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A class of latin squares derived from finite abelian groups

Anthony B. Evans

Abstract. We consider two classes of latin squares that are prolongations of Cay-
ley tables of finite abelian groups. We will show that all squares in the first
of these classes are confirmed bachelor squares, squares that have no orthogonal
mate and contain at least one cell though which no transversal passes, while none
of the squares in the second class can be included in any set of three mutually
orthogonal latin squares.
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1. Introduction

A latin square of order n is an n × n array with entries from a symbol set of
order n such that each symbol appears exactly once in each row and exactly once
in each column. Latin squares are closely related to quasigroups. A quasigroup is
a set with binary operation ◦ such that for all a, b, c ∈ Q, the equation a ◦ x = c

has a unique solution for x and the equation y ◦ b = c has a unique solution for
y. A loop is a quasigroup with a two-sided identity, i.e. an element e for which
a ◦ e = e ◦ a = a for all a. A group is a loop in which the binary operation is
associative. For a finite quasigroup Q = {q1, . . . , qn}, the Cayley table of Q is the
n × n array with (i, j)th entry qi ◦ qj . The Cayley table of a finite quasigroup
is a latin square and any latin square can be regarded as the Cayley table of
a quasigroup.

Two latin squares on the same symbol set are orthogonal if when superimposed
each ordered pair of symbols appears exactly once. Orthogonal latin squares are
closely related to orthogonal quasigroups. Two quasigroups on the same symbol
set Q with binary operations ◦ and ⊙ are orthogonal if, for each a, b ∈ Q, the
system of equations x ◦ y = a and x ⊙ y = b has a unique solution for x and y.
Two quasigroups on the same set of symbols are orthogonal if and only if their
Cayley tables are orthogonal.

A transversal of a latin square of order n is a set of n cells, exactly one from
each row, exactly one from each column, in which each symbol appears exactly
once. For a pair of orthogonal latin squares, if we pick any symbol a, the cells in
the first square corresponding to cells in the second square with entry a form a
transversal of the first square: similarly cells in the second square corresponding
to cells in the first square with entry a form a transversal of the second square.
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There exists a latin square orthogonal to a latin square L, an orthogonal mate of L,
if and only if the cells of L can be partitioned by some set of transversals. A latin
square with no orthogonal mate is called a bachelor square and, if it contains a
cell that is not on any transversal, then it is called a confirmed bachelor square.
A latin square that has an orthogonal mate but which cannot be contained in
a set of three pairwise orthogonal latin squares is called a monogamous square.
A partial transversal of length k is a set of k cells, at most one from each row, at
most one from each column, in which each symbol appears at most once. A near

transversal in a latin square of order n is a partial transversal of length n − 1.
The quasigroup equivalents of transversals and near transversals are complete
mappings and near complete mappings. A complete mapping of a quasigroup Q

is a bijection θ : Q → Q for which the mapping η : x 7→ xθ(x) is also a bijection
Q → Q. A quasigroup that admits a complete mapping is said to be admissible.
A near complete mapping of a quasigroup Q is a bijection θ : Q \ {a} → Q \ {b}
for which the mapping η : x 7→ xθ(x) is a bijection Q \ {a} → Q \ {c} for some
a, b, c ∈ Q. There is a one-one correspondence between complete mappings of
a quasigroup and transversals of its Cayley table, and between near complete
mappings of a quasigroup and near transversals of its Cayley table.

In accordance with [5], a prolongation of a latin square of order n is a process
by which this square is extended to a latin square of order n + 1, equivalently a
process by which a quasigroup of order n is extended to a quasigroup of order
n+ 1. Three classes of prolongations are described in [5]. A prolongation of the
Cayley table of Z6 is shown in Figure 1.





















0 1 2 3 4 5 a

1 2 3 a 5 0 4
2 3 4 5 a 1 0
3 4 5 0 1 a 2
4 a 0 1 2 3 5
5 0 a 2 3 4 1
a 5 1 4 0 2 3





















Figure 1. A prolongation of the Cayley table of Z6.

