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DEGENERATING CAHN-HILLIARD SYSTEMS COUPLED WITH

MECHANICAL EFFECTS AND COMPLETE DAMAGE PROCESSES
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Abstract. This paper addresses analytical investigations of degenerating PDE systems for
phase separation and damage processes considered on nonsmooth time-dependent domains
with mixed boundary conditions for the displacement field. The evolution of the system is
described by a degenerating Cahn-Hilliard equation for the concentration, a doubly non-
linear differential inclusion for the damage variable and a quasi-static balance equation for
the displacement field.
The analysis is performed on a time-dependent domain which characterizes the nonde-

generated elastic material regions. We choose a notion of weak solutions which consists
of weak formulations of the Cahn-Hilliard system and the momentum balance equation,
a variational inequality for the damage evolution and an energy inequality. For the intro-
duced degenerating system, we prove global-in-time existence of weak solutions. The main
results are sketched from our recent paper [WIAS preprint no. 1759 (2012)].
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1. Introduction and notation

In modern materials such as multicomponent alloys, many different physical pro-

cesses can influence the microstructure. In the case of solder materials, phase separa-

tion, elastic deformations and damage processes may deteriorate the pursued quality

for their use as microelectronic components.

Phase separation and damage processes are, however, usually treated by two sepa-

rate models in the mathematical literature. To describe phase separation processes in

alloys, phase-field models of Cahn-Hilliard and Allen-Cahn type coupled with elastic-

ity are well adapted [8], [2], [7], [5], [1]. On the other hand, damage processes for stan-
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dard materials are often modeled as unilateral processes within a gradient-of-damage

theory [6], see also [3], [12], [17], [16] for analytical results. In the case of solder alloys,

experimental studies indicate rate-dependence of the underlying physical processes

(see [15]) which should be accounted for in the damage model. A phase-field approach

which describes both the phase separation and the damage processes in a unifying

model has been recently introduced in [9] and further investigated in [10]. In these

papers, the damage process is considered as incomplete, i.e., maximal damaged re-

gions still exhibit elastic properties. The reason why incomplete damage models are

more feasible for mathematical investigations is that a uniform convexity assumption

on the elastic energy density prevents the material from a complete degeneration.

Mathematical works of complete damage models covering global-in-time existence

are rare and are mainly focused on purely rate-independent systems [4], [13] by us-

ing Γ-convergence techniques to recover energetic properties in the limit. Existence

results for rate-dependent complete damage systems in thermoviscoelastic materials

have been recently published in [16] (see also [14]).

The main goal of this proceedings article is to present recent results from [11]

concerning existence of weak solutions of a system coupling damage processes and

elastic Cahn-Hilliard systems as in [9], [10] but allowing for complete damage and de-

generating Cahn-Hilliard mobilities. The reference domain is assumed to be bounded

and Lipschitz. Let us remark that, in our case, the mobility tensor is constant with

respect to the concentration but depends on the damage variable and even may

degenerate with respect to the damage variable. By the authors’ best knowledge,

that case has not yet been studied except in the recent paper [11]. The challenge

is to derive an L2(H2)-type a priori estimate for the chemical potential. By the

use of the so-called conical Pioncaré inequality, local estimates of this types can be

obtained.

In this paper, generally speaking, we will investigate the coupled PDE system:

Cahn-Hilliard equations:

ct = div(mδ(z)∇µ) in ΩT ,(1.1a)

µ = −∆c+Ψ′(c) +W δ
,c(c, ε(u), z) in ΩT ,(1.1b)

quasi-static equilibrium of the forces:

(1.1c) −div(W δ
,e(c, ε(u), z)) = f in ΩT ,

evolution inclusion for the damage processes:

zt −∆pz +W δ
,z(c, ε(u), z) + g′(z) + ξ + η = 0 in ΩT ,(1.1d)

ξ ∈ ∂I[0,∞)(z) in ΩT ,(1.1e)

η ∈ ∂I(−∞,0](zt) in ΩT .(1.1f)
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The variables in our model are the chemical concentration c : ΩT → R
N , the dis-

placement field u : ΩT → R
n, the degree of damage z : ΩT → [0, 1], the chemical

potential µ : ΩT → R
N and the subgradients ξ and η. We denote by IA and 1A the

indicator function and characteristic function, respectively, for the set A ⊆ X .

