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A Z3
4-grading on a 56-dimensional simple

structurable algebra and related fine gradings

on the simple Lie algebras of type E

Diego Aranda-Orna, Alberto Elduque, Mikhail Kochetov

Abstract. We describe two constructions of a certain Z3

4
-grading on the so-called

Brown algebra (a simple structurable algebra of dimension 56 and skew-dimen-
sion 1) over an algebraically closed field of characteristic different from 2. The
Weyl group of this grading is computed. We also show how this grading gives rise
to several interesting fine gradings on exceptional simple Lie algebras of types
E6, E7 and E8.
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Classification: Primary 17B70; Secondary 17B25, 17C40, 17A30

1. Introduction

In the past two decades, there has been much progress in the study of gradings
on simple Lie algebras by arbitrary groups — see the recent monograph [EK13]
and references therein. In particular, over an algebraically closed field of charac-
teristic 0, fine gradings have been classified for all finite-dimensional simple Lie
algebras except E7 and E8.

The second author has shown in [Eld13] that, in a sense, such a fine grading
splits into two independent gradings: a grading by a free abelian group, which
is also a grading by a root system, and a fine grading by a finite group on the
corresponding coordinate algebra. For example, the Z3

2-grading on the algebra
of octonions that arises from the three iterations of the Cayley–Dickson doubling
process is “responsible” not only for a fine Z3

2-grading on G2 but also for fine
gradings on F4 by the group Z × Z3

2 and on Er by Zr−4 × Z3
2 (r = 6, 7, 8). We

have a similar picture for the Z3
3-grading on the simple exceptional Jordan algebra

(the Albert algebra) that can be obtained from the first Tits construction.
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and of the Diputación General de Aragón—Fondo Social Europeo (Grupo de Investigación de

Álgebra). The third listed author was partially supported by a sabbatical research grant of
Memorial University and a grant for visiting scientists by Instituto Universitario de Matemáticas
y Aplicaciones, University of Zaragoza.
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In the classification [DV12] of fine gradings on the simple Lie algebra of type
E6 over an algebraically closed field of characteristic 0, among the 14 fine gradings
there is one with universal grading group Z3

4, which has an interesting property:
the corresponding quasitorus in the automorphism group of E6 contains an outer
automorphism of order 4 but not of order 2. A model for this grading in terms
of a symplectic triple system is given in [EK13, §6.4]. On the other hand, it
is known that E6 can be realized as the derivation algebra of a certain simple
nonassociative algebra with involution A, where the dimension of A is 56 and the
dimension of the space of skew elements of A is 1. This algebra with involution
belongs to the class of so-called structurable algebras , which were introduced by
Allison in [All78] as a generalization of Jordan algebras. (Jordan algebras are the
structurable algebras whose involution is the identity map.) In fact, the algebra
A itself goes back to Brown [Bro63] and for this reason is called the split Brown

algebra in [Gar01].
In Draper’s ongoing work on fine gradings on the simple Lie algebras of type

E7 and E8, there appeared a fine grading on E7 with universal group Z2 × Z3
4

and two fine gradings on E8 with universal groups Z2
2 ×Z3

4 (see also [DE13]) and
Z × Z3

4. According to [Eld13], this latter must necessarily be induced by a fine
grading with universal group Z3

4 on the Brown algebra. This was the starting
point of our investigation.

In this article we construct a Z3
4-grading on A in two ways: realizing A as

the Cayley–Dickson double, in the sense of [AF84], of the quartic Jordan algebra
H4(Q) (the Hermitian matrices of order 4 over quaternions) or the structurable
matrix algebra, in the sense of [AF84], of the cubic Jordan algebra A = H3(C)
(the Hermitian matrices of order 3 over octonions). These constructions actually
work over any field containing a fourth root of 1. It is noteworthy that, just like
the Z3

2-grading on the octonions and the Z3
3-grading on the Albert algebra, our Z3

4-
grading on the Brown algebra is a division grading, i.e., all nonzero homogeneous
elements are invertible (in an appropriate sense).

The background on gradings and on structurable algebras (in particular, the
split Brown algebra A) will be recalled in Section 2, and the two constructions
of the Z3

4-grading on A will be carried out in Sections 3 and 4. In Section 5,
we will establish a “recognition theorem” for this grading (which in particular
implies that our two models are equivalent) and, as a by-product, compute its
Weyl group. Finally, in Section 6, we will explain how this grading can be used
to construct the fine gradings on E6, E7 and E8 mentioned above.

2. Preliminaries

2.1 Group gradings on algebras. Let U be an algebra (not necessarily asso-
ciative) over a field F and let G be a group (written multiplicatively).

Definition 1. A G-grading on U is a vector space decomposition

Γ : U =
⊕

g∈G
Ug
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such that UgUh ⊂ Ugh for all g, h ∈ G. If such a decomposition is fixed, U is
referred to as a G-graded algebra. The nonzero elements x ∈ Ug are said to be
homogeneous of degree g, and one writes degΓ x = g or just deg x = g if the grading
is clear from the context. The support of Γ is the set Supp Γ := {g ∈ G | Ug 6= 0}.
If (U, σ) is an algebra with involution, then we will always assume σ(Ug) = Ug

for all g ∈ G.

There is a more general concept of grading: a decomposition Γ : U =
⊕

s∈S Us
into nonzero subspaces indexed by a set S and having the property that, for any
s1, s2 ∈ S with Us1Us2 6= 0, there exists (unique) s3 ∈ S such that Us1Us2 ⊂ Us3 .
For such a decomposition Γ, there may or may not exist a group G containing S
that makes Γ a G-grading. If such a group exists, Γ is said to be a group grading.
However, G is usually not unique even if we require that it should be generated
by S. The universal grading group is generated by S and has the defining relations
s1s2 = s3 for all s1, s2, s3 ∈ S such that 0 6= Us1Us2 ⊂ Us3 (see [EK13, Chapter 1]
for details).

It is known that if Γ is a group grading on a simple Lie algebra, then Supp Γ al-
ways generates an abelian subgroup. In other words, the universal grading group
is abelian. Here we will deal exclusively with abelian groups, and we will some-
times write them additively. Gradings by abelian groups often arise as eigenspace
decompositions with respect to a family of commuting diagonalizable automor-
phisms. If F is algebraically closed and charF = 0 then all abelian group gradings
on finite-dimensional algebras can be obtained in this way.

Let Γ : U =
⊕

g∈G Ug and Γ′ : V =
⊕

h∈H Vh be two group gradings, with

supports S and T , respectively. We say that Γ and Γ′ are equivalent if there
exists an isomorphism of algebras ϕ : U → V and a bijection α : S → T such that
ϕ(Us) = Vα(s) for all s ∈ S. If G and H are universal grading groups then α
extends to an isomorphism G → H . In the case G = H , the G-gradings Γ and
Γ′ are isomorphic if U and V are isomorphic as G-graded algebras, i.e., if there
exists an isomorphism of algebras ϕ : U → V such that ϕ(Ug) = Vg for all g ∈ G.

Given a grading Γ on U, the automorphism group, Aut(Γ), is the group of self-
equivalences of Γ. Each ϕ ∈ Aut(Γ) determines a permutation of the support,
which extends to an automorphism of the universal grading group G. Thus we
obtain a group homomorphism Aut(Γ) → Aut(G). The kernel of this homomor-
phism is called the stabilizer , Stab(Γ). In other words, Stab(Γ) consists of the
automorphisms of the G-graded algebra U. The quotient group, Aut(Γ)/ Stab(Γ),
can be regarded as a subgroup of Aut(G) and is called the Weyl group, W (Γ).

If Γ : U =
⊕

g∈G Ug and Γ′ : U =
⊕

h∈H U′
h are two gradings on the same

algebra, with supports S and T , respectively, then we will say that Γ′ is a re-

finement of Γ (or Γ is a coarsening of Γ′) if for any t ∈ T there exists (unique)
s ∈ S such that U′

t ⊂ Us. If, moreover, U′
t 6= Us for at least one t ∈ T , then the

refinement is said to be proper . Finally, Γ is said to be fine if it does not admit
any proper refinements.
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2.2 Structurable algebras. Let (A, )̄ be an algebra with involution over a field
F, i.e., a 7→ ā is an F-linear involutive antiautomorphism of A. We will use the
notation

H(A, )̄ = {a ∈ A | ā = a} and K(A, )̄ = {a ∈ A | ā = −a}.

If charF 6= 2 then A = H(A, )̄⊕K(A, )̄. The dimension of the subspace K(A, )̄
will be referred to as the skew-dimension of (A, )̄.

Definition 2. Suppose charF 6= 2, 3. An F-algebra with involution (A, )̄ is said
to be structurable if

(1) [Vx,y, Vz,w] = VVx,yz,w − Vz,Vy,xw for all x, y, z, w ∈ A,

where Vx,y(z) = {x, y, z} := (xȳ)z + (zȳ)x− (zx̄)y.

We will always assume that A is unital . In the case charF 6= 2, 3, it is shown
in [All78] that identity (1) implies that (A, )̄ is skew-alternative, i.e.,

(z − z̄, x, y) = −(x, z − z̄, y) = (x, y, z − z̄) for all x, y, z ∈ A,

where (a, b, c) := (ab)c − a(bc). In the case charF = 2 or 3, skew-alternativity is
taken as an additional axiom.

Denote by Z(A) the associative center of A (i.e., the set of elements z ∈ A

satisfying xz = zx and (z, x, y) = (x, z, y) = (x, y, z) = 0 for all x, y ∈ A). The
center of (A, )̄ is defined by Z(A, )̄ = Z(A) ∩ H(A, )̄. A (unital) structurable
algebra A is said to be central if Z(A, )̄ = F1.

Theorem 3 (Allison, Smirnov). If charF 6= 2, 3, 5, then any central simple struc-

turable F-algebra belongs to one of the following six (non-disjoint) classes:

(1) central simple associative algebras with involution,

(2) central simple Jordan algebras (with identity involution),
(3) structurable algebras constructed from a non-degenerate Hermitian form

over a central simple associative algebra with involution,

(4) forms of the tensor product of two composition algebras,

(5) simple structurable algebras of skew-dimension 1 (forms of structurable

matrix algebras),
(6) an exceptional 35-dimensional case (Kantor-Smirnov algebra), which can

be constructed from an octonion algebra. �

The classification was given by Allison in characteristic 0 (see [All78]), but
case (6) was overlooked. Later, Smirnov completed the classification and gave the
generalization for charF 6= 2, 3, 5 (see [Smi92]).

2.3 Structurable matrix algebras. Assume charF 6= 2, 3. Let J and J ′ be
vector spaces over F and consider a triple (T,N,N ′) where N and N ′ are symmet-
ric trilinear forms on J and J ′, respectively, and T : J×J ′ → F is a nondegenerate
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bilinear form. For any x, y ∈ J , x′, y′ ∈ J ′, define x× y ∈ J ′ and x′ × y′ ∈ J by

T (z, x× y) = N(x, y, z) and T (x′ × y′, z′) = N ′(x′, y′, z′)

for all z ∈ J , z′ ∈ J ′. For any x ∈ J and x′ ∈ J ′, define N(x) = 1
6N(x, x, x),

N ′(x′) = 1
6N

′(x′, x′, x′), x# = 1
2 x×x and x′# = 1

2 x
′×x′. If the triple (T,N,N ′)

satisfies the identities

(x#)# = N(x)x and (x′#)# = N ′(x′)x′

for all x ∈ J , x′ ∈ J ′, then the algebra

A =

{(
α x
x′ β

)
| α, β ∈ F, x ∈ J, x′ ∈ J ′

}
,

with multiplication

(2)

(
α x
x′ β

)(
γ y
y′ δ

)
=

(
αγ + T (x, y′) αy + δx+ x′ × y′

γx′ + βy′ + x× y T (y, x′) + βδ

)
,

and involution

(3)

(
α x
x′ β

)
−7→
(
β x
x′ α

)
,

is a central simple structurable algebra of skew-dimension 1, where the space of
skew elements is spanned by s0 =

(
1 0
0 −1

)
. These are called structurable matrix

algebras in [AF84], where it is shown (see Proposition 4.5) that, conversely, if
(A, )̄ is a simple structurable algebra with K(A, )̄ = Fs0 6= 0, then s20 = µ1 with
µ ∈ F×, and (A, )̄ is isomorphic to a structurable matrix algebra if and only if µ
is a square in F.