We will show that, for Cayley tables of finite abelian groups, one of the classes
of prolongations consists of confirmed bachelor squares, and a second class of
prolongations consists of latin squares that are either bachelor squares or monog-
amous squares.

2. The results

We are interested in the special case of prolongations of the Cayley tables
of finite abelian groups. Let G = {g1, . . . , gn}, g1 = 0, be an additive abelian
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group and let a 6∈ G. For θ : {g2, . . . , gm} → {g2, . . . , gm} a bijection, we define
Extθ(G; a, w) = {Eij} by

Eij =















































gi + gj if i, j ∈ {1, . . . , n}, θ(gi) 6= gj ,

a if i, j ∈ {2, . . . , n}, θ(gi) = gj ,

a if i = 1 and j = n+ 1,

a if i = n+ 1 and j = 1,

gi + θ(gi) if i ∈ {2, . . . , n}, j = n+ 1,

gj + θ−1(gj) if j ∈ {2, . . . , n}, i = n+ 1,

w if i = j = n+ 1.

Thus

Extθ(G; a, w) =















g1 g2 . . . gn a

g2
... A B

gn
a C w















,

where A is an (n − 1) × (n − 1) array with (i, j)th entry a if θ(gi+1) = gj+1,
and gi+1 + gj+1 if θ(gi+1) 6= gj+1, B is the (n − 1) × 1 array with ith entry
gi+1 + θ(gi+1), and C the 1× (n− 1) array with jth entry gj+1 + θ−1(gj+1).

When Extθ(G; a, w) is a latin square, then it is a prolongation of the Cayley
table of G. We will call it the extension of G by θ. The latin square shown in
Figure 1 is the extension of Z6 by θ, where

θ =

(

1 2 3 4 5
3 4 5 1 2

)

.

We will show that, when Extθ(G; a, w) is a latin square, the properties of
Extθ(G; a, w) depend on whether G is admissible or not. Finite abelian groups
that are admissible were characterized by Paige [7] in 1947.

Theorem 1 (Paige,1947). A finite abelian group is admissible if and only if

it does not contain a unique involution. A finite abelian group with a unique

involution admits a near complete mapping.

Proof: See [7]. �

Just as whether a finite abelian group G is admissible or not depends on
whether G has a unique involution or not, the sum of the elements of a finite
abelian group G also depends on whether G has a unique involution or not.

Lemma 1. For a finite abelian group G

∑

g∈G

g =

{

0 if G does not have a unique involution,

δ if G has a unique involution δ.
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Proof: Routine; see [7] for instance. �

In Theorem 2 we will give two characterizations of those arrays Extθ(G; a, w)
that are latin squares, one characterization for those finite abelian groups that
do not have a unique involution, and one characterization for those finite abelian
groups that do have a unique involution.

Theorem 2. Let G = {g1, . . . , gn}, g1 = 0, be an abelian group and let θ be a

bijection {g2, . . . , gn} → {g2, . . . , gn}.

(1) If G has a unique involution δ, then Extθ(G; a, w) is a latin square if

and only if w = δ, and θ is a near complete mapping of G, the mapping

η : g 7→ g + θ(g) being a bijection G \ {0} → G \ {δ}.
(2) If G does not have a unique involution, then Extθ(G; a, w) is a latin

square if and only if w = 0, and, by setting θ(0) = 0, θ becomes a

complete mapping of G.

Proof: Each row, with the possible exception of the last row, contains each
symbol exactly once. Similarly, each column, with the possible exception of the
last column, contains each symbol exactly once. Also, the symbols in the last
row are the same as the symbols in the last column. As the symbols in the last
column are {g2+ θ(g2), . . . , gn+ θ(gn)}∪ {a, w}, Extθ(G; a, w) is a latin square if
and only if G = {g2 + θ(g2), . . . , gn + θ(gn)} ∪ {w}, if and only if η : g 7→ g + θ(g)
is a bijection G \ {0} → G \ {w}.

If G = {g2 + θ(g2), . . . , gn + θ(gn)} ∪ {w}, then, as g1 = 0 and θ(gi) 6= 0 for
i ∈ {2, . . . , n},

∑

g∈G

g =

n
∑

i=2

(gi + θ(gi)) + w = 2
∑

g∈G

g + w.