We impose mixed boundary conditions for u and natural boundary conditions for

the variables. The full list of the initial-boundary conditions considered is given in

the following, where ΓD and ΓN denote the Dirichlet and Neumann boundaries.

Mixed boundary conditions :

u = b on (ΓD)T ,(1.2a)

W δ
,e(c, ε(u), z) · ν = 0 on (ΓN)T ,(1.2b)

Neumann boundary conditions :

(1.2c) ∇z · ν = ∇c · ν = mδ(z)∇µ · ν = 0 on (∂Ω)T ,

initial values:

(1.2d) c(0) = c0, z(0) = z0 in Ω.

The involved (nonlinear) functions and operators are explained below:

⊲ phase separation mobility tensor mδ depending on z is assumed to be

(1.3) mδ(z) = m(z) + δ with δ > 0, m(z) > 0 and m(z) = 0 iff z = 0,

⊲ elastic energy density W δ depending on c, ε(u) and z is assumed to be

(1.4) W δ(c, e, z) = (h(z) + δ)ϕ(c, e) with h(z) > 0 and h(z) = 0 iff z = 0,

⊲ chemical energy density Ψ depending on c,

⊲ linearized strain tensor ε(u) := 1
2 (∇u + (∇u)t),

⊲ damage potential g depending on z,

⊲ volume forces f depending on spatial and time coordinates and

⊲ p-Laplacian ∆p· := div(|∇ · |p−2∇·),

⊲ boundary displacement data b depending on spatial and time coordinates.
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The precise assumptions are listed in the next section.

The case δ > 0 is considered as the regular (incomplete damage) case whereas

δ = 0 is the degenerated case (allowing for complete damage). The latter one requires

a special treatment. In this context, it is appropriate to refine the notion of solution

by introducing a time-dependent domain Ω(·) := {(x, t) ∈ ΩT ; x ∈ Ω(t)} which

incorporates the not completely damaged material. The main idea is to consider

the path-connected components of the not completely damaged material which are

connected to the Dirichlet boundary ΓD. To be more precise, we introduce the

following notion.

Definition 1.1 (Admissible subsets of Ω with respect to ΓD). We say that a rel-

atively open subset F ⊆ Ω is admissible with respect to the Dirichlet boundary ΓD

if for every path-connected component P of F the condition Hn−1(P ∩ ΓD) > 0 is

fulfilled. Furthermore, AΓD(F ) denotes the maximal admissible subset of F with

respect to ΓD, i.e., AΓD(F ) :=
⋃
{G ⊆ F ; G is admissible with respect to ΓD}.

The PDE system (1.1)–(1.2) can be formulated on a time-dependent domain as

follows. We call a 5-tuple (c, u, z, µ, η) a classical solution if

time-dependent domain:

(1.5a) Ω(t) = AΓD({z(t) > 0}) := AΓD({x ∈ Ω; z(t, x) > 0})

Cahn-Hilliard equations:

ct = div(m(z)∇µ) in Ω(·),(1.5b)

µ = −∆c+Ψ′(c) +W,c(c, ε(u), z) in Ω(·),(1.5c)

quasi-static equilibrium of the forces:

(1.5d) −div(W,e(c, ε(u), z)) = f in Ω(·),

evolution inclusion for the damage processes:

zt −∆pz +W,z(c, ε(u), z) + g′(z) + η = 0 in Ω(·),(1.5e)

η ∈ ∂I(−∞,0](zt) in Ω(·).(1.5f)

We adopt the convention ∂Ω(·) := {(x, t) ; x ∈ ∂Ω(t)} as well as m := m0 and

W := W 0. We would like to remark that ξ = 0 in Ω(·) (ξ is the subgradient

in (1.1e)) and that Ω(·) is shrinking, i.e. Ω(t) ⊆ Ω(s) whenever t > s, since z is

monotonically decreasing in t. The boundary conditions in the degenerated case are
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more involved since parts of the Dirichlet or Neumann boundaries are also allowed

to degenerate. We impose the following initial-boundary data:

mixed boundary conditions :

u = b on Γ1(·) := Ω(·) ∩ (ΓD)T ,(1.6a)

W,e(c, ε(u), z) · ν = 0 on Γ2(·) := Ω(·) ∩ (ΓN)T ,(1.6b)

degenerated boundary:

(1.6c) z = 0 on Γ3(·) := ∂Ω(·) \ (Γ1(·) ∪ Γ2(·)),

Neumann boundary conditions :

(1.6d) ∇z · ν = ∇c · ν = m(z)∇µ · ν = 0 on Γ1(·) ∪ Γ2(·),

initial values:

(1.6e) c(0) = c0, z(0) = z0 in Ω(0).