The triples (T,N,N ′), as above, that satisfy N 6= 0 (equivalently, N ′ 6= 0)
are called admissible triples in [All78], where it is noted that the corresponding
structurable algebras possess a nondegenerate symmetric bilinear form

(4) 〈a, b〉 = tr(ab̄), where tr

(
α x
x′ β

)
:= α+ β,

which is invariant in the sense that 〈ā, b̄〉 = 〈a, b〉 and 〈ca, b〉 = 〈a, c̄b〉 for all
a, b, c. The main source of admissible triples are Jordan algebras: if J is a sepa-
rable Jordan algebra of degree 3 with generic norm N and generic trace T , then
(ζT, ζN, ζ2N) is an admissible triple (with J ′ = J) for any nonzero ζ ∈ F. Note
that the map x 7→ λx and x′ 7→ λ2x′ is an isomorphism from (λ3T, λ3N, λ6N) to
(T,N,N), so over algebraically closed fields, we can get rid of ζ.

2.4 Cayley–Dickson doubling process for algebras with involution. Let
(B, )̄ be a unital F-algebra with involution, charF 6= 2, and let φ : B×B → F be
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a symmetric bilinear form such that φ(1, 1) 6= 0 and φ(b, 1) = φ(b̄, 1) for all b ∈ B.
Denote φ(b) = φ(b, 1) and define θ : B → B by

bθ = −b+ 2φ(b)

φ(1)
1.

Then θ is a linear map that commutes with the involution and satisfies θ2 = id
and φ(bθ1, b

θ
2) = φ(b1, b2) for all b1, b2 ∈ B. Given 0 6= µ ∈ F, define a new algebra

with involution CD(B, µ) := B⊕B where multiplication is given by

(5) (b1, b2)(c1, c2) = (b1c1 + µ(b2c
θ
2)
θ, bθ1c2 + (bθ2c

θ
1)
θ)

and involution is given by

(b1, b2) = (b̄1,−(b̄2)
θ).

Note that b ∈ B can be identified with (b, 0), that (0, b) = vb for v := (0, 1),
and v2 = µ1. Thus (b1, b2) = b1 + vb2 and CD(B, µ) = B ⊕ vB. Moreover,
the symmetric bilinear form φ can be extended to B ⊕ vB by setting φ(b1 +
vb2, c1 + vc2) = φ(b1, c1) − µφ(b2, c2); the extended φ satisfies φ(1, 1) 6= 0 and
φ(a, 1) = φ(ā, 1) for all a ∈ CD(B, µ).

This construction was introduced in [AF84] and called the (generalized) Cayley–
Dickson process because it reduces to the classical doubling process for a Hurwitz
algebra B if φ is the polar form of the norm and hence bθ = b̄ for all b ∈ B.

It is shown in [AF84] assuming charF 6= 2, 3 (see Theorem 6.6, where a slightly
more general situation is considered) that if B is a separable Jordan algebra of
degree 4, the involution is trivial and φ is the generic trace form, then CD(B, µ) is a
simple structurable algebra of skew-dimension 1. In fact, if µ is a square in F then
such CD(B, µ) is isomorphic to the structurable matrix algebra corresponding to
a certain admissible triple defined on the space B0 ⊂ B of elements with generic
trace 0 (Proposition 6.5).

So let B be a separable Jordan algebra of degree 4 and let A = CD(B, µ) as
above. We state some basic properties of A for future use: B is a subalgebra of
A, there is an element v ∈ B such that A = B ⊕ vB, and the involution of A is
given by a+ vb = a− vbθ where θ : B → B is a linear map defined by 1θ = 1 and
bθ = −b for all b ∈ B0. The operators Lv and Rv of left and right multiplication
by v, respectively, satisfy the relations L2

v = R2
v = µid and LvRv = RvLv = µθ

where we extended θ to an operator on A by the rule (a + vb)θ = aθ + vbθ. The
multiplication of A is determined by the formulas

(6) a(vb) = v(aθb), (va)b = v(aθbθ)θ, (va)(vb) = µ(abθ)θ,

for all a, b ∈ A. (This is equivalent to (5) if a, b ∈ B, but a straightforward
computation shows that the formulas continue to hold if we allow a and b to
range over A.)
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Since K(A, )̄ = Fv and v2 = µ1, all automorphisms of (A, )̄ send v to ±v and
all derivations of (A, )̄ annihilate v. Every automorphism (or derivation) ϕ of B
extends to A in the natural way: a + vb 7→ ϕ(a) + vϕ(b). We will denote this
extended map by the same symbol. Similarly, any G-grading B =

⊕
g∈GBg gives

rise to a G-grading on A, namely, A =
⊕

g∈G(Bg ⊕ vBg).

2.5 Brown algebras via Cayley–Dickson process. Assume charF 6= 2. The
split Brown algebra mentioned in the introduction can be obtained as the Cayley–
Dickson double of two different separable Jordan algebras of degree 4. We will
consider a more general situation.

Let Q be a quaternion algebra over F with its standard involution, q 7→ q̄.
The algebra M4(Q) is associative and has a natural involution (qij)

∗ = (qji),
so H4(Q) := {x ∈ M4(Q) | x∗ = x} is a Jordan algebra with respect to the
symmetrized product (x, y) 7→ 1

2 (xy + yx). This is a simple Jordan algebra of
degree 4 and dimension 28, so CD(H4(Q), µ) is a structurable algebra of dimension
56, for any µ ∈ F×.

Remark 4. If charF = 3, we cannot apply the results in [AF84] directly, but Q

can be obtained by “extension of scalars” from the “generic” quaternion algebra
Q̃ over the polynomial ring Z[X,Y ], hence H4(Q) can be obtained from the Jor-

dan algebra H4(Q̃) over Z[
1
2 ][X,Y ], and CD(H4(Q), µ) can be obtained from the

algebra CD(H4(Q̃), Z) over Z[ 12 ][X,Y, Z], which satisfies the required identities
because it is a subring with involution in a structurable algebra over the field
Q(X,Y, Z).

Let C be an octonion algebra over F. As in the case of quaternions, the standard
involution of C yields an involution on the (nonassociative) algebra M3(C). It is
well known that A = H3(C) (Albert algebra) is an exceptional Jordan algebra of
dimension 27. We will use the standard notation:

A = FE1 ⊕ FE2 ⊕ FE3 ⊕ ι1(C)⊕ ι2(C)⊕ ι3(C),

where

E1 =



1 0 0
0 0 0
0 0 0


 , E2 =



0 0 0
0 1 0
0 0 0


 , E3 =



0 0 0
0 0 0
0 0 1


 ,

ι1(a) = 2



0 0 0
0 0 ā
0 a 0


 , ι2(a) = 2



0 0 a
0 0 0
ā 0 0


 , ι3(a) = 2



0 ā 0
a 0 0
0 0 0


 ,

for any a ∈ C. Then Ei are orthogonal idempotents with E1 + E2 + E3 = 1, and
the remaining products are as follows:

Eiιi(a) = 0, Ei+1ιi(a) =
1

2
ιi(a) = Ei+2ιi(a),

ιi(a)ιi+1(b) = ιi+2(āb̄), ιi(a)ιi(b) = 2n(a, b)(Ei+1 + Ei+2),
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for all a, b ∈ C, with i = 1, 2, 3 taken modulo 3. (This convention about indices
will be used without further mention.)

The Jordan algebra A is simple. Any element x ∈ A satisfies the generic degree
3 equation x3 − T (x)x2 + S(x)x −N(x)1 = 0, for the linear form T (the generic
trace), the quadratic form S, and the cubic form N (the generic norm) given by:

T (x) = α1 + α2 + α3,

S(x) =
1

2

(
T (x)2 − T (x2)

)
=

3∑

i=1

(
αi+1αi+2 − 4n(ai)

)
,

N(x) = α1α2α3 + 8n(a1, ā2ā3)− 4

3∑

i=1

αin(ai),

for x =
∑3

i=1

(
αiEi + ιi(ai)

)
, where n is the norm of C.

Hence A × F is a separable Jordan algebra of degree 4 and dimension 28, so
CD(A× F, µ) is a structurable algebra of dimension 56, for any µ ∈ F×.

The connection between the above two Cayley–Dickson doubles is the following:
if C = CD(Q, µ), then CD(H4(Q), µ) is isomorphic to CD(A × F, µ). Indeed, we
have CD(H4(Q), µ) = H4(Q)⊕ vH4(Q) and CD(A × F, µ) = (A× F)⊕ v′(A × F)
with v2 = µ1 = v′2. For any a ∈ Q, define the elements of H4(Q):

ι′1(a) =




0 0 0 2a
0 0 0 0
0 0 0 0
2ā 0 0 0


 , ι′2(a) =




0 0 0 0
0 0 0 2a
0 0 0 0
0 2ā 0 0


 , ι′3(a) =




0 0 0 0
0 0 0 0
0 0 0 2a
0 0 2ā 0


 .

Then we have a Z2-grading on H4(Q) given by H4(Q)0̄ = diag(H3(Q),F) and

H4(Q)1̄ =
⊕3

j=1 ι
′
j(Q). The automorphism of order 2 producing this grading

can be extended to an automorphism of A = CD(H4(Q), µ) sending v to −v,
which also has order 2 and will be denoted by Υ. The fixed subalgebra of Υ is
B = diag(H3(Q),F)⊕

⊕3
j=1 vι

′
j(Q). The involution is trivial on B, so it is a Jordan

algebra. Since Lv is an invertible operator, the Z2-grading produced by Υ is A =
B⊕vB. Write C = Q⊕uQ with u2 = µ1. Then it is straightforward to verify that
the mapping ϕCD : B → A× F defined by diag(x, λ) 7→ (x, λ), for x ∈ H3(Q), λ ∈
F, and vι′j(a) 7→ (ιj(ua), 0), for a ∈ Q, is an isomorphism of algebras. Moreover,

we have ϕCD(bθ) = ϕCD(b)θ for all b ∈ B, so identities (6) for the algebra A imply
that ϕCD can be extended to an isomorphism ϕCD : CD(H4(Q), µ) → CD(A×F, µ)
sending v to v′.

Definition 5. Let Q be a quaternion algebra over F and let C = CD(Q, 1), so C

is the split octonion algebra and A = H3(C) is the split Albert algebra. Then the
structurable algebra CD(H4(Q), 1) ∼= CD(A× F, 1) will be referred to as the split

Brown algebra.
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2.6 Brown algebras as structurable matrix algebras. It is shown in [AF84],
assuming charF 6= 2, 3, that the admissible triple (T,N,N) arising from a sepa-
rable Jordan algebra J of degree 3 can be realized on the space of elements with
generic trace 0 in the separable Jordan algebra J × F of degree 4 (see Proposi-
tions 5.6 and 6.5) so that CD(J × F, 1) is isomorphic to the structurable matrix
algebra defined by (T,N,N). We will now exhibit this isomorphism for the case
J = A and see that it also works in the case charF = 3.