It follows, by Lemma 1, that

w = −
∑

g∈G

g =

{

0 if G does not have a unique involution,

δ if G has a unique involution δ.

The result follows. �

If G does not have a unique involution and Extθ(G; a, w) is a latin square,
then this prolongation is a special case of a class of prolongations of admissible
quasigroups constructed by Belyavskaya [1], [2], [3]. If G has a unique involution
and Extθ(G; a, w) is a latin square, then this prolongation is a special case of a
class of prolongations constructed by Deriyenko and Dudek [5] for quasigroups
that are not admissible but admit near complete mappings.

To determine possible transversals through certain cells we need to use the
∆-lemma. Let G = {g1, . . . , gn} be an abelian group and let L be a latin square
of order n whose entries are the elements of G. If cell C of L is in row i and
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column j, and its entry is gk, then the deviation of C is

dev(C) = gk − (gi + gj).

Lemma 2 (The ∆-lemma). Let G be an abelian group of order n, let L be a

latin square of order n whose entries are the elements of G, and let C1, . . . , Cn be

the cells of a transversal of L.

(1) If G has a unique involution δ, then

n
∑

i=1

dev(Ci) = δ.

(2) Otherwise

n
∑

i=1

dev(Ci) = 0.

Proof: By Lemma 1,

n
∑

i=1

dev(Ci) = −
∑

g∈G

g =

{

0 if G does not have a unique involution,

δ if G has a unique involution δ.

�

This simple lemma has proved very useful in determining the nonexistence of
orthogonal mates and the nonexistence of transversals through certain cells (see
the survey by Wanless [8]). One long standing problem was the existence problem
for bachelor squares of order congruent to three modulo four. This was finally
settled in 2006 by Wanless and Webb [9] using the ∆-lemma for cyclic groups.
They showed the existence of confirmed bachelor squares of orders congruent to
three modulo four. Independently Evans [6] proved the existence of bachelor
squares of orders congruent to three modulo four using a variant of the ∆-lemma.

The ∆-lemma yields a proof that Extθ(G; a, w) is a confirmed bachelor square
for any abelian group G, that does not have a unique involution, if Extθ(G; a, w)
is a latin square.

Theorem 3. If G does not have a unique involution and Extθ(G; a, w) is a latin

square, then Extθ(G; a, w) is a confirmed bachelor square.

Proof: Suppose that there is a transversal T through the (n + 1, 1)th cell of
E = Extθ(G; a, w). As there is an a in the (n + 1, 1)th cell, T must contain
exactly one cell from each column of the n× n partial latin square, E′, obtained
from E by deleting entries a, the last row of E, and the first column of E. We
next permute the columns of E′ to obtain the n×n partial latin square F = {Fij}
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where, for the nonempty cells,

Fij =

{

gi + gj if i ∈ {1, . . . , n}, j ∈ {2, . . . , n}, gj 6= θ(gi),

gi + θ(gi) if i ∈ {2, . . . , n}, j = 1.

Now, the deviations of the cells in F are 0 for nonempty cells not in the first
column, and θ(gi), i = 2, . . . , n, for nonempty cells in the first column. By the
∆-lemma, the deviations of the cells of F corresponding to the transversal T of E
sum to 0, an impossibility as these cells consist of exactly one nonempty cell from
each column of F and the deviations of all nonempty cells in the first column are
nonzero, whereas the deviations of all nonempty cells in the other columns are
zero. �

Wanless and Webb [9] proved the existence of confirmed bachelor squares for
all orders greater than three. Theorem 3 yields new classes of confirmed bachelor
squares. If n ≡ 0 (mod 4) and G = Z2 × Zn/2, then the extension of G by any
complete mapping of G is a confirmed bachelor square of order n + 1. More
generally, if n ≡ 0 (mod 4), and G is an abelian group that is not of the form
Zm ×H , |H | odd, then G is admissible by Theorem 1 and the extension of G by
any complete mapping of G will be a confirmed bachelor square of order n+1. If
n is odd, G is an abelian group of order n, and ι : G → G is the identity mapping,
then the extension of G by ι is a confirmed bachelor square of order n+ 1. More
generally, if n is odd and G is an abelian group of order n, then the extension of G
by any complete mapping of G is a confirmed bachelor square of order n+1. Thus,
Theorem 1 yields new classes of confirmed bachelor squares of all orders congruent
to either 0, 1, or 2 modulo 4. Theorem 1 cannot yield confirmed bachelor squares
of orders congruent to 3 modulo 4 as any abelian group of order congruent to 2
modulo 4 has a unique involution.

For abelian groups with unique involutions the situation is not as clear cut.

Theorem 4. If, for a finite abelian groupG with a unique involution, Extθ(G; a, w)
is a latin square, then Extθ(G; a, w) is either a bachelor square or a monogamous

square.

Proof: Let δ be the unique involution in G and let E = Extθ(G; a, w) be a
latin square. By Theorem 2, w = δ, θ is a near complete mapping of G, and the
mapping η : g 7→ g + θ(g) is a bijection G \ {0} → G \ {δ}. As in the proof of
Theorem 3, let T be a transversal through the (n+ 1, 1)th cell of E. Let E′ and
F be as in the proof of Theorem 3.

As in the proof of Theorem 3, the deviations of the cells in F are 0 for nonempty
cells not in the first column, and θ(gi), i = 2, . . . , n, for nonempty cells in the
first column. By the ∆-lemma, the deviations of the cells of F corresponding to
the transversal T of E sum to δ. It follows that the cells of F corresponding to
cells of T must contain the unique cell in the first column of F of deviation δ.
This cell is in the kth row, where θ(gk) = δ. Thus, any transversal of E through
the (n + 1, 1)th cell must pass through the (k, n + 1)th cell. It follows that, if
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M is any latin square orthogonal to E, then the entries of M in the (n+ 1, 1)th
and (k, n+ 1)th cells are the same and, hence, two latin squares orthogonal to E

cannot be orthogonal to each other. �

In 2011 Danziger, Wanless, and Webb [4] constructed monogamous squares for
all orders n > 6 except when n is of the form 2p, p prime, p ≥ 11. Theorem 4
should yield either new classes of monogamous squares and/or new classes of
bachelor squares. In what follows we will give necessary conditions for E =
Extθ(G, a, w) to be a monogamous square when G is a finite abelian group with
a unique involution and E is a latin square.

Lemma 3. If G is a finite abelian group with a unique involution δ and E =
Extθ(G; a, w) is a latin square, then

(1) any transversal through the (n+ 1, 1)th cell of E must pass through the

(i, n+ 1)th cell for which θ(gi) = δ;

(2) any transversal through the (1, n+ 1)th cell of E must pass through the

(n+ 1, j)th cell for which θ−1(gj) = δ;

(3) any transversal through the (n+ 1, n+ 1)th cell of E must pass through

the (i, j)th cell, i, j 6= 1, n+ 1, for which gj = θ(gi) and gi + gj = 0;
(4) if a transversal passes through the (s, t)th cell of E, s 6= 1, n+1, gt = θ(gs),

the (i, n+1)th cell of E, i 6= 1, n+1, and the (n+1, j)th cell, j 6= 1, n+1,
then

θ(gi) + θ−1(gj) = gs + gt + δ.

Proof: (1) See the proof of Theorem 4.
(2) Similar to the proof of (1).
(3) Let T be a transversal through the (n+ 1, n+ 1)th cell of E. T must also

pass through a cell with entry a: let this be the (s, t)th cell. Thus gt = θ(gs) and
s, t ∈ {2, . . . , n}. Form a partial latin square F by removing all as, replacing the
sth row by the (n + 1)th row and the tth column by the (n + 1)th column, and
then deleting the last row and column. All cells of F with nonzero deviations are
in the sth row or the tth column and the deviation of the (s, t)th cell is δ−gs−gt.
As the transversal of F corresponding to T must pass through the (s, t)th cell
and no other cell with nonzero deviation, gs + gt = 0 by Lemma 2.