P l a n o f t h e p a p e r. In Section 2, we will present suitable weak formulations

for the regularized PDE system (1.1)–(1.2) as well as for the degenerating system

(1.5)–(1.6). The main results are stated in Section 3 and are gathered from the papers

[9], [10], [11]. Subsection 3.1 collects the existence theorems of these systems for

different cases. While the existence proofs are briefly sketched in Subsection 3.3 and

3.4, some crucial proof techniques which are valuable in their own sense and which

have already been successfully adapted to other situations (see [16]) are presented in

Subsection 3.2.

2. Weak formulations

2.1. Nondegenerating case. The notion of a weak solution for system (1.1)–

(1.2) was originally motivated in [9]. In order not to overburden the presentation,

we assume f = 0.

Definition 2.1. We say that a 5-tuple (c, u, z, µ, ξ) is a weak solution in the

nondegenerating case iff the functions are in the following spaces:

c ∈ L∞(0, T ;H1(Ω;RN )) ∩H1(0, T ; (H1(Ω;RN ))∗), c(0) = c0, c1 + . . .+ cN = 1,

u ∈ L∞(0, T ;H1(Ω;Rn)), u|(ΓD)T = b|(ΓD)T ,

z ∈ L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)), z(0) = z0, z > 0, ∂tz 6 0 a.e.,

µ ∈ L2(0, T ;H1(Ω;RN )),

ξ ∈ L2(0, T ; (W 1,p(Ω))∗),

and the following system is satisfied for a.e. t ∈ (0, T ):
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Cahn-Hilliard equations:

ct = div(mδ(z)∇µ) in (H1(Ω;RN ))∗,(2.1a)

µ = −∆c+Ψ′(c) +W δ
,c(c, ε(u), z) in (H1(Ω;RN ))∗,(2.1b)

quasi-static equilibrium of the forces:

(2.1c) −div(W δ
,e(c, ε(u), z)) = 0 in (H1(Ω;Rn))∗,

evolution law for the damage processes (see Remark 2.2 (i)):

zt −∆pz +W δ
,z(c, ε(u), z) + g′(z) + ξ 6 0 in (W 1,p(Ω))∗,(2.1d)

ξ ∈ ∂IW 1,p
+ (Ω)(z),(2.1e)

E(t) +D(0, t) 6 E(0) +Wext(0, t).(2.1f)

The last property is the so-called energy inequality, where the terms are given by:

energy:

E(t) :=

∫

Ω

(1
p
|∇z(t)|p +

1

2
|∇c(t)|2

)
dx

+

∫

Ω

(W δ(c(t), ε(u(t)), z(t))) + g(z(t)) + Ψ(c(t))) dx,

dissipated energy:

D(0, t) :=

∫ t

0

∫

Ω

(mδ(z)|∇µ|2 + |∂tz|
2) dxdt,

external work :

Wext(0, t) :=

∫ t

0

∫

Ω

(W δ
,e(c, ε(u), z) : ε(∂tb)) dxdt.

R em a r k 2.2. (i) The inequality (2.1d) should be read as

∫

Ω

(∂tz ζ + |∇z|p−2∇z · ∇ζ +W δ
,z(c, ε(u), z)ζ + g′(z)ζ + ξζ) dx 6 0

for all ζ ∈ W 1,p
+ (Ω) := {f ∈ W 1,p(Ω); f > 0} or, equivalently,

∫

Ω

(∂tz ζ + |∇z|p−2∇z · ∇ζ +W δ
,z(c, ε(u), z)ζ + g′(z)ζ + ξζ) dx > 0

for all ζ ∈ W 1,p
− (Ω) := {f ∈ W 1,p(Ω); f 6 0} as presented in [9].
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(ii) Let us remark that if a weak solution possesses more regularity, e.g.,