Remark 6. If charF = 3, we can still define “structurable matrix algebras” start-
ing from the cubic form N(x) and taking its polarization for the symmetric tri-
linear form N(x, y, z).

For the admissible triple (T,N,N) on A, we have x# := x2 − T (x)x + S(x)1
(Freudenthal adjoint), x × y = (x + y)# − x# − y# (Freudenthal cross product)
and S(x) = 1

2 (T (x)
2 − T (x2)) for any x, y ∈ A, hence we have the identities

(7) x× x = 2x2 − 2T (x)x+
(
T (x)2 − T (x2)

)
1 and x× 1 = T (x)1− x.

Let Ã be the corresponding structurable matrix algebra and let s0 =
(
1 0
0 −1

)
, so

s0 spans the space of skew elements and s20 = 1. For x ∈ A, denote η(x) = ( 0 x0 0 )

and η′(x) = ( 0 0
x 0 ). The subalgebra B̃ := {η(x) + η′(x) + λ1 | x ∈ A, λ ∈ F} of

Ã consists of symmetric elements, so it is a Jordan algebra. We claim that it is
isomorphic to A× F. Indeed, define a linear injection ι : A → B̃ by setting ι(x) =
1
4

(
η(2x−T (x)1)+η′(2x−T (x)1)+T (x)1

)
for all x ∈ A. Using identities (7), one

verifies that ι(x)2 = ι(x2), so ι is a nonunital monomorphism of algebras. Then

eA = ι(1) and eF = 1 − eA are orthogonal idempotents and B̃ = ι(A) ⊕ FeF. We

conclude that A×F → B̃, (x, λ) 7→ ι(x)+λeF, is an isomorphism of algebras. This

isomorphism extends to an isomorphism CD(A×F, 1) = (A×F)⊕ v′(A×F) → Ã

sending v′ to s0. (The bilinear form φ(a, b) in the Cayley–Dickson construction
corresponds to 2tr(ab̄) on the structurable matrix algebra.)

3. A construction in terms of the double of H4(Q)

Let Q be the split quaternion algebra over a field F, charF 6= 2, i.e., Q ∼=M2(F)
and the standard involution switches E11 with E22 and multiplies both E12 and
E21 by −1. The subalgebra K = span {E11, E22} is isomorphic to F × F with
exchange involution.

Consider the associative algebra M4(Q) with involution (qij)
∗ = (qji). Since

M4(Q) ∼=M4(F)⊗Q, we can alternatively write the elements ofM4(Q) as sums of
tensor products or as 2× 2 matrices over M4(F). The involution on M4(Q) is the
tensor product of matrix transpose x 7→ xt on M4(F) and the standard involution
on Q. Consider the Jordan subalgebra of symmetric elements

H4(Q) =

{(
z x
y zt

)
| x, y, z ∈M4(F), x

t = −x, yt = −y
}
.



294 D. Aranda, A. Elduque, M. Kochetov

Note that the subalgebra H4(K) ⊂ H4(Q) is isomorphic to M4(F)
(+)

.
Let J = H4(Q) and define A = CD(J, 1) = J⊕vJ as in Subsection 2.5. We want

to construct a Z3
4-grading on A assuming F contains a 4-th root of unity i. The

construction will proceed in two steps: first we define a Z4-grading on A and then
refine it using two commuting automorphisms of order 4. Hence, the subalgebra
H4(K)⊕vH4(K) will carry a Z2×Z2

4-grading. The elements of Z4 will be written
as integers with a bar.

The even components of the Z4-grading are just A0̄ = H4(K) and A2̄ =
vH4(K). The odd components are as follows:

A1̄ = {x⊗E12 + v(y⊗E21) | x, y ∈M4(F), x
t = −x, yt = −y} and

A3̄ = {x⊗E21 + v(y⊗E12) | x, y ∈M4(F), x
t = −x, yt = −y} = vA1̄.

It is straightforward to verify that A = A0̄⊕A1̄⊕A2̄⊕A3̄ is indeed a Z4-grading.
Moreover, the coarsening induced by the quotient map Z4 → Z2 is the Z2-grading
obtained by extending the standard Z2-grading of Q =M2(F).

The algebra M4(F) has a Z2
4-grading associated to the generalized Pauli ma-

trices:

X =




1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i


 and Y =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 ,

namely, the component of degree (k̄, ℓ̄) is FXkY ℓ. This grading is the eigenspace
decomposition with respect to the commuting order 4 automorphisms AdX and

AdY . Note that the group GL4(F) acts on H4(Q) via g 7→ Ad
(
g 0

0 (gt)−1

)
. Indeed,

this matrix is unitary with respect to our involution on M4(Q) and hence the
conjugation leaves the space H4(Q) invariant. Explicitly, the action on H4(Q) is
the following:

(8) g ·
(
z x
y zt

)
=

(
gzg−1 gxgt

(g−1)tyg−1 (gzg−1)t

)
,

for all x, y, z ∈M4(F) with x
t = −x and yt = −y.

Substituting X and Y for g, we obtain two order 4 automorphisms of H4(Q),
which will be denoted by ϕ and ψ, respectively. Observe, however, that ϕ and
ψ do not commute: their commutator is the identity on the even component of
H4(Q), relative to the standard Z2-grading of Q, and the negative identity on the
odd component. In fact, the classification of gradings on H4(Q) is the same as
on the (split) Lie algebra of type C4 (since our involution on M4(Q) ∼= M8(F) is
symplectic), and the latter algebra does not admit a group grading whose support
generates Z2

4. The good news is that the extensions of ϕ and ψ (which we denote
by the same letters) preserve the Z4-grading of A, so each of them can be used
to refine it to a Z2

4-grading.



A Z3

4
-grading on a 56-dimensional simple structurable algebra 295

To resolve the difficulty described above, we are going to construct another
order 4 automorphism π of A preserving the Z4-grading and use π to make a
correction to ϕ. We want π to be the identity on the even component A0̄ ⊕ A2̄

and switch around the terms containing E12 and E21 for the elements in the odd
component A1̄ ⊕ A3̄. Observe that the spaces U = {x⊗E12 | xt = −x} and
V = {y⊗E21 | yt = −y} are dual GL4(F)-modules with respect to the action
(8). Formally, their duality can be established via the invariant nondegenerate
pairing (x⊗E12, y⊗E21) = − 1

2 tr(xy), which is a scaling of the restriction of the
trace form of M8(F). Under this pairing, the bases of skew-symmetrized matrix
units are dual to each other. Recall that, for any skew-symmetric matrix x of
size 2k, we have det(x) = pf(x)2 where pf(x), called Pfaffian, is a homogeneous
polynomial of degree k in the entries of x. An important property of Pfaffian
is pf(gxgt) = det(g)pf(x) for any g and skew-symmetric x, so pf(x) is invariant
under the action of SL2k(F) on the space K2k(F) given by g ·x = gxgt. For k = 2,
the Pfaffian is a nondegenerate quadratic form, namely,

pf(x) = x12x34 − x13x24 + x14x23 for all x ∈ K4(F),

so it can be used to identify the SL4(F)-module K4(F) with its dual module.
Identifying U with K4(F) and V with K4(F)

∗ as above, we obtain an SL4(F)-
equivariant isomorphism U → V . Using the basis of skew-symmetrized matrix
units in K4(F), we immediately see that the isomorphism is given by x⊗E12 7→
x̂⊗E21 where

(9) if x =




0 α β γ
0 δ ε

0 ζ
skew 0


 then x̂ =




0 ζ −ε δ
0 γ −β

0 α
skew 0


 .

By construction, we have ĝ · x = (g−1)t · x̂ for all g ∈ SL4(F). This implies that,
more generally,

(10) ĝxgt = det(g)(g−1)tx̂g−1 for all x ∈ K4(F) and g ∈ GL4(F),

and also, passing to the corresponding Lie algebra,

(11) ̂zx+ xzt = tr(z)x̂− (ztx̂+ x̂z) for all x ∈ K4(F) and z ∈ gl4(F).

Finally, we define π : A → A as identity on A0̄ ⊕A2̄ and

(12)
π(x⊗E12) = −v(x̂⊗E21), π(v(x⊗E12)) = −x̂⊗E21,
π(x⊗E21) = v(x̂⊗E12), π(v(x⊗E21)) = x̂⊗E12.

Clearly, π preserves the Z4-grading and π4 = id.

Lemma 7. The map π is an automorphism of A.
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Proof: For ai =
(
zi xi

yi z
t
i

)
∈ H4(Q), i = 1, 2, we have, on the one hand,

π(a1a2) =
1

2
π

(
(z1z2 + z2z1) + (x1y2 + x2y1) (z1x2 + x2z

t
1) + (z2x1 + x1z

t
2)

(zt1y2 + y2z1) + (zt2y1 + y1z2)
(
(z1z2 + z2z1) + (x1y2 + x2y1)

)t
)

=
1

2

(
(z1z2 + z2z1) + (x1y2 + x2y1) 0

0
(
(z1z2 + z2z1) + (x1y2 + x2y1)

)t
)

+
1

2
v

(
0 ( ̂zt1y2 + y2z1) + ( ̂zt2y1 + y1z2)

−( ̂z1x2 + x2zt1)− ( ̂z2x1 + x1zt2) 0

)

and, on the other hand,

π(a1)π(a2) =

((
z1 0
0 zt1

)
+ v

(
0 ŷ1

−x̂1 0

))((
z2 0
0 zt2

)
+ v

(
0 ŷ2

−x̂2 0

))

=
1

2

(
z1z2 + z2z1 0

0 (z1z2 + z2z1)
t

)
+

1

2

(
ŷ1x̂2 + ŷ2x̂1 0

0 x̂1ŷ2 + x̂2ŷ1

)θ

+
1

2
v

(
tr(z1)

(
0 ŷ2

−x̂2 0

)
−
(

0 z1ŷ2 + ŷ2z
t
1

−zt1x̂2 − x̂2z1 0

))

+
1

2
v

(
tr(z2)

(
0 ŷ1

−x̂1 0

)
−
(

0 z2ŷ1 + ŷ1z
t
2

−zt2x̂1 − x̂1z2 0

))
.

Examining the two expressions and taking into account identities (11) above, and
(13) below, we see that π(a1a2) = π(a1)π(a2). The identity

(13) xy + ŷx̂ =
1

2
tr(xy)1 for all x, y ∈ K4(F)

can be verified by a direct computation, but it is a consequence of the fact that
both (x, y) 7→ xŷ + yx̂ and (x, y) 7→ tr(xŷ)1 are symmetric bilinear SL4(F)-
equivariant maps K4(F) × K4(F) → M4(F), and the space of such maps has
dimension 1.

It remains to observe that π commutes with the left multiplication by v and
with θ (hence also with the right multiplication by v), so we compute:

π((va)b) = π(v(aθbθ)θ) = v(π(aθbθ))θ = v(π(a)θπ(b)θ)θ = (vπ(a))π(b)

= π(va)π(b),

π(a(vb)) = π(v(aθb)) = vπ(aθb) = v(π(a)θπ(b)) = π(a)(vπ(b))

= π(a)π(vb),

π((va)(vb)) = π((abθ)θ) = π(abθ)θ = (π(a)π(b)θ)θ = (vπ(a))(vπ(b))

= π(va)π(vb),

for all a, b ∈ H4(Q), where we have made use of identities (6). �



A Z3

4
-grading on a 56-dimensional simple structurable algebra 297

Remark 8. Identity (13) is equivalent to xx̂ = −pf(x)1, i.e., x̂ is the negative of
the so-called Pfaffian adjoint of x.