(4) Let T be a transversal through the (s, t)th cell of E, s 6= 1, n+1, gt = θ(gs),
the (i, n+1)th cell of E, i 6= 1, n+1, and the (n+1, j)th cell, j 6= 1, n+1. Form
a partial latin square F from E by removing all as, replacing the sth row by the
(n + 1)th row and the tth column by the (n + 1)th column, and then deleting
the last row and column. All cells of F with nonzero deviations are in the sth
row or the tth column. The deviation of the (s, j)th cell of F is θ−1(gj) − gs
if j 6= t and the deviation of the (i, t)th cell of F is θ(gi) − gt. By Lemma 2,
θ−1(gj)− gs + θ(gi)− gt = δ from which the result follows. �

Theorem 5. If G is a finite abelian group with a unique involution δ and

E = Extθ(G; a, w) is a monogamous square, then there exists a bijection α : G \
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{0, δ} → G \ {0, δ} for which the mapping β : g 7→ g + α(g) is also a bijection

G \ {0, δ} → G \ {0, δ}.

Proof: Assume that E is a monogamous square. Then the cells of E can be
partitioned by a set of transversals T1, . . . , Tn+1. Let Tk be a transversal that
does not pass through the (1, n+1)th cell of E, or the (n+1, 1)th cell of E, or the
(n + 1, n+ 1)th cell of E. For some i, j, s, t ∈ {2, . . . , n}, θ(gi) 6= δ, θ−1(gj) 6= δ,
θ(gs) = gt, Tk passes through the (i, n+1)th cell of E, the (n+1, j)th cell of E, and
the (s, t)th cell of E, and θ(gi) + θ−1(gj) = gs + gt + δ. Set g = θ(gi), φ(gi) = gj,
and α(g) = θ−1φθ−1(g). As Tk runs through the transversals in {T1, . . . , Tn+1}
that do not pass through the (1, n+ 1)th cell of E, or the (n + 1, 1)th cell of E,
or the (n + 1, n+ 1)th cell of E, g runs through the elements of G \ {0, δ}, α(g)
runs through the elements of G \ {0, δ}, and g + α(g) runs through the elements
of G \ {0, δ}. Hence α is a bijection G \ {0, δ} → G \ {0, δ} for which the mapping
g 7→ g + α(g) is also a bijection G \ {0, δ} → G \ {0, δ}. �

As corollaries to Theorem 5 we see that for small abelian groups Extθ(G, a, w)
must be a bachelor square if it is a latin square.

Corollary 1. If E = Extθ(Z4; a, w) is a latin square, then E is a bachelor square.

Proof: For any mapping α : {1, 3} → {1, 3}, g + α(g) ∈ {0, 2} for g ∈ {1, 3}. It
follows that the conditions of Theorem 5 cannot be satisfied and, hence, that E
is a bachelor square. �

Corollary 2. If E = Extθ(Z6; a, w) is a latin square, then E is a bachelor square.

Proof: Let α : {1, 2, 4, 5} → {1, 2, 4, 5} be a bijection. For the mapping β : g 7→
g + α(g) to be a bijection {1, 2, 4, 5} → {1, 2, 4, 5}, α must map {1, 4} to {1, 4}
and {2, 5} to {2, 5}. But then, either α(1) = 1 and α(4) = 4 or α(1) = 4 and
α(4) = 1. In the first case β(1) = β(4) = 2 and in the second case β(1) = β(4) = 5,
a contradiction. It follows that the conditions of Theorem 5 cannot be satisfied
and, hence, that E is a bachelor square. �

For Z8 the conditions of Theorem 5 can be satisfied. If

α =

(

1 2 3 5 6 7
1 7 3 2 5 6

)

, then β =

(

1 2 3 5 6 7
2 1 6 7 3 5

)

.

Two questions remain. For which finite abelian groups with unique involutions
are the conditions of Theorem 5 satisfied? When does Theorem 4 yield bachelor
squares and when does it yield monogamous squares?
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