c ∈ H1(0, T ;H1(Ω;RN )), u ∈ H1(0, T ;H1(Ω;Rn)), z ∈ H1(0, T ;W 1,p(Ω)),

we find an η ∈ L2(0, T ; (W 1,p(Ω))∗) such that the evolution inclusion

zt −∆pz +W δ
,z(c, ε(u), z) + g′(z) + ξ + η = 0 in (W 1,p(Ω))∗,

ξ ∈ ∂IW 1,p
+ (Ω)(z) in (W 1,p(Ω))∗,

η ∈ ∂IW 1,p
−

(Ω)(∂tz) in (W 1,p(Ω))∗

holds for a.e. t ∈ (0, T ).

2.2. Degenerating case. To proceed, we need the following definition. Let

Ω(·) := {Ω(t)}t∈[0,T ] be a time-dependent domain such that, for all t ∈ [0, T ], Ω(t) is

relatively open in Ω and Ω(·) is assumed to be shrinking, i.e. Ω(t) ⊆ Ω(s) whenever

t > s. We introduce the space of local Sobolev functions L2
tH

1
x, loc(Ω(·);R

N ) as

L2
tH

q
x,loc(Ω(·);R

N ) := {v : Ω(·) → R
N : ∀ t ∈ (0, T ], ∀U ⊂⊂ Ω(t) open:

v|U×(0,t) ∈ L2(0, t;Hq(U ;RN))}.

Definition 2.3. We say that a 4-tuple (c, u, z, µ) is a weak solution of system

(1.5)–(1.6) in the degenerating case iff the functions are in the following spaces:

c ∈ L∞(0, T ;H1(Ω;RN )) ∩H1(0, T ; (H1(Ω;RN ))∗), c(0) = c0, c1 + . . .+ cN = 1,

u ∈ L2
tH

1
x,loc(Ω(·);R

n), u|(ΓD)T∩Ω(·) = b|(ΓD)T∩Ω(·),

z ∈ L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)), z(0) = z0, z > 0, ∂tz 6 0 a.e.,

µ ∈ L2
tH

1
x,loc(Ω(·);R

N ),

and the following system is satisfied for a.e. t ∈ (0, T ):

time-dependent domain:

(2.2a) Ω(t) = AΓD({z(t) > 0})

Cahn-Hilliard equations:

ct = div(m(z)∇µ) in (H1
c (Ω(t);R

N ))∗,(2.2b)

µ = −∆c+Ψ′(c) +W,c(c, e, z) in (H1
c (Ω(t);R

N ))∗,(2.2c)
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quasi-static equilibrium of the forces:

(2.2d) −div(W,e(c, e, z)) = 0 in (H1
c (Ω(t);R

n))∗,

evolution law for the damage processes :

zt −∆pz +W,z(c, e, z) + g′(z) 6 0 in (W 1,p
c (Ω(t)))∗,(2.2e)

E(t) +D(0, t) + J (0, t) 6 E+(0) +Wext(0, t),(2.2f)

where the terms in the energy inequality are given by:

energy:

E(t) := E(t, c(t), u(t), z(t)) :=

∫

Ω(t)

(1
p
|∇z(t)|p +

1

2
|∇c(t)|2

)
dx

+

∫

Ω(t)

(W (c(t), ε(u(t)), z(t))) + g(z(t)) + Ψ(c(t))) dx,

energy jump term:

J (0, t) :=
∑

s∈JΩ(·)∩(0,t]

(E−(s)− E+(s)),

E−(t) := lim
s↑t

(
ess inf
τ∈(s,t)

E(τ)
)
and E+(t) ∈ R+ satisfies:

E+(t) 6 inf
ζ∈H1

ΓD∩Ω(t)
(Ω(t);Rn)

E(t, c(t), b(t) + ζ, z(t)),

dissipated energy:

D(0, t) :=

∫ t

0

∫

Ω(s)

(m(z)|∇µ|2 + |∂tz|
2) dxdt,

external work :

Wext(0, t) :=

∫ t

0

∫

Ω(s)

(W,e(c, ε(u), z) : ε(∂tb)) dxdt.