Now that we have the automorphism π, it is easy to construct the Z3
4-grading

on A. It follows from (8), (10) and the fact det(X) = det(Y ) = −1 that π
commutes with each of ϕ and ψ on A0̄ ⊕ A2̄ and anticommutes on A1̄ ⊕ A3̄.

We will keep ψ and replace ϕ by the composition of π and the action of X̃ =
diag(ω, ω3, ω5, ω7) given by (8), where ω2 = i. (We can temporarily extend F if
necessary so that it contains such an element.) We will denote this composition

by ϕ̃. Since X̃ is a scalar multiple of X , its action still commutes with the action

of Y on A0̄ ⊕ A2̄ and anticommutes on A1̄ ⊕ A3̄. But det(X̃) = 1, so the action

of X̃ commutes with π everywhere. Therefore, ϕ̃ and ψ are commuting order 4
automorphisms of A. Since they preserve the Z4-grading, taking the eigenspace
decomposition of each component with respect to ϕ̃ and ψ is the desired Z3

4-
grading of A.

Let us calculate the homogeneous elements. The matrices XkY ℓ form a basis
of M4(F) and are eigenvectors for AdX with eigenvalues (−i)ℓ and for AdY with
eigenvalues ik, where k, ℓ = 0, 1, 2, 3. Taking the convention that

A(j̄,k̄,ℓ̄) = {a ∈ Aj̄ | ψ(a) = ik, ϕ̃(a) = (−i)ℓ}

and recalling that on A0̄ ⊕ A2̄ the automorphisms ϕ̃ and ψ act as X and Y ,
respectively, we see that

A(0̄,k̄,ℓ̄) = F(XkY ℓ⊗E11 + (XkY ℓ)t⊗E22);

A(2̄,k̄,ℓ̄) = Fv(XkY ℓ⊗E11 + (XkY ℓ)t⊗E22).

To find the homogeneous elements in A1̄ and A3̄, we will use the matrices

ξ1,2 =









0 1 0 ∓1
0 ±1 0

0 1
skew 0









, ξ3,4 =









0 1 0 ±i

0 ±i 0
0 −1

skew 0









, ξ5,6 =









0 0 1 0
0 0 ±i

0 0
skew 0









as a basis for K4(F). They are eigenvectors for the action of Y , with eigenvalues
±1, ±i and ±i, respectively. Hence, the elements ξi⊗E12 and v(ξi⊗E21) of A1̄

have the same eigenvalues with respect to ψ. (We are using the fact Y t = Y −1.)
Finally, the action of ϕ̃ on A1̄ is given by

ϕ̃(x⊗E12 + v(y⊗E21)) = X̃ŷX̃t⊗E12 − v((X̃−1)tx̂X̃−1⊗E21).

One checks using (9) that, for i = 1, 2, 3, 4, the elements ξi⊗E12 ± iv(ξi⊗E21)
are eigenvectors with respect to ϕ̃. Their eigenvalues are ∓i if i = 1 or 2, and ±i if
i = 3 or 4. Also, for i = 5, 6, the elements ξi⊗E12 ± v(ξi⊗E21) are eigenvectors
with respect to ϕ̃, with eigenvalues ±1. Putting this information together, we
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obtain:

A(1̄,0̄,ℓ̄) = F(ξ1 ⊗E12 + iℓv(ξ1 ⊗E21)), ℓ = 1, 3;

A(1̄,2̄,ℓ̄) = F(ξ2 ⊗E12 + iℓv(ξ2 ⊗E21)), ℓ = 1, 3;

A(1̄,1̄,ℓ̄) = F(ξ3 ⊗E12 − iℓv(ξ3 ⊗E21)), ℓ = 1, 3;

A(1̄,3̄,ℓ̄) = F(ξ4 ⊗E12 − iℓv(ξ4 ⊗E21)), ℓ = 1, 3;

A(1̄,1̄,ℓ̄) = F(ξ5 ⊗E12 + iℓv(ξ5 ⊗E21)), ℓ = 0, 2;

A(1̄,3̄,ℓ̄) = F(ξ6 ⊗E12 + iℓv(ξ6 ⊗E21)), ℓ = 0, 2.

Since v is homogeneous of degree (2̄, 0̄, 0̄), each component A(3̄,k̄,ℓ̄) can be ob-
tained from A(1̄,k̄,ℓ̄) using left multiplication by v, which amounts to switching
E12 and E21 and replacing i by −i.

Since all homogeneous components have dimension 1, our Z3
4-grading on A is

fine. The support is a proper subset of Z3
4, which can be characterized as follows

using the distinguished element g0 = (2̄, 0̄, 0̄) (the degree of v): an element g does
not belong to the support if and only if 2g = g0.

4. A construction in terms of structurable matrix algebra

In this section, we will construct a Z3
4-grading for the model of the split Brown

algebra as in Subsection 2.6, assuming F contains a 4-th root of unity i. Let C

be the split octonion algebra and let A = H3(C) be the split Albert algebra, with
generic trace T and generic norm N . Consider the structurable matrix algebra
A associated to the admissible triple (T,N,N), i.e., the product is given by (2)
and the involution is given by (3). Note that the Freudenthal cross product on
A, which appears in (2), is given by:

i) Ei × Ei+1 = Ei+2, Ei × Ei = 0,
ii) Ei × ιi(x) = −ιi(x), Ei × ιi+1(x) = 0 = Ei × ιi+2(x),
iii) ιi(x)× ιi(y) = −4n(x, y)Ei, ιi(x)× ιi+1(y) = 2ιi+2(x̄ȳ).

As shown in [AM99], for the Z3
2-grading on the split Cayley algebra C one can

choose a homogeneous basis {xg | g ∈ Z3
2} such that the product is given by

xgxh = σ(g, h)xg+h where

σ(g, h) = (−1)ψ(g,h),

ψ(g, h) = h1g2g3 + g1h2g3 + g1g2h3 +
∑

i≤j
gihj.

Consider the para-Cayley algebra associated to C, i.e., the same vector space with
the new product x ∗ y = x̄ȳ. Note that xg ∗ xh = γ(g, h)xg+h where
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γ(g, h) = s(g)s(h)σ(g, h),

s(g) = (−1)φ(g),

φ(g) =
∑

i

gi +
∑

i<j

gigj + g1g2g3,

because s(g) = −1 if g 6= 0 and s(0) = 1, so x̄g = s(g)xg for all g ∈ Z3
2.

Denote a0 = 0, a1 = (0̄, 1̄, 0̄), a2 = (1̄, 0̄, 0̄), a3 = a1 + a2, g0 = (0̄, 0̄, 1̄) in
Z3
2. We will consider the quaternion algebra Q = span {xai} with the ordered

basis BQ = {xai | i = 0, 1, 2, 3}, and Q⊥ = span {xg0+ai} with the ordered basis
BQ⊥ = {xg0+ai | i = 0, 1, 2, 3}. Thus, BC = BQ ∪BQ⊥ is an ordered basis of C. It
will be convenient to write the values γ(g, h) as an 8× 8 matrix according to this
ordering and split this matrix into 4× 4 blocks: γ = ( γ11 γ12γ21 γ22 ), so γ11 records the
values for the support of Q, etc., and similarly for γ(g, h).

A straightforward calculation shows that

γ11 =









1 −1 −1 −1
−1 −1 1 −1
−1 −1 −1 1
−1 1 −1 −1









, γ12 =









−1 −1 −1 −1
−1 1 −1 1
−1 1 1 −1
−1 −1 1 1









,

γ21 =









−1 1 1 1
−1 −1 −1 1
−1 1 −1 −1
−1 −1 1 −1









, γ22 =









−1 −1 −1 −1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1









.

(14)

Define σj(h) := σ(aj , g0 + h) for any h ∈ Supp Q⊥, j = 1, 2, 3. Note that the
matrix of σ(aj , g0+h), h ∈ BQ⊥ , coincides with the matrix σ11, which is given by

(15) σ11 = (σ(aj , ak))j,k =




1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1


 .

We will need the following result in our construction of the Z3
4-grading on A.

Lemma 9. The basis BC = BQ ∪BQ⊥ of C has the following properties:

(P11) γ(g, g′) = γ(g + aj , g
′ + aj+1),

(P22) γ(h, h′) = σj(h)σj+1(h
′)γ(h+ aj , h

′ + aj+1),
(P12) γ(g, h) = σj+1(h)σj+2(g + h)γ(g + aj , h+ aj+1),
(P21) γ(h, g) = σj(h)σj+2(g + h)γ(h+ aj , g + aj+1),

for all g, g′ ∈ Supp Q, h, h′ ∈ Supp Q⊥ and j ∈ {1, 2, 3}.
Proof: To shorten the proof, we will use matrices, but we need to introduce
some notation. For j = 1, 2, 3, let σj be the column of values σj(h), h ∈ Supp Q⊥,
i.e., σj is the transpose of the corresponding row of matrix σ11. We will denote
by · the entry-wise product of matrices. (It is interesting to note that the rows
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and columns of σ11 are the characters of Z2
2, which is related to the obvious fact

σj · σj+1 = σj+2.) Denote Mσj
= [σj |σj |σj |σj ] (the column σj repeated 4 times),

and define the permutation matrices

P1 =

[
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

]
and P2 =

[
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

]
.

Note that the properties asserted in this lemma possess a cyclic symmetry in
j = 1, 2, 3 (as can be checked in the four blocks of γ), so it suffices to verify them for
j = 1. Then, property (P11) can be written as γ11 = P1γ11P2, because P1γ11P2 is
the matrix associated to γ(g+a1, g

′+a2). Similarly, property (P22) can be written
as γ22 =Mσ1

·(P1γ22P2)·M t
σ2
. Note that σ is multiplicative in the second variable

(because ψ is linear in the second variable), so σ3(g + h) = σ(a3, g + g0 + h) =
σ(a3, g)σ(a3, g0+h) = σ3(g0+g)σ3(h). Therefore, (P12) and (P21) can be written
as γ12 = Mσ3

· (P1γ12P2) · M t
σ2·σ3

and γ21 = Mσ1·σ3
· (P1γ21P2) · M t

σ3
. It is

straightforward to check these four matrix equations. �

We will consider Z3
2 as a subgroup of Z3

4 via the embedding a1 7→ (0̄, 2̄, 0̄),
a2 7→ (0̄, 0̄, 2̄), a3 7→ (0̄, 2̄, 2̄) and g0 7→ (2̄, 0̄, 0̄), so we can assume that γ and
σ are defined on a subgroup of Z3

4 and take values as recorded in matrices (14)
and (15). Define b1 = (0̄, 1̄, 0̄), b2 = (0̄, 0̄, 1̄) and b3 = −b1 − b2 in Z3

4. Note that∑
bj = 0 and aj 7→ 2bj under the embedding.
Now we will define a Z3

4-grading on A by specifying a homogeneous basis. For
each g ∈ Supp Q, h ∈ Supp Q⊥ and j ∈ {1, 2, 3}, consider the elements of A:

αj,g :=

(
0 ιj(xg)

ιj(xg+aj ) 0

)
, α′

j,h :=

(
0 σj(h)iιj(xh)

ιj(xh+aj ) 0

)
,

εj :=

(
0 Ej
Ej 0

)
, ε′j := εjs0 =

(
0 −Ej
Ej 0

)
.

