ X . It
follows that X is a locally D-space of K, and hence X is D. �

Corollary 3.1. Assume CH and that X is a regular meta-Lindelöf P -space such

that X is D-scattered. Then X is D.

Corollary 3.2. Assume that X is a regular submeta-Lindelöf P -space such that

X is D-scattered and has locally extent ≤ ω1. Then X is D.

We do not know whether Proposition 3.1 can be extended to classes of T1

spaces. Note that in the proof we carried out regularity is used in an essential
way in the limit case.

A space X is weak θ-refinable, if for every open cover U of X there is an open
refinement

⋃

{Pk : k ∈ ω} such that the following two conditions hold:

(1) {
⋃

Pk : k ∈ ω} is a point-finite open cover of X ;
(2) for every x ∈ X there is a k ∈ ω such that 0 < ord(x,Pk) < ω.

It is known that every submetacompact space is weak θ-refinable (see [18]).
In [16, Theorem 18], it was shown by means of stationary winning strategies

in topological games that every weak θ-refinable D-scattered space is D. This
theorem has been used in [17, Sections 2 and 4] to obtain further results on D-
spaces. Then, our aim is to show without using topological games (an extension
of) Peng’s theorem proved in [16].

We say that X is a generalized weak θ-refinable space, if for every open cover
U of X there are an infinite cardinal λ and an open refinement

⋃

{Pξ : ξ < λ}
such that the following two conditions hold:
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(*) (1) {
⋃

Pξ : ξ < λ} is a point-finite open cover of X ;
(2) for every x ∈ X there is a ξ < λ such that 0 < ord(x,Pξ) < ω.

Note that the class of generalized weak θ-refinable D-scattered spaces is here-
ditary with respect to closed subspaces.

Theorem 3.1. Every generalized weak θ-refinable D-scattered space is D.

Proof: Let X be a generalized weak θ-refinable D-scattered space. We will
proceed by transfinite induction on the rank α of X . Note that since we are not
assuming that X is regular, we cannot argue as in Proposition 3.1 in the limit
case. Then, suppose that either α = 1 or α is a limit. Let η be a neighbourhood
assignment for X . For every x ∈ X , we take an open neighbourhood Ux of x
as follows. If α = 1, Ux is a subset of some D-neighbourhood of x. And if α is
a limit, Ux ⊆ X \ Xβ for some β < α. As X is a generalized weak θ-refinable
space, there are an infinite cardinal λ and an open refinement

⋃

{Pξ : ξ < λ} of
{Ux : x ∈ X} satisfying conditions (*)(1)–(2). Let P = {

⋃

Pξ : ξ < λ}. For
0 < n < ω let

Hn = {x ∈ X : ord(x,P) ≤ n}.

Note that, by condition (∗)(1), X =
⋃

{Hn : 0 < n < ω}. Proceeding by
induction on n ≥ 1 we construct a closed discrete subset Dn of X such that
Dn ∩ η[D1 ∪ · · · ∪Dn−1] = ∅ and Hn ⊆ η[D1 ∪ · · · ∪Dn]. Hence, it follows that
D =

⋃

{Dn : 0 < n < ω} is as required.
So, assume that n ≥ 1 and Dm has been constructed for m < n. Put

U = η[D1 ∪ · · · ∪Dn−1].

Note that Hn \ U =
⋃

Hn where Hn is a closed discrete family of subsets of X .
In order to define Dn, we will construct a closed discrete subset EH for each
H ∈ Hn. So, fix H ∈ Hn. Note that

H =
(

⋃

Pi1 ∩ · · · ∩
⋃

Pin ∩
⋂

{

X \
⋃

Pi : i /∈ {i1, . . . , in}
})

\ U

where i1, . . . , in are pairwise different elements of λ. As Hn−1 ⊆ U , we infer that
H is closed in X . For 1 ≤ m ≤ n and 1 ≤ l < ω, we define

Fm,l = {x ∈ H : ord(x,Pim) ≤ l}.

Now, we fix a bijection h : ω → {1, . . . , n} × (ω \ {0}). In order to define EH ,
we construct by induction on k ∈ ω a closed discrete subset Ek of X such that
Ek ∩ (U ∪ η[E0 ∪ · · · ∪ Ek−1]) = ∅ and in such a way that if h(k) = (m, l) then
Fm,l ⊆ U ∪ η[E0 ∪ · · · ∪ Ek].

So, assume that k ≥ 0 and E0, . . . , Ek−1 have been constructed. Put h(k) =
(m, l). Let

V = U ∪ η[E0 ∪ · · · ∪Ek−1].
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Without loss of generality, we may assume that V ∩ Fm,j = ∅ for 1 ≤ j ≤ l. In
order to construct Ek we will define closed discrete subsets B1, . . . , Bl of X such
that for 1 ≤ t ≤ l, Bt∩(V ∪η[B1∪· · ·∪Bt−1]) = ∅ and Fm,t ⊆ V ∪η[B1∪· · ·∪Bt].
Suppose that 1 ≤ t ≤ l and B1, . . . , Bt−1 have been constructed. Let

Vt = V ∪ η[B1 ∪ · · · ∪Bt−1].

Let F ∗

m,t = Fm,t \ Vt. Since Hn−1 ∪
⋃

{Fm,r : r < t} ⊆ Vt, it follows that F ∗

m,t

is the union of a discrete family F∗

m,t of closed subsets of X . Moreover, as every
element of Pim is contained in some element of the cover {Ux : x ∈ X}, by using
the induction hypotheses if α is a limit, we deduce that every element of F∗

m,t is
D. So, there is a closed discrete subset Bt of X such that Bt ⊆ F ∗

m,t ⊆ η[Bt], and
hence Fm,t ⊆ V ∪ η[B1 ∪ · · · ∪Bt]. Then, we define Ek = B1 ∪ · · · ∪Bl.

Now, we define EH =
⋃

{Ek : k ∈ ω}. Note that, by condition (∗)(2), H ⊆
η[EH ]. Then, we define Dn =

⋃

{EH : H ∈ Hn}. We see that Dn ∩ U = ∅ and
Hn ⊆ U ∪ η[Dn] = η[D1 ∪ · · · ∪Dn].

Finally, if α = β + 1 is a successor ordinal, we can proceed as in the proof of
Proposition 3.1. �
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