Here, JΩ(·) denotes the jump set of 1Ω(·) : [0, T ] → L2(Ω), i.e.,

JΩ(·) := {t ∈ (0, T ) ; lim
s↑t

1Ω(·)(s) 6= lim
s↓t

1Ω(·)(s)}.

R em a r k 2.4. (i) Note that H1
c (Ω(t);R

k) := {f ∈ H1(Ω(t);Rk) ; supp(f) ⊆

Ω(t)} and (2.2e) is a short form for (the following holds for a.e. t ∈ (0, T ))
∫

Ω(t)

(zt ζ + |∇z|p−2∇z · ∇ζ +W,z(c, ε(u), z)ζ + g′(z)ζ) dx 6 0

for all ζ ∈ W 1,p
+ (Ω(t);RN ) with supp(ζ) ⊆ Ω(t).
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(ii) If the damage function z is truncated on the time-dependent domain Ω(·),

i.e., z̃ = z1Ω(·), we obtain an equivalent weak formulation in an SBV -framework as

in [11], i.e., z̃ ∈ SBV (0, T ;L2(Ω)) ∩ L∞(0, T ;W 1,p(Ω)).

(iii) Assuming better regularity (cf. Subsection 2.1), we obtain

E+(t) = lim
s↓t

E(s), E−(t) = lim
s↑t

E(s)

and the corresponding evolution inclusion holds.

In the degenerate limit, we might be confronted with infinitely many material

exclusions in Ω(·) which occur in arbitrary short time intervals. To handle this

case, we introduce a notion of weak solutions with a given fineness η > 0. Roughly

speaking, we neglect arbitrarily small material exclusions in the energy inequality.

Definition 2.5. A weak solution with fineness η is a 5-tuple (c, e, u, z, µ) with

c ∈ L∞(0, T ;H1(Ω;RN )) ∩H1(0, T ;L2(Ω;RN )), c(0) = c0, c1 + . . .+ cN = 1,

e ∈ L2(ΩT ;R
n×n),

u ∈ L2
tH

2
x, loc(Ω(·);R

n)), u|(ΓD)T∩Ω(·) = b|(ΓD)T∩Ω(·), ε(u) = e in Ω(·),

z ∈ L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)), z(0) = z0, z > 0, ∂tz 6 0 a.e.,

µ ∈ L2
tH

2
x, loc(Ω(·);R

N )

together with another time-dependent shrinking domain Ξ(·) such that (2.2) is ful-

filled when we substitute Ω(·) by Ξ(·) in the definition of E , J , D and Wext (which

occur in the energy inequality (2.2f)). The domain should satisfy

∀ t ∈ [0, T ] : Ω(·) ⊆ Ξ(·) and Ln(Ξ(t) \ Ω(t)) < η,

∀ t ∈ [0, T ] \
⋃

t∈CΩ(·)

[t, t+ η) : Ω(t) = Ξ(t).

Here, CΩ(·) denotes the set of cluster points from the right hand side of the jump

set JΩ(·).

3. Existence results

3.1. Overview. For all the following theorems, we assume that Ω is a bounded

Lipschitz domain, that the coefficient functions g, h and m are continuously dif-

ferentiable with the properties (1.3) and (1.4) and, as already mentioned, f = 0.

The initial-boundary values are given by c0 ∈ H1(Ω;RN ), z0 ∈ W 1,p(Ω) and b ∈

W 1,1(0, T ;W 1,∞(Ω;Rn)) with c01 + . . .+ c0N = 1 and 0 6 z0 6 1.
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Theorem 3.1 (Nondegenerating case-polynomial growth conditions). Let p = 2

or p > n, and ΓD ⊆ ∂Ω with Hn−1(ΓD) > 0. We assume the following growth

conditions (C, η > 0 are constants):

η|e1 − e2|
2
6 (∂eϕ(c, e1)− ∂eϕ(c, e2)) : (e1 − e2),

ϕ(e, z) 6 C(|c|2 + |e|2 + 1), |∂cϕ(c, e)| 6 C(|c|2 + |e|2 + 1),

|∂eϕ(e1 + e2, c)| 6 C(ϕ(c, e1) + |e2|+ 1), |Ψ′(c)| 6 C(|c|2
⋆/2 + 1).