Then BA = {1, s0, αj,g, αj,gs0, α′
j,h, α

′
j,hs0, εj, ε

′
j} is a basis of A. Set

(16)

deg(1) := 0, deg(εj) := aj,
deg(αj,g) := bj + g, deg(α′

j,h) := (1̄, 0̄, 0̄) + bj + h,

deg(xs0) := deg(x) + g0 for x ∈ {1, αj,g, α′
j,h, εj}.

To check that (16) defines a Z3
4-grading, we compute the products of basis

elements.

Proposition 10. For any elements x, y ∈ BA \ {1, s0}, if deg(x) + deg(y) 6= g0
then xy = yx, and otherwise xy = −yx. The products of the elements of BA are

then determined as follows:

i) s20 = ε2j = 1 = −ε′2j , εjεj+1 = εj+2,

ii) εjε
′
j = s0, ε

′
jε

′
j+1 = εj+2, εjε

′
j+1 = −ε′j+2, εj+1ε

′
j = −ε′j+2,

iii) εjαj,g = ε′j(αj,gs0) = −αj,g+aj , εj(αj,gs0) = ε′jαj,g = αj,g+ajs0,

iv) εjα
′
j,h = ε′j(α

′
j,hs0) = −iσj(h)α

′
j,h+aj

, εj(α
′
j,hs0) = ε′jα

′
j,h = iσj(h)α

′
j,h+aj

s0,
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v) εjαk,g = εjα
′
k,h = ε′jαk,g = ε′jα

′
k,h = 0 if j 6= k,

vi) α2
j,g = (αj,gs0)

2 = −8εj, αj,gαj,g+aj = −(αj,gs0)(αj,g+ajs0) = 8,
vii) αj,g(αj,gs0) = 8ε′j, αj,g(αj,g+ajs0) = 8s0,

viii) α′2
j,h = (α′

j,hs0)
2 = 8ε′j, α

′
j,hα

′
j,h+aj

= −(α′
j,hs0)(α

′
j,h+aj

s0) = 8iσj(h)s0,

ix) α′
j,h(α

′
j,hs0) = −8εj, α

′
j,h(α

′
j,h+aj

s0) = 8iσj(h),

x) αj,gαj,g′ = αj,g(αj,g′s0) = (αj,gs0)(αj,g′s0) = 0 if g′ /∈ {g, g + aj},
xi) α′

j,hα
′
j,h′ = α′

j,h(α
′
j,h′s0) = (α′

j,hs0)(α
′
j,h′s0) = 0 if h′ /∈ {h, h+ aj},

xii) αj,gα
′
j,h = (αj,gs0)α

′
j,h = αj,g(α

′
j,hs0) = (αj,gs0)(α

′
j,hs0) = 0,

xiii) αj,gαj+1,g′ = (αj,gs0)(αj+1,g′s0) = 2γ(g, g′)αj+2,g+g′+aj+2
,

xiv) (αj,gs0)αj+1,g′ = αj,g(αj+1,g′s0) = −2γ(g, g′)αj+2,g+g′+aj+2
s0,

xv) αj,gα
′
j+1,h = (αj,gs0)(α

′
j+1,hs0) = 2iσj+1(h)γ(g, h)α

′
j+2,g+h+aj+2

,

xvi) (αj,gs0)α
′
j+1,h = αj,g(α

′
j+1,hs0) = −2iσj+1(h)γ(g, h)α

′
j+2,g+h+aj+2

s0,

xvii) α′
j,hαj+1,g = (α′

j,hs0)(αj+1,gs0) = 2iσj(h)γ(h, g)α
′
j+2,h+g+aj+2

,

xviii) (α′
j,hs0)αj+1,g = α′

j,h(αj+1,gs0) = −2iσj(h)γ(h, g)α
′
j+2,h+g+aj+2

s0,

xix) α′
j,hα

′
j+1,h′ = (α′

j,hs0)(α
′
j+1,h′s0) = −2γ(h+aj, h

′+aj+1)αj+2,h+h′+aj+2
s0,

xx) (α′
j,hs0)α

′
j+1,h′ = α′

j,h(α
′
j+1,h′s0) = 2γ(h+ aj , h

′ + aj+1)αj+2,h+h′+aj+2
.

Proof: For the first assertion, observe that x and y are symmetric with respect to
the involution, while xy is symmetric if deg(x)+deg(y) 6= g0 and skew otherwise.

Equations from i) to xii) are easily checked. For iv), viii) and ix), we use the
property σj(h+ aj) = −σj(h), which is a consequence of σ(aj , aj) = −1 and the
multiplicativity of σ in the second variable.

The first equation in all cases from xiii) to xx) is easy to check, too. Also
note that (αj,gs0)αj+1,g′ = −(αj,gαj+1,g′ )s0, so case xiv) is a consequence of
xiii). Similarly, cases xvi), xviii) and xx) are consequences of xv), xvii) and xix),
respectively. It remains to check the second equation for the cases xiii), xv), xvii)
and xix).

In xiii), equation αj,gαj+1,g′ = 2γ(g, g′)αj+2,g+g′+aj+2
can be established using

property (P11). Indeed, αj,gαj+1,g′ = η(2ιj+2(x̄g+aj x̄g′+aj+1
))+η′(2ιj+2(x̄g x̄g′)) =

2γ(g, g′)αj+2,g+g′+aj+2
, because x̄g+aj x̄g′+aj+1

= γ(g+aj , g
′+aj+1)xg+g′+aj+2

=
γ(g, g′)xg+g′+aj+2

and x̄gx̄g′ = γ(g, g′)xg+g′ .
In xix), we use property (P22) to obtain α′

j,hα
′
j+1,h′ = η(2ιj+2(x̄h+aj x̄h′+aj+1

))

+η′(2ιj+2(−σj(h)σj+1(h
′)x̄hx̄h′)) = −2γ(h+aj, h

′+aj+1)[η(ιj+2(−xh+h′+aj+2
))+

η′(ιj+2(xh+h′))] = −2γ(h+ aj , h
′ + aj+1)αj+2,h+h′+aj+2

s0.
Finally, to complete cases xv) and xvii), we use property (P12), respectively

(P21), and the fact σj(h + aj) = −σj(h) to deduce, with the same arguments
as above, that αj,gα

′
j+1,h = 2iσj+1(h)γ(g, h)α

′
j+2,g+h+aj+2

and α′
j,hαj+1,g =

2iσj(h)γ(h, g)α
′
j+2,h+g+aj+2

. �

Clearly, all products in Proposition 10 are either zero or have the correct degree
to make (16) a Z3

4-grading of the algebra A. Moreover, Z3
4 is the universal grading

group.
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Remark 11. The grading given by (16) restricts to a Z2
4-grading on the subalgebra

spanned by {1, εj, αj,g | g ∈ Supp Q}, which is isomorphic to H4(K) ∼=M4(F)
(+).

Remark 12. For any (finite-dimensional) structurable algebra X, an element x ∈ X

is said to be (conjugate) invertible if there exists x̂ ∈ X such that Vx,x̂ = id
(equivalently, Vx̂,x = id) — see [AF92] and references therein. If x is invertible
then the operator Ux(y) := {x, y, x} is invertible and x̂ = U−1

x (x), so x̂ is uniquely
determined. In the case when X is a Jordan algebra, x̂ coincides with the inverse
of x in the Jordan sense, whereas in the case when X is a composition algebra, x̂
coincides with the conjugate of the inverse of x in the sense of alternative algebras
(hence the terminology). In the case of the Brown algebra, s0 is invertible, with
(s0 )̂ = −s0, and any element x is invertible if and only if ψ(x, Ux(s0x)) 6= 0,
with x̂ = 2ψ(x, Ux(s0x))̂ Ux(s0x), where ψ : A → Fs0 is defined by ψ(x, y) :=
xȳ − yx̄ ([AF92, Proposition 5.4]). It is straightforward to verify that nonzero
homogeneous elements in grading (16) are invertible, with (εj )̂ = εj , (αj,g )̂ =
1
8αj,g+aj , (α

′
j,h)̂ = − iσj(h)

8 α′
j,h+aj

s0, and (xs0 )̂ = −x̂s0.

Remark 13. Denote by Γ+ the grading (16). With a slight modification, we can
define a new Z3

4-grading Γ−, determined by

(17) deg(α1,0) := b1, deg(α2,0) := b2, deg(α′
1,g0s0) := (1̄, 0̄, 0̄) + b1 + g0.

Although Γ+ and Γ− are equivalent, they are not isomorphic. Indeed, we can write
(α1,0α2,0)α

′
1,g0 = λ1α1,0(α2,0α

′
1,g0) and (α1,0α2,0)(α

′
1,g0s0) = λ2α1,0(α2,0(α

′
1,g0s0))

for some λi ∈ F. If Γ+ and Γ− were isomorphic, we would have λ1 = λ2. But a
straightforward computation shows that λ1 = −i and λ2 = i, which implies that
Γ+ and Γ− are not isomorphic.

5. A recognition theorem

The goal of this section is to prove the following result:

Theorem 14. Let A be the Brown algebra over an algebraically closed field F,

charF 6= 2, 3. Then, up to equivalence, there is a unique Z3
4-grading on A such

that all nonzero homogeneous components have dimension 1.

To this end, we will need some general results about gradings on A and the
action of the group Aut(A, )̄, which contains an algebraic group of type E6 as
a subgroup of index 2 (see [Gar01]). The arguments in [Gar01] also give that
Der(A, )̄ is the simple Lie algebra of type E6 (see also [All79]). We will use the
model of A described in Subsection 2.6. We assume that F is algebraically closed
and charF 6= 2, although some of the results do not require algebraic closure.

5.1 Group gradings on A. Recall from (4) the trace form on A and the bilinear
form 〈a, b〉 = tr(ab̄).

Lemma 15. The trace form on A has the following properties.

i) If a2 = 0 and ā = a, then tr(a) = 0.
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ii) 〈a, b〉 is a nondegenerate symmetric bilinear form.

iii) 〈a, b〉 is an invariant form: 〈ā, b̄〉 = 〈a, b〉 and 〈ca, b〉 = 〈a, c̄b〉.
iv) For any group grading A =

⊕
g∈GAg, gh 6= e implies 〈Ag,Ah〉 = 0.

Proof: i) Since ā = a, we have a = ( α x
x′ α ) and tr(a) = 2α. Moreover,

(18) 0 = a2 =

(
α2 + T (x, x′) 2αx+ x′ × x′

2αx′ + x× x α2 + T (x, x′)

)
,

so α2+T (x, x′) = 0, αx = −x′# and αx′ = −x#. In case x = 0 or x′ = 0, we have
0 = tr(a2) = 2α2, so α = 0 and hence tr(a) = 0. Now assume that x 6= 0 6= x′

but α 6= 0. Since (x#)# = N(x)x for any x ∈ A (see e.g. [McC69, Eq. (4)]),
we get αx = −x′# = −(−α−1x#)# = −α−2N(x)x. Thus −α3x = N(x)x, and
similarly −α3x′ = N(x′)x′, which implies N(x) = N(x′) = −α3 6= 0. But then
T (x, x′) = T (x(−α−1)x#) = −3α−1N(x) = 3α2 and α2 + T (x, x′) = 4α2 6= 0,
which contradicts the equation α2+T (x, x′) = 0. Therefore, α = 0 and tr(a) = 0.

ii) Since tr is invariant under the involution, 〈a, b〉 = tr(ab̄) = tr(ab̄) = tr(bā) =
〈b, a〉, so 〈·, ·〉 is symmetric. The nondegeneracy of the bilinear form 〈·, ·〉 is a
consequence of the nondegeneracy of the trace form T of A.

iii) It is easy to see that tr(ab) = tr(ba). Hence 〈ā, b̄〉 = tr(āb) = tr(bā) =
tr(bā) = tr(ab̄) = 〈a, b〉. Using the fact that T (x× y, z) = N(x, y, z) is symmetric
in the three variables, it is straightforward to check that 〈ca, b〉 = 〈a, c̄b〉.

iv) Observe that the restriction of tr to the subspace A0 := Fs0 ⊕ ker(id +
Ls0Rs0) is zero, and A = F1 ⊕ A0, so A0 equals the kernel of tr. Now, Fs0 is a
graded subspace and s20 = 1, hence s0 is a homogeneous element and its degree
has order at most 2. It follows that A0 is a graded subspace. Therefore, Ag ⊂ A0

for any g 6= e. The result follows. �

Lemma 16. For any G-grading on A and a subgroup H ⊂ G such that deg(s0) /∈
H , B =

⊕
h∈H Ah is a semisimple Jordan algebra of degree ≤ 4.

