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Abstract. Spin exchange with a time delay in NMR (nuclear magnetic resonance) was
treated in a previous work. In the present work the idea is applied to a case where all
magnetization components are relevant. The resulting DDE (delay differential equations)
are formally solved by the Laplace transform. Then the stability of the system is studied
using the real and imaginary parts of the determinant in the characteristic equation. Using
typical parameter values for the DDE system, stability is shown for all relevant cases. Also
non-oscillating terms in the solution were found by studying the same determinant using
similar parameter values.
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1. Introduction

Spin (or “chemical”) exchange processes are studied via their effect on the NMR

spectrum of a given spin system [8], [2]. In a previous work we considered an ex-

change process with a time delay, but only the z-component of magnetization was

relevant [3], [4], [5]. The system was described by the Bloch-McConnell equations

with a time delay, and the number of equations was equal to the number of exchang-

ing sites.

In this work the exchange process occurs during the rf pulse, before saturation is

reached [11], so that all three components of the magnetization are coupled. The

delay in the exchange process leads to a set of DDE. The Laplace transform is used

below to get a formal solution, and then the characteristic equation is used to obtain

results about the stability and about non-oscillating terms in the solution.
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2. Delayed exchange during a pulse

The Bloch-McConnell equations for the magnetization with delay in the exchange

process between sites α, β are (for t > 0)

(2.1)
d

dt
x(t) +A · x(t) +B · x(t− τ) = u.

For earlier time values a preshape function has to be assumed:

(2.2) x(t) = ϕ(t) for 0 > t > −τ

and for t = 0 the initial condition is:

(2.3) x(0) = x0.

The vectors in Equation (2.1) are the vector of time dependent magnetization

(2.4) x =
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and the vector of equilibrium values of the magnetization

(2.5) u =



















0

0

R1α ·M0α

0

0

R1β ·M0β



















.

The pre-shape function and the initial condition are assumed equal to the equilibrium

vector u. The matrices are

A =







R2α+kαβ ∆α 0 0 0 0

−∆α R2α+kαβ −ω1 0 0 0

0 ω1 R1α+kαβ 0 0 0

0 0 0 R2β+kβα ∆β 0

0 0 0 −∆β R2β+kβα −ω1

0 0 0 0 ω1 R1β+kβα






,(2.6)

B =







0 0 0 −kβα 0 0

0 0 0 0 −kβα 0

0 0 0 0 0 −kβα

−kαβ 0 0 0 0 0

0 −kαβ 0 0 0 0

0 0 −kαβ 0 0 0






.(2.7)
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In these equations: for site ξ (ξ = α, β), R1ξ = 1/T1ξ and R2ξ = 1/T2ξ are the

longitudinal and transversal relaxation rates, respectively, ∆ξ = ω−ω0ξ is the pulse

off-resonance, M0ξ is its equilibrium magnetization (proportional to its population),

ω1 is the pulse amplitude and kξψ is the jump rate from site ξ to site ψ.

Detailed balance implies: kαβ ·M0α = kβα ·M0β. In typical applications one site

is in bulk (free) water in the tissue and the other site is bound to a large molecule,

so M0α ≫ M0β. Therefore kαβ = m · kβα ≪ kβα where m ≡ M0β/M0α ≪ 1. From

this point the shorter notation k = kβα will be used.

3. Formal Laplace transform of the equation

Applying the Laplace transform to the equilibrium vector results in

(3.1) U(s) =

∫

∞

0

e−s·τu dt =
1

s
· u.

The pre-shape function is transformed as

(3.2) Φ(s) =

∫ τ

0

e−s·τϕ(t− τ) dt =
1

s
· (1 − e−s·τ ) · u.

Using the definition X(s) =
∫

∞

0
e−s·τx(t) dt, Equation (2.1) is transformed to

(3.3) s ·X(s)− x(0) +A ·X(s) +B · {Φ(s) + e−s·τ ·X(s)} = U(s).

Therefore

(3.4) X(s) = {s · I+A+ e−s·τ ·B}−1 · {x(0)−B · Φ(s) + U(s)}

where I is the identity matrix. Now define the characteristic (matrix) function

(3.5) H(s) = s · I+A+ e−s·τ ·B.

Using this definition, the formal solution in the space of s-variable is

(3.6) X(s) = {H(s)}−1 ·
{(

1 +
1

s

)

· u−B ·
1

s
(1− e−s·τ ) · u

}

.

For the inversion of the characteristic matrix, if a matrix C is a “partitioned matrix”,

(3.7) C =

(

C11 C12

C21 C22

)
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where each “element” is a sub-matrix, then its inverse has a similar structure

(3.8) C
−1 = D =

(

D11 D12

D21 D22

)

with the following expressions for its sub-matrices [6]:

(3.9) D11 = (C11 − C12 · C
−1
22 · C21)

−1,

D12 = −D11 · C12 · C
−1
22 ,

D21 = −C−1
22 · C21 ·D11,

D11 = C−1
22 + C−1

22 · C21 ·D11 · C12 · C
−1
22 .