Then there exists a weak solution (c, u, z, µ, ξ) on the time interval [0, T ] in the sense

of Definition 2.1.

Theorem 3.2 (Nondegenerating case-logarithmic growth conditions). Let p > n

or p = 2 and ΓD = ∂Ω. Furthermore, suppose that ϕ satisfies the assumptions from

Theorem 3.1 and, additionally, suppose c0k > 0 a.e. in Ω for all k = 1, . . . , N . The

chemical energy density Ψ is assumed to be of the logarithmic form

Ψ(c) = θ
N∑

k=1

ck log(ck) +
1

2
c ·Ac, θ > 0, A ∈ R

n×n
sym .

Then, there exists a weak solution (c, u, z, µ, ξ) on the time interval [0, T ] in the sense

of Definition 2.1 and ck > 0 a.e. in ΩT for all k = 1, . . . , N .

Theorem 3.3 (Degenerating case-polynomial growth conditions). Let p > n,

η > 0 and ΓD ⊆ ∂Ω with Hn−1(ΓD) > 0. We assume ϕ(e, z) = ϕ1e : e + ϕ2(c) :

e+ϕ3(c) with a positive definite matrix ϕ1 and ϕ2 ∈ C1(R;Rn×n
sym ), ϕ3 ∈ C1(R) which

satisfy (C, η > 0 are constants)

|ϕ2(c)|, |ϕ2
,c(c)| 6 C(1 + |c|), |ϕ3(c)|, |ϕ3

,c(c)| 6 C(1 + |c|2),

|Ψ,c(c)| 6 C(1 + |c|2
⋆/2), η 6 h′(z).

Furthermore, we suppose that the set {z0 > 0} is admissible with respect to ΓD.

Then there exists a weak solution (c, e, u, z, µ) with fineness η on the time interval

[0, T ] in the sense of Definition 2.5.

R em a r k 3.4. We also obtain maximal local-in-time solutions in the sense of

Definition 2.3. Furthermore, the condition p > n in Theorem 3.3 is needed since

the existence proof strongly relies on the compact embedding L∞(0, T ;W 1,p(Ω)) ∩

H1(0, T ;L2(Ω)) →֒ C(ΩT ).
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3.2. Auxiliary results. The following results are crucial for the proof of the

existence theorems in the next subsections. Let us mention that whenever we consider

a family {fτ}τ>0 of functions in this work, we actually mean a sequence {fτk}k∈N

with τk ↓ 0. In this subsection, we always assume p > n.

Lemma 3.5 (see [10]). Let f ∈ Lp(Ω;Rn), g ∈ L1(Ω) and z ∈ W 1,p
+ (Ω) with

f ·∇z > 0 a.e. in Ω and {f = 0} ⊇ {z = 0} in an a.e. sense. Furthermore, we assume

that

∫

Ω

(f · ∇ζ + gζ) dx > 0 for all ζ ∈ W 1,p
− (Ω) with {ζ = 0} ⊇ {z = 0}.

Then ∫

Ω

(f · ∇ζ + gζ) dx >

∫

{z=0}

[g]+ζ dx for all ζ ∈ W 1,p
− (Ω)

with [g]+ := max(0, g).

R em a r k 3.6. In the work [10], g is assumed to be in Lp(Ω). But the proof

extends to g ∈ L1(Ω) without any modifications.

In the next lemma, the notation {ζ = 0} ⊇ {f = 0} for functions in L∞(0, T ;

W 1,p(Ω)) shall be read as {x ∈ Ω; ζ(x, t) = 0} ⊇ {x ∈ Ω; f(x, t) = 0} for a.e.

t ∈ (0, T ).

Lemma 3.7 (see [10]). Let

⊲ fτ , f ∈ L∞(0, T ;W 1,p
+ (Ω)) with fτ (t) → f(t) weakly inW 1,p(Ω) as τ ↓ 0 for a.e.

t ∈ (0, T ),

⊲ ζ ∈ L∞(0, T ;W 1,p
+ (Ω)) with {ζ = 0} ⊇ {f = 0}.