Proof: Since deg(s0) /∈ H , the involution is trivial on B, so B is a Jordan
algebra. By Lemma 15(ii), the symmetric form 〈·, ·〉 is nondegenerate on A. By
(iv), the subspaces Ag and Ag−1 are paired by 〈·, ·〉 for any g ∈ G. It follows that
the restriction of 〈·, ·〉 to B is nondegenerate. Moreover, (iii) implies that this
restriction is associative in the sense 〈ab, c〉 = 〈a, bc〉 for all a, b, c ∈ B.

Suppose I is an ideal of B satisfying I2 = 0. For any a ∈ I and b ∈ B, we have
ab ∈ I and hence (ab)2 = 0. By Lemma 15(i), this implies tr(ab) = 0. We have
shown that 〈I,B〉 = 0, so I = 0. By Dieudonné’s Lemma, we conclude that B is
a direct sum of simple ideals.

The conjugate norm of a structurable algebra was defined in [AF92] as the exact
denominator of the (conjugate) inversion map (i.e., the denominator of minimal
degree), and it coincides with the generic norm in the case of a Jordan algebra. If
NB is the generic norm of B, then it is the denominator of minimal degree for the
inversion map, and therefore it divides any other denominator for the inversion
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map. Since the conjugate norm of A has degree 4, we conclude that the degree of
NB is at most 4. �

Lemma 17. For any G-grading on A and a subgroup H ⊂ G such that deg(s0) ∈
H , B =

⊕
h∈H Ah is a simple structurable algebra of skew-dimension 1.

Proof: If I is an ideal of B as an algebra with involution and I2 = 0, then s0 /∈ I,
so I is a Jordan algebra, and, as in the proof of Lemma 16, we obtain I = 0. On
the other hand, if I 6= 0 is an ideal of B as an algebra (disregarding involution),
I2 = 0, and I is of minimal dimension with this property, then either I = Ī or
I ∩ Ī = 0. In the first case, I is an ideal of B as an algebra with involution, so we
get a contradiction. In the second case, I⊕ Ī is an ideal of B as an algebra with
involution and (I⊕ Ī)2 = 0, again a contradiction. The bilinear form (a|b) := 〈a, b̄〉
is symmetric, nondegenerate and associative on A, and hence on B. Therefore,
Dieudonné’s Lemma applies and tells us that B is a direct sum of simple ideals
(as an algebra). The involution permutes these ideals so, adding each of them
with its image under the involution, we write B as a direct sum of ideals, each
of which is simple as an algebra with involution. Since dimK(B, )̄ = 1, there is
only one such ideal where the involution is not trivial, and it contains s0. Since
s20 = 1, this ideal is the whole B. �

5.2 Norm similarities of the Albert algebra. A linear bijection f : A → A

is called a norm similarity with multiplier λ if N(f(x)) = λN(x) for all x ∈ A.
Norm similarities with multiplier 1 are called (norm) isometries . We will denote
the group of norm similarities by M(A) and the group of isometries by M1(A).

For f ∈ End(A), denote by f∗ the adjoint with respect to the trace form T
of A, i.e., T (f(x), y) = T (x, f∗(y)) for all x, y ∈ A. Following the notation of
[Gar01], for any element ϕ ∈ M(A), we denote the element (ϕ∗)−1 = (ϕ−1)∗ by
ϕ†, so we have T (ϕ(x), ϕ†(y)) = T (x, y) for all x, y ∈ A. If the multiplier of ϕ is
λ, then ϕ† is a norm similarity with multiplier λ−1, and also

(19) ϕ(x) × ϕ(y) = λϕ†(x× y) and ϕ†(x)× ϕ†(y) = λ−1ϕ(x× y)

for all x, y ∈ A (see [Gar01, Lemma 1.7]). The U -operator Ux(y) := {x, y, x} =
2x(xy) − x2y can also be written as Ux(y) = T (x, y)x − x# × y (see [McC70,
Theorem 1]; cf. [McC69, Theorem 1]). Therefore, Uϕ(x)ϕ

†(y) = ϕ(Ux(y)) for
any ϕ ∈ M(A) and x, y ∈ A. It follows that the automorphisms of the Albert
algebra are precisely the elements ϕ ∈ M1(A) such that ϕ† = ϕ. Moreover, any
ϕ ∈M1(A) defines an automorphism of the Brown algebra A given by

(
α x
x′ β

)
7→
(

α ϕ(x)
ϕ†(x′) β

)
.

Thus we can identify M1(A) with a subgroup of Aut(A, )̄. In fact, this subgroup
is precisely the stabilizer of the element s0.

For λ1, λ2, λ3 ∈ F× and µi = λ−1
i λi+1λi+2, we can define a norm similarity

cλ1,λ2,λ3
, with multiplier λ1λ2λ3, given by ιi(x) 7→ ιi(λix), Ei 7→ µiEi. Note that
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c†λ1,λ2,λ3
is given by ιi(x) 7→ ιi(λ

−1
i x), Ei 7→ µ−1

i Ei. (These norm similarities

appear e.g. in [Gar01, Eq. (1.6)].) For λ ∈ F×, denote cλ := cλ,λ,λ.

Definition 18. We define the rank of x ∈ A by rank(x) := dim(im Ux) and
denote On := {x ∈ A | rank(x) = n}.

Since Uϕ(x)ϕ
†(y) = ϕ(Ux(y)) for ϕ ∈ M(A), the rank is invariant under the

action of M(A). Actually, we will show now that the rank of an element x ∈ A

determines its M(A)-orbit. Denote by µx(X) the minimal polynomial of x; it is a
divisor of the generic minimal polynomialmx(X) = X3−T (x)X2+S(x)X−N(x).

Lemma 19 ([Jac68, Exercise 6, p. 393]). M1(A) is transitive on the set of elements

of generic norm 1. �

Proposition 20. The orbits for the action of M(A) on A are exactly O0 = {0},
O1, O10 and O27. The orbit O27 consists of all nonisotropic elements: x ∈ A with

N(x) 6= 0. The orbit O1 consists of all 0 6= x ∈ A satisfying N(x) = 0, S(x) = 0
and degµx = 2; in this case µx(X) = X2 − T (x)X .

Proof: It is clear that O0 is an orbit. O27 consists of all elements that are in-
vertible in the Jordan sense, which are precisely the nonisotropic elements. Hence
O27 is an orbit by Lemma 19. It remains to consider the orbits of the isotropic
nonzero elements.

By [Jac68, Chapter IX, Theorem 10], two elements of A are in the same Aut(A)-
orbit if and only if they have the same minimal polynomial and the same generic
minimal polynomial. Take 0 6= x ∈ A with N(x) = 0 and consider two possible
cases: µx = mx (i.e., deg µx = 3) and µx 6= mx (i.e., degµx(X) = 2). Since
N(x) = 0, we have X |mx(X), but µx(X) and mx(X) have the same irreducible
factors by [Jac68, Chapter VI, Theorem 1], so X |µx(X), too. Thus, if degµx = 2
then µx(X) = X2 + λX , and, by the same result, either mx(X) = X2(X + λ) or
mx(X) = X(X + λ)2.

1) Case deg µx = 3. Then µx(X) = X3 + λX2 + µX .

• If λ = 0 6= µ, then x0 =
√
µi(E2 − E3) is a representative of the Aut(A)-

orbit of x. By applying an appropriate norm similarity cα,β,γ to x0, we

see that it is in the M(A)-orbit of Ẽ := E2 + E3.
• If λ = µ = 0, then x0 = ι2(1) + ι3(i) is a representative of the Aut(A)-
orbit of x. But using an appropriate norm similarity cα,β,γ, we see that
x0 is in the M(A)-orbit of ι2(1) + ι3(1) (λ = 0 and µ = −8), which is the

orbit of Ẽ by the previous case.
• If λ 6= 0 6= µ, we can find α, β ∈ F× such that α + β = −λ and αβ = µ.
If α 6= β, then αE2 + βE3 is a representative of the Aut(A)-orbit of x,

and it is the M(A)-orbit of Ẽ. If α = β, then applying cα−1 we may
assume λ = −2 and µ = 1, so x0 = 2E1+

i

2 ι2(1) is a representative of the
Aut(A)-orbit of x. Applying now c2

√
2,
√
2,2, we move x0 to the element

2E1+
i√
2
ι2(1), which is in the Aut(A)-orbit of (1+i)E2+(1−i)E3 (λ = −2

and µ = 2), and therefore in the M(A)-orbit of Ẽ.
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• If λ 6= 0 = µ, then x0 = −λ(E1 + ι2(1) + ι3(i)) is a representative of the
Aut(A)-orbit of x. Applying c−λ−1,−λ−1,λ−1i, we move x0 to the element
−iE1 + ι2(1) + ι3(1), which has λ = i and µ = −8, and hence belongs to

the M(A)-orbit of Ẽ by the previous case.

2) Case deg µx(X) = 2. Then µx(X) = X2 + λX .

• If λ 6= 0, then in the case mx(X) = X2(X + λ), the element −λE1 is
a representative of the Aut(A)-orbit of x, whereas in the case mx(X) =
X(X + λ)2, the element −λ(E2 + E3) is a representative of the Aut(A)-

orbit of x. Clearly, these elements are in the M(A)-orbits of E1 and Ẽ,
respectively.

• If λ = 0 thenmx(X) = X3 and x0 = 2E1−2E2+ι3(i) is a representative of
the Aut(A)-orbit of x. But using ci,1,i, we see that x0 is in theM(A)-orbit
of the element 2E1 +2E2 − ι3(1), whose minimal polynomial is X2 − 4X ,
so it falls under the previous case.

We conclude that the only nontrivial isotropic orbits are the ones of Ẽ and

E1. Since rank(E1) = 1 and rank(Ẽ) = 10, these orbits are different. The
characterization of O1 follows from the cases considered above. �

Remark 21. For any nonzero isotropic element x ∈ A, we have x ∈ O1 if and only
if x# = 0 (and therefore, x ∈ O10 if and only if x# 6= 0). Indeed, if x ∈ O1, then
x# = x2 − T (x)x = 0 by Proposition 20. Conversely, if x# = 0, then deg µx = 2
and, since S(x) = T (x#), we also have S(x) = 0, hence x ∈ O1 by Proposition 20.
Note that in [Jac68], the elements of rank 1 are defined as the elements x 6= 0
such that x# = 0 (see p.364), which is equivalent to our definition.