In H(s) two sub-matrices are proportional to the identity matrix: C12 = −ke−sτ · I

and C21 = −m · ke−sτ · I. From Equation (3.9) one obtains explicit expressions for

H(s)−1 where each matrix element is a ratio of two exponential polynomials, each

of the form

(3.10)
∑

06i66

∑

06j66

cijs
ie−j·s·τ .

The inverse Laplace transform of X(s) can be calculated using complex residues

of such expressions. However, due to their complexity it is desirable to have an

alternative method to study the solution of Equation (2.1).

4. Studying the solution by the characteristic equation

The roots of the characteristic equation are fundamental to studying the original

DDE [1]. The characteristic equation here is

(4.1) h(s) = det(H(s)) = det(s · I+A+ e−s·τ ·B) = 0.

Equation (2.1) has an infinite number of roots, arranged asymptotically in “root

chains” [1]. From the form of Equation (2.1) Theorem 12.12 of [1] applies, and all

root chains are “retarded”, i.e., for root s : |s| → ∞ ⇒ Re(s) → −∞. For the initial

conditions chosen, also Theorem 6.5 of [1] holds, so that for t > nτ , where n is the

dimension of the problem (n = 6 in our case), the solution of Equation (2.1) is of

the form

(4.2) x(t) = lim
j→∞

∑

Cj

esr ·tpr(t)
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where pr(t) is a vector polynomial and sr is a root of h(s) (see details in [1]). From

this expression one can study the stability and purely decaying terms in the solution

(most roots occur in complex conjugate pairs, leading to decay with oscillations).

4.1. The stability of the system. The main result relevant here is Theorem 13.7

of [1]. When the determinant h(s) is evaluated on the imaginary axis: s = iy (real y),

the result is written as h(s) = f(s)+ig(s) (real valued f(s), g(s)). Part of the theorem

is the following statement:

In order that all the zeros of this function lie to the left of the imaginary axis, it

is sufficient that all the zeros of the functions f(s), g(s) be real and alternate and

the inequality

(4.3) g′(y) · f(y)− g(y) · f ′(y) > 0

hold at least for one value of y.

Having “alternate roots” means that neither function has a multiple zero, that

between every two zeros of one function there is at least one zero of the other, and

the functions have no common zero. These conditions guarantee stability of the

solution. The behavior of h(s) was studied on the imaginary axis with the auxiliary

definition [1]:

(4.4) P (s) = es·τ ·H(s) ⇒ p(s) = det(P (s)) = eN ·s·τ · h(s)

where N = 6 is the dimension of the matrix H(s). Clearly p(s) and h(s) have

the same zeros. The calculation of the determinant is simplified by noting that for

a matrix C with the structure as in Equation (3.7) the determinant is [7]

(4.5) det(C) = det(C11) · det(C22 − C21 · C
−1
11 · C12).

The resulting expression was evaluated numerically with the following parameters

(similar to typical experimental values):

R1α = R1β = R2α = R2β = 1 s−1, ω1 = 2π · 600 = 3770 s−1,

k = 1000 s−1, m = 0.001, ∆β = 0, ∆α = ∆β − 2π · 20.000 = −125664 s−1.

It is known that the average lifetime of a state is equal to T = 1/k where k is

the jump (exchange) rate from this state. Thus to study the effect of delay on the

system, the calculation was done for the following three cases:

a) Short delay: τ = (0.1) · 1/k (τ ≪ T ).

b) Intermediate delay: τ = 1/k (τ = T ).

c) Long delay: τ = (10.) · 1/k (τ ≫ T ).
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The inequality (4.3) was checked for all cases for −100 6 y 6 100, and it holds

everywhere. The computed h(s) for all cases corresponds to the conditions of the

theorem (Figures 1–3). Thus in all cases the system is stable.
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Figure 1. Values of h(s = iy) (vert., in arb. units) for: τ = (0.1) · 1/k, as a function of
y = Im(s) (horiz.); a) Re(h(s)) (solid) and Im(h(s)) (dashed); b) Abs(h(s));
c) expanded view, center of a); d) expanded view, center of b).
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Figure 2. Values of h(s = iy) for: τ = 1/k, as a function of y = Im(s); a)–d) as in Figure 1.
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Figure 3. Values of h(s = iy) for: τ = (10.) · 1/k, as a function of y = Im(s); a)–d) as in
Figure 1.

4.2. Non-oscillating terms in the solution. In order to find non-oscillating

terms in the solution it is possible to use general algorithms for searching in the

complex plane the roots of h(s) ([9], [10], [12]). However, it is simpler to compute

directly the value of h(s) (or p(s) as in Equation (4.4)) on the real axis, and since

the system is stable, it is sufficient to look at the negative half of the real axis. The

computation of p(s) (which is real on the real axis) was done for all three cases

(see next page Figure 4), and roots were found, showing the decay constants of the

non-oscillating terms.

Summarizing, for typical parameter values of the system the equations were found

to be stable for any value of the delay time. Non-oscillating terms were found for all

cases, with a very slight dependence of the decay rate on the delay value, except for

very long delay where the faster decaying term does not appear.
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