Then there exist a sequence ζτ ∈ L∞(0, T ;W 1,p
+ (Ω)) and constants ντ,t > 0 such that

⊲ ζτ → ζ strongly in Lq(0, T ;W 1,p(Ω)) as τ ↓ 0 for all q > 1,

⊲ ζτ → ζ weakly-star in L∞(0, T ;W 1,p(Ω)) as τ ↓ 0,

⊲ ζτ 6 ζ a.e. in ΩT for all M ∈ N (in particular {ζτ = 0} ⊇ {ζ = 0}),

⊲ ντ,tζτ (t) 6 fτ (t) in Ω for a.e. t ∈ (0, T ) and for all τ > 0.

If, in addition, ζ 6 f a.e. in ΩT then the last condition can be refined to ζτ 6

fτ a.e. in ΩT for all τ > 0.

3.3. Sketch of the existence proof of the nondegenerated case. Here we

restrict ourselves to a polynomial growth condition for Ψ as in Theorem 3.1. The

logarithmic case can be proved with a higher integrability argument for the strain

tensor and with an appropriate regularization technique for Ψ, see [10]. The proof

consists of the following steps which are sketched below.
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1. Regularization. The proof is based on the following ε-regularization (q > n):

ct = div(mδ(z)∇µ) in (H1(Ω;RN ))∗,(3.1a)

µ = −∆c+Ψ′(c) +W δ
,c(c, ε(u), z) + εct in (H1(Ω;RN ))∗,(3.1b)

− div(W δ
,e(c, ε(u), z))− εdiv(|∇u|2∇u) = 0 in (W 1,4(Ω;Rn))∗,(3.1c)

zt −∆pz − ε∆qz +W δ
,z(c, ε(u), z) + g′(z) + ξ 6 0 in (W 1,q(Ω))∗,(3.1d)

ξ ∈ ∂IW 1,q
+ (Ω)(z),(3.1e)

Eε(t) +Dε(0, t) 6 Eε(0) +Wε,ext(0, t)(3.1f)

with

Eε(t) :=

∫

Ω

(1
p
|∇z(t)|p +

ε

q
|∇z(t)|q +

1

2
|∇c(t)|2 +

ε

4
|∇u(t)|4

)
dx

+

∫

Ω

(W δ(c(t), ε(u(t)), z(t))) + g(z(t)) + Ψ(c(t))) dx,

Dε(0, t) :=

∫ t

0

∫

Ω

(mδ(z)|∇µ|2 + |∂tz|
2 + ε|∂tc|

2) dxdt,

Wε,ext(0, t) :=

∫ t

0

∫

Ω

(W δ
,e(c, ε(u), z) : ε(∂tb) + ε|∇u|2∇u : ∇(∂tb)) dxdt.

The q-Laplacian in the regularized system with q > n is not needed in the case p > n.

2. Time-discretization via semi-implicit Euler scheme. Existence of weak solutions

for the regularized system is proved by a time-discretization method via a semi-

implicit Euler scheme. Let τ > 0 denote the discretization fineness and let Mτ :=

⌊T/τ⌋ be the number of discrete time steps associated with the fineness τ . A weak

solution for the time-discrete system at the discrete time step k ∈ {0, . . . ,Mτ} is

given by

τ−1(ckτ − ck−1
τ ) = div(mδ(zk−1

τ )∇µk
τ ),

µk
τ = −∆ckτ +Ψ′(ckτ ) +W δ

,c(c
k
τ , ε(u

k
τ ), z

k
τ ) + ετ−1(ckτ − ck−1

τ ),

−div(W δ
,e(c

k
τ , ε(u

k
τ ), z

k
τ ))− div(|∇uk

τ |
2∇uk

τ ) = 0,

τ−1(zkτ − zk−1
τ )−∆pz

k
τ − ε∆qz

k
τ +W δ

,z(c
k
τ , ε(u

k
τ ), z

k
τ ) + g′(zkτ ) + ξkτ = 0,

ξkτ ∈ ∂IAk
τ
(z)

with the constraint set Ak
τ := {ζ ∈ W 1,q(Ω); 0 6 ζ 6 zk−1

τ }.

The differential inclusion is equivalent to the following variational inequality:

(3.2) −

∫

Ω

(τ−1(zkτ − zk−1
τ )(ζ − zkτ ) +W δ

,z(c
k
τ , ε(u

k
τ ), z

k
τ )(ζ − zkτ ) + g′(zkτ )(ζ − zkτ )

+ |∇zkτ |
p−2∇zkτ · ∇(ζ − zkτ ) + |∇zkτ |

q−2∇zkτ · ∇(ζ − zkτ )) dx 6 0

holding for all ζ ∈ Ak
τ .
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Now, given (ck−1
τ , uk−1

τ , zk−1
τ , µk−1

τ ), existence of weak solutions (ckτ , u
k
τ , z

k
τ , µ

k
τ ) can

be proved by minimizing an appropriate functional via the direct method.

3. A priori estimates and compactness properties. For a sequence of functions

{vkτ }, we denote the piecewise constant interpolants by vτ (t) := vkτ with k = ⌈t/τ⌉

and v−τ (t) := vkτ with k = ⌊t/τ⌋. The discrete energy estimate yields the following

a priori estimates (for all τ > 0):

{cτ} in L∞(0, T ;H1(Ω;RN )), {τ−1(cτ − c−τ )} in L2(0, T ;L2(Ω;RN )),

{zτ} in L∞(0, T ;W 1,q(Ω)), {τ−1(zτ − z−τ )} in L2(0, T ;L2(Ω)),

{uτ} in L∞(0, T ;W 1,4(Ω;Rn)), {µτ} in L2(0, T ;H1(Ω;RN )).

The corresponding convergence properties (with respect to a subsequence) can be

obtained by standard compactness theorems and by a compactness theorem from

Aubin/Lions.

4. Strong convergence properties. By using uniform monotonicity estimates and

by exploiting the equations for the discrete system, it is possible to prove the following

strong convergence properties:

cτ → c strongly in L2(0, T ;H1(Ω;RN )),

uτ → u strongly in L4(0, T ;W 1,4(Ω;Rn)),

zτ → z strongly in Lq(0, T ;W 1,q(Ω)).

We sketch the proof for {zτ} since the other convergence properties follow with

much less effort. Applying Lemma 3.7, we obtain a sequence of approximations

{ζM} ⊆ L∞(0, T ;W 1,q
+ (Ω)) with the properties

ζτ → z in Lq(0, T ;W 1,q(Ω)),(3.3a)

0 6 ζτ 6 z−τ for all τ > 0.(3.3b)

A uniform p-monotonicity estimate yields

Cuc

∫

ΩT

ε|∇zτ −∇z|q dxdt+

∫

ΩT

|∇zτ −∇z|p dxdt

6

∫

ΩT

((ε|∇zτ |
q−2 + |∇zτ |

p−2)∇zτ − (ε|∇z|q−2 + |∇z|p−2)∇z) · ∇(zτ − z) dxdt

=

∫

ΩT

(ε|∇zτ |
q−2 + |∇zτ |

p−2)∇zτ · ∇(zτ − ζτ ) dxdt

−

∫

ΩT

(ε|∇z|q−2 + |∇z|p−2)∇z · ∇(zτ − z) dxdt

+

∫

ΩT

(ε|∇zτ |
q−2 + |∇zτ |

p−2)∇zτ · ∇(ζτ − z) dxdt.
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The first term on the right hand side can be estimated by using the time-integrated

version of the variational inequality (3.2) tested with ζ = ζτ (thanks to (3.3b)), i.e.,

∫

ΩT

(ε|∇zτ |
q−2 + |∇zτ |

p−2)∇zτ · ∇(zτ − ζτ ) dxdt

6

∫

ΩT

(W δ
,z(cτ , ε(uτ ), zτ ) + g′(zτ ) + τ−1(zτ − z−τ ))(ζτ − zτ ) dxdt.

We can now apply (3.3a) and the convergence properties arising from the a priori

estimates to show ‖∇zτ −∇z‖qLq + ‖∇zτ −∇z‖pLp → 0 as τ ↓ 0.

5. Establishing the continuous limit (in)equalities. By exploiting the strong con-

vergence properties, we can now pass to the limit in the time-discrete system. The

challenging part is to establish the variational inequality (3.1d)–(3.1e). We give the

main ideas below.

First of all, we consider only test-functions ζ ∈ L∞(0, T ;W 1,p
− (Ω)) with the con-

straint {ζ = 0} ⊇ {z = 0}. Lemma 3.7 gives a sequence {ζτ} ⊆ L