Corollary 22. The orbits for the action of M1(A) on A are O0, O1, O10 and

O27(λ) := {x ∈ O27 | N(x) = λ}, λ ∈ F×.

Proof: Note that the elements E1 and E2 + E3 can be scaled by any λ ∈ F×

using some norm similarity cα,β,γ with αβγ = 1. Therefore, O1 and O10 are
orbits for M1(A), too. The fact that O27(λ) is an orbit for M1(A) follows from
Lemma 19. �

Lemma 23. The rank function on A has the following properties.

i) If x, y ∈ A have rank 1, then N(x+ y) = 0.
ii) If x1, x2, x3 ∈ A have rank 1 and N(x1 + x2 + x3) 6= 0, then xi + xj has

rank 10 for each i 6= j.
iii) If x1, x2, x3 ∈ A have rank 1 and N(x1 + x2 + x3) = 1, then there is an

isometry sending xi to Ei for all i.
iv) If rank(x) = 1, then rank(x#) = 0. If rank(x) = 10, then rank(x#) = 1.

If rank(x) = 27, then rank(x#) = 27. In general, rank(x#) ≤ rank(x).

Proof: i) Assume, to the contrary, that N(x+ y) 6= 0. By Lemma 19, applying
a norm similarity, we may assume x + y = 1. We know by Proposition 20 that
x2 = T (x)x. If it were T (x) = 0, applying an automorphism of A we would
have x = ι1(a) with n(a) = 0, and therefore N(y) = N(1 − ι1(a)) 6= 0, which
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contradicts rank(y) = 1. Thus λ := T (x) 6= 0. Hence, applying an automorphism
of A, we may assume x = λE1, and we still have x + y = 1. If λ = 1, then
S(y) = 1 6= 0; otherwise N(y) = 1 − λ 6= 0. By Proposition 20, in both cases we
get a contradiction: y /∈ O1.

ii) Take k such that {i, j, k} = {1, 2, 3}. By i), rank(xi + xj) 6= 27. We cannot
have rank(xi + xj) = 0, because this would imply xi + xj = 0 and rank(xk) = 27.
We cannot have rank(xi+xj) = 1, because this would imply N(xi+xj +xk) = 0
by i). Therefore, rank(xi + xj) = 10.

iii) Applying an isometry, we may assume x1 + x2 + x3 = 1. By ii), we have
rank(xi + xi+1) = 10. By Proposition 20, we know that x2i = T (xi)xi. If it
were T (x1) = 0, applying an automorphism of A we would have x1 = ι1(a)
with n(a) = 0, and therefore N(x2 + x3) = N(1 − ι1(a)) 6= 0, which contradicts
rank(x2 + x3) = 10. Hence, T (xi) 6= 0 for i = 1, 2, 3. Applying an automorphism
of A, we obtain x1 = λE1 where λ = T (x1), and still x1 + x2 + x3 = 1. If
λ 6= 1, then N(x2 + x3) = 1− λ 6= 0, which contradicts i). Therefore, T (x1) = 1,
and similarly T (x2) = T (x3) = 1. We have shown that the xi are idempotents.
Moreover, since 1−xi = xi+1+xi+2 is an idempotent, we also have xi+1xi+2 = 0,
so the idempotents xi are orthogonal with

∑
xi = 1. Now by [Jac68, Chapter IX,

Theorem 10], there exists an automorphism of A sending xi to Ei for i = 1, 2, 3.
iv) If rank(x) = 1, we already know that x# = 0. It follows from (19) that

ϕ(x)# = ϕ†(x#) for any isometry ϕ. If rank(x) = 10, then by Corollary 22 there is
ϕ ∈M1(A) such that ϕ(x) = E2+E3, hence ϕ

†(x#) = ϕ(x)# = (E2+E3)
# = E1,

and so rank(x#) = 1. If rank(x) = 27, then N(x) 6= 0. Since N(x#) = N(x)2

(see [McC69]), we obtain N(x#) 6= 0 and rank(x#) = 27. �

5.3 Proof of Theorem 14. Suppose Γ : A =
⊕

g∈Z3
4
Ag is a grading such that

dimAg ≤ 1 for all g ∈ Z3
4. Set g0 = deg(s0), so g0 is an element of order 2.

DenoteW = η(A)⊕η′(A). SinceW = ker(id+Ls0Rs0), it is a graded subspace.
Hence, for any g 6= 0, g0, we have Ag ⊂ W . Also, for any g 6= g0, the component
Ag consists of symmetric elements.

Let Sg0 = {g ∈ Z3
4 | 2g 6= g0}. We claim that Supp Γ = Sg0 . Note that

|Sg0 | = 56 = dimA, so it is sufficient to prove that 2g = g0 implies Ag = 0.
Assume, to the contrary, that 0 6= a ∈ Ag. Then b = as0 is a nonzero element
in A−g. By Lemma 15, the components Ag and A−g are in duality with respect
to the form 〈·, ·〉, hence 〈a, b〉 6= 0. But a = η(x) + η′(x′) for some x, x′ ∈ A,
so b = −η(x) + η′(x′), which implies 〈a, b〉 = tr(ab) = T (x, x′) − T (x, x′) = 0,
a contradiction.

Suppose H is a subgroup of Z3
4 isomorphic to Z2

4 and not containing g0. Con-
sider B =

⊕
h∈H Ah and D = B ⊕ s0B. Lemma 17 shows that D is a simple

structurable algebra of skew-dimension 1 and dimension 32. Hence, by [All90,
Example 1.9], D is the structurable matrix algebra corresponding to a triple
(T,N,N) where either (a) N and T are the generic norm and trace form of a de-
gree 3 semisimple Jordan algebra J , or (b) N = 0 and T is the generic trace form
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of the Jordan algebra J = J(V ) of a vector space V with a nondegenerate symmet-
ric bilinear form. In case (a), we have by dimension count that either J = H3(Q)
or J = F× J(V ), where dim V = 13. In case (a), as in Subsection 2.6, F× J is a
Jordan subalgebra of D. If J = F × J(V ), then L := span {Dx,y | x, y ∈ V } (the
operators Dx,y are defined by (20) in the next section) is a subalgebra of Der(A, )̄
isomorphic to the orthogonal Lie algebra so(V ). Indeed, the image of L in End(V )
is so(V ), and dimL ≤ ∧2V = dim so(V ). But dim so(V ) = 78 = dimDer(A, )̄
and Der(A, )̄ is simple of type E6, so we obtain a contradiction. In case (b),
D contains the Jordan algebra of a vector space of dimension 15 (the Jordan al-
gebra J with its generic trace form), hence Der(A, )̄ contains a Lie subalgebra
isomorphic to so15(F), which has dimension larger than 78, so we again obtain a
contradiction. Therefore, the only possibility is J = H3(Q). Then, with the same
arguments as for (A, )̄, it can be shown that Der(D, )̄ is a simple Lie algebra of
type A5, so it has dimension 35.

By Lemma 16, B is a semisimple Jordan algebra of degree ≤ 4. Since dimB =
16, we have the following possibilities: (i) J(V ) with dimV = 15, (ii) F × J(V )
with dimV = 14, (iii) F × F × J(V ) with dimV = 13, (iv) J(V1) × J(V2) with

dimV1+dimV2 = 14 and dim Vi ≥ 2, (v) F×H3(Q) and (vi) M4(F)
(+), where, as

before, J(V ) denotes the Jordan algebra of a vector space V with a nondegenerate
symmetric bilinear form. Cases (ii), (iii) and (v) are impossible, because these
algebras do not admit a Z2

4-grading with 1-dimensional components. Indeed, since
charF 6= 2, such a grading would be the eigenspace decomposition with respect
to a family of automorphisms, but in each case there is a subalgebra of dimension
2 whose elements are fixed by all automorphisms. The same argument applies
in case (iv) unless dimV1 = dimV2 = 7. On the other hand, cases (i) and (iv)
give, as in the previous paragraph, subalgebras of Der(D, )̄ isomorphic to so(V )
or so(V1)× so(V2) of dimension larger than 35, so these cases are impossible too.

We are left with case (vi), i.e., B ∼= M4(F)
(+). Then, up to equivalence, there is

only one Z2
4-grading with 1-dimensional components, namely, the Pauli grading

on the associative algebra M4(F). (For the classification of gradings on simple
special Jordan algebras, we refer the reader to [EK13, §5.6].)

As a consequence of the above analysis, if X 6= 0 is a homogeneous element
of A whose degree has order 4 then we have 0 6= X4 ∈ F1. Indeed, the degree
of X is contained in a subgroup H as above, so X is an invertible matrix in

B ∼=M4(F)
(+)

. Moreover, we can fix homogeneous elements X1, X2 and X3 of B
such that X2

i = 1 and XiXi+1 = Xi+2. We will now show that Γ is equivalent to
the grading defined by (16) in Section 4. Denote ai = deg(Xi), then the subgroup
〈a1, a2〉 is isomorphic to Z2

2 and does not contain g0.
We can write Xi = η(xi) + η′(x′i) with x, x′ ∈ A. Since X2

i = 1, we get

x#i = 0 = x′#i and thus xi and x′i have rank 1 (see Remark 21). Set Z =
X1 + X2 + X3 and write Z = η(z) + η(z′) with z, z′ ∈ A. Then Z2 = 2Z + 3,
which implies z# = z′ and z′# = z. But, by Lemma 23(iv), rank(z#) ≤ rank(z)
and rank(z′#) ≤ rank(z′), so we get rank(z#) = rank(z) = rank(z′) = rank(z′#).
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Since Z 6= 0, we have z 6= 0 or z′ 6= 0, and hence by Lemma 23(iv), we obtain
rank(z) = 27 = rank(z′). Then, by Lemma 23(iii), there is an isometry of A
sending xi to λEi (i = 1, 2, 3), where λ is any element of F satisfying λ3 = N(z).
Since isometries of A extend to automorphisms of (A, )̄, we may assume that
xi = λEi. Then XiXi+1 = Xi+2 implies x′i = λ2Ei and hence λ3 = 1. Therefore,
N(z) = 1 and we may take λ = 1, so xi = Ei = x′i, i.e., Xi = εi := η(Ei)+η

′(Ei).
Thus, εi and ε

′
i := εis0 are homogeneous elements; their degrees are precisely the

order 2 elements of Z3
4 different from g0.

Since the subspaces ker(Lεi) = η(ιi+1(C)⊕ ιi+2(C))⊕ η′(ιi+1(C)⊕ ιi+2(C)) are
graded, so are η(ιi(C))⊕ η′(ιi(C)), i = 1, 2, 3. For any homogeneous element X =
η(ιj(x)) + η′(ιj(x

′)), we saw that 0 6= X4 ∈ F1, which forces 0 6= X2 ∈ Fεj ∪ Fε′j,

and this implies n(x, x′) = 0 and n(x) = ±n(x′) 6= 0. These facts will be used
several times. Also note that automorphisms of C extend to automorphisms of A
preserving Ei, and therefore to automorphisms of A preserving εi.

Fix homogeneous elements Y1 = η(ι1(y1)) + η′(ι1(y
′
1)) and Y2 = η(ι2(y2)) +

η′(ι2(y
′
2)) such that Y 2

i ∈ Fεi. Without loss of generality, we may assume
n(y1) = 1 = n(y2), and therefore n(y′1) = 1 = n(y′2). Also, we have n(yi, y

′
i) = 0.

By [EK13, Lemma 5.25], there exists an automorphism of A that fixes Ei and

sends y1 and y2 to 1. Thus we may assume y1 = 1 = y2 and hence y′i = −y′i.
Then Y1Y2 = η(2ι3(y

′
1y

′
2))+ η′(2ι3(1)), so we obtain n(1, y′1y

′
2) = 0, which implies

n(y′1, y
′
2) = 0. Thus the elements 1, y′1, y

′
2 are orthogonal of norm 1, and apply-

ing an automorphism of C (extended to A) we may assume that Y1 = α1,0 :=
η(ι1(1)) + η′(ι1(xa1)) and Y2 = α2,0 := η(ι2(1)) + η′(ι2(xa2)), as in the grading
(16). Consequently, the elements of the form αj,g, for j = 1, 2, 3 and g ∈ 〈a1, a2〉,
will be homogeneous because they can be expressed in terms of α1,0 and α2,0.

Fix a new element Y3 = η(ι3(y3)) + η′(ι3(y
′
3)) such that Y 2

3 ∈ Fε′3. As before,
we have n(y3, y

′
3) = 0, but this time n(y3) = −n(y′3). Using again that the

products of the form Y3α1,g and Y3α2,g, with g ∈ 〈a1, a2〉, have orthogonal entries
in C, we deduce that y3, y

′
3 ∈ Q⊥, where Q = span {1, xai | i = 1, 2, 3}, and that

y′3 ∈ Fy3xa3 . Hence, scaling Y3, we obtain either Y3 = α′
3,h or Y3 = α′

3,hs0 for

some h ∈ g0 + 〈a1, a2〉. (Actually, applying another automorphism of C that
fixes the subalgebra Q point-wise, we can make h any element we like in the
indicated coset.) Replacing Y3 by Y3s0 if necessary, we may assume Y3 = α′

3,h.

Since the elements α1,0, α2,0 and α′
3,h determine the Z3

4-grading (16), the proof
is complete. �

Remark 24. If charF = 3, the arguments with derivations of A that we used to
establish the existence of the elements Xi are not valid, but the remaining part of
the proof still goes through. Hence, in this case, we obtain a weaker recognition
theorem by adding the condition of the existence of Xi to the hypothesis. This is
sufficient to establish the equivalence of gradings constructed in Sections 3 and 4.

5.4 Weyl group. TheWeyl group of the Z3
2-grading on the octonions is GL3(Z2),

the entire automorphism group of Z3
2, whereas the Weyl group of the Z3

3-grading
on the Albert algebra is SL3(Z3), which has index 2 in the automorphism group
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of Z3
3 (see e.g. [EK13]). This means that in the case of the octonions, all gradings

in the equivalence class of the Z3
2-grading are actually isomorphic to each other,

while in the case of the Albert algebra, there are two isomorphism classes in the
equivalence class of the Z3

3-grading.

Theorem 25. Let Γ be a Z3
4-grading on the Brown algebra as in Theorem 14.

Then the Weyl group of Γ is the subgroup Stab(g0)∩SL3(Z4) of GL3(Z4), where
g0 is the degree of skew elements.

Proof: We will work in the model given by (16), where g0 = (2̄, 0̄, 0̄). Denote
H = StabZ3

4
(g0) and W = W (Γ). It is clear that W ⊂ H , and the proof of

Theorem 14 shows that W has index at most 2 in H . On the other hand, by
Remark 13, W is not the entire H , so we get [H :W ] = 2. The derived subgroup
H ′ has index 4 in H (see below), hence there are three subgroups of index 2 in H ,
including H ∩ SL3(Z4).

The elements of H have the form A = (aij) where a11 ≡ 1 and a21 ≡ a31 ≡ 0
(mod 2). Hence, the mapping (aij) 7→ (aij)2≤i,j≤3 mod 2 is a homomorphism
H → GL2(Z2). Since GL2(Z2) is isomorphic to S3, it has a unique nontrivial
homomorphism to Z2. Composing these two, we obtain a nontrivial homomor-
phism ϕ1 : H → Z2. Of course, another nontrivial homomorphism, ϕ2 : H → Z2,
is given by detA = (−1̄)ϕ2(A), and we want to show that W = kerϕ2. Clearly,
H ′ ⊂ kerϕ1∩kerϕ2, and with elementary arguments (using the fact that the com-
mutator of the elementary matrices I +αEij and I + βEjk is equal to I + αβEik
if i, j, k are distinct) one shows that actually H ′ = kerϕ1 ∩ kerϕ2. Therefore, it
will be sufficient to find a matrix A in W that belongs to kerϕ2 but not kerϕ1.

One such matrix is A =
(

3̄ 0̄ 0̄
0̄ 0̄ 1̄
0̄ 1̄ 0̄

)
. Indeed, consider the automorphism ψ(12) of the

Albert algebra A given by ι1(x) ↔ ι2(x̄), E1 ↔ E2, ι3(x) 7→ ι3(x̄), E3 7→ E3.
Also, there is an automorphism f(12) of C given by xa1 ↔ −xa2 , xa3 7→ −xa3 ,
and fixing xg0 . Extend both to automorphisms of A and consider the composi-
tion φ = f(12)ψ(12). One checks that φ sends α1,0 ↔ α2,0, α

′
3,g0 ↔ α′

3,g0s0, thus
inducing A in W . �

Corollary 26. The equivalence class of gradings characterized by Theorem 14
consists of 14 isomorphism classes: for each order 2 element of Z3

4, there are two

nonisomorphic gradings (analogous to Γ+ and Γ− of Remark 13). �

6. Fine gradings on the exceptional simple Lie algebras E6, E7, E8

Gradings on the exceptional simple Lie algebras are quite often related to
gradings on certain nonassociative algebras that coordinatize the Lie algebra in
some way. The aim of this section is to indicate how the fine grading by Z3

4 on
the split Brown algebra is behind all the fine gradings on the simple Lie algebras
of types E6, E7 and E8 mentioned in the introduction. Here we will assume that
the ground field F is algebraically closed and charF 6= 2, 3.

Given a structurable algebra (X, )̄, there are several Lie algebras attached to
it. To begin with, there is the Lie algebra of derivations Der(X, )̄. For the Brown
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algebra, this coincides with the Lie algebra of inner derivations IDer(X, )̄, which
is the linear span of the operators Dx,y, for x, y ∈ X, where

(20) Dx,y(z) =
1

3
[[x, y] + [x̄, ȳ], z] + (z, y, x)− (z, x̄, ȳ)

for x, y, z ∈ X. (As before, (x, y, z) denotes the associator (xy)z−x(yz).) If (X, )̄
is G-graded, then Der(X, )̄ is a graded Lie subalgebra of End(X), so we obtain
an induced G-grading on Der(X, )̄. For the Brown algebra (A, )̄, the Lie algebra
of derivations is the simple Lie algebra of type E6. The fine grading by Z3

4 on the
Brown algebra induces the fine grading by Z3

4 on E6 that appears in [DV12].
Another Lie subalgebra of End(X) is the structure Lie algebra

str(X, )̄ = Der(X, )̄⊕ TX

where Tx := Vx,1, x ∈ X. The linear span of the operators Vx,y, x, y ∈ X, is
contained in str(X, )̄ and called the inner structure Lie algebra (as it actually
equals IDer(X, )̄ ⊕ TX). It turns out (see e.g. [All78, Corollaries 3 and 5]) that
str(X, )̄ is graded by Z2, with str(X, )̄0̄ = Der(X, )̄ ⊕ TK and str(X, )̄1̄ = TH,
where K = K(X, )̄ and H = H(X, )̄ denote, respectively, the spaces of symmetric
and skew-symmetric elements for the involution. If (X, )̄ is G-graded then we
obtain an induced grading by Z2 ×G on str(X, )̄ and on its derived algebra. In
the case of the Brown algebra (A, )̄, the inner structure Lie algebra coincides with
the structure Lie algebra and is the direct sum of a one-dimensional center and
the simple Lie algebra of type E7. (The arguments in [All79, Corollary 7] work
here because the Killing form of E6 is nondegenerate.) Therefore, the Z3

4-grading
on (A, )̄ induces a grading by Z2 × Z3

4 on the simple Lie algebra of type E7.
Also, the Kantor Lie algebra kan(X, )̄ (see [All79]) is the Lie algebra defined

on the vector space

ñ⊕ str(X, )̄⊕ n,

where n = X×K, ñ is another copy of n, str(X, )̄ is a subalgebra and

[(f, (x, s)] =
(
f(x), f δ(s)

)
,

[f, (x, s)̃ ] =
(
f ε(x), f εδ(s)

)
,̃

[(x, r), (y, s)] = (0, xȳ − yx̄),

[(x, r)̃ , (y, s)̃ ] = (0, xȳ − yx̄)̃ ,

[(x, r), (y, s)̃ ] = −(sx, 0)̃ + Vx,y + LrLs + (ry, 0),

for any x, y ∈ X, r, s ∈ K, and f ∈ str(X, )̄, where f ε := f − T
f(1)+f(1) and

f δ := f +R
f(1).

The Kantor Lie algebra L = kan(X, )̄ is 5-graded, i.e., has a grading by Z with
support {−2,−1, 0, 1, 2}: L = L−2 ⊕L−1 ⊕L0 ⊕L1 ⊕L2, where L−2 = (0×K)̃ ,
L−1 = (X×0)̃ , L0 = str(X, )̄, L1 = X×0 and L2 = 0×K. Any grading on (X, )̄
by a group G induces naturally a grading by Z×G on kan(X, )̄. For the Brown
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algebra, kan(A, )̄ is the simple Lie algebra of type E8 (see [All79] and note that,
as for str(A, )̄, the arguments are valid in characteristic 6= 2, 3), and we obtain a
grading by Z × Z3

4 on E8, which is the grading that prompted this study of the
Z3
4-gradings on the Brown algebra.
Finally, the Steinberg unitary Lie algebra stu3(X, )̄ (see [AF93]) is defined as

the Lie algebra generated by the symbols uij(x), 1 ≤ i 6= j ≤ 3, x ∈ X, subject to
the relations:

uij(x) = uji(−x̄),
x 7→ uij(x) is linear,

[uij(x), ujk(y)] = uik(xy) for distinct i, j, k.

Then it is easy to see ([AF93, Lemma 1.1]) that there is a decomposition

stu3(X, )̄ = s⊕ u12(X)⊕ u23(X)⊕ u31(X),

with s =
∑

i<j [uij(X), uij(X)], which is a grading of stu3(X, )̄ by Z2
2. Moreover,

any grading by a group G on (X, )̄ induces naturally a grading by Z2
2 × G on

stu3(X, )̄.
An explicit isomorphism can be constructed between the quotient of stu3(X, )̄

by its center and kan(X, )̄ (see [AF93], [EO07]). If charF 6= 2, 3, 5, then the Killing
form of E8 is nondegenerate, so it has no nontrivial central extensions, hence
stu3(A, )̄ is isomorphic to kan(A, )̄, which is the simple Lie algebra of type E8.
Thus we obtain a grading by Z2

2 ×Z3
4 on E8. Actually, a Lie algebra K(X, ,̄V) =

V⊕u12(X)⊕u23(X)⊕u31(X) is defined in [AF93, Section 4] assuming charF 6= 2, 3.
Any grading by G on (X, )̄ induces a grading by Z2

2×G on K(X, ,̄V). For suitable
V, this Lie algebra is isomorphic to kan(X, )̄ (see [AF93], [EO07]), so we obtain a
grading by Z2

2 × Z3
4 on E8 in any characteristic different from 2, 3. This grading

appears in [DE13], where the fine gradings on E8 with finite universal grading
group are classified up to equivalence (assuming charF = 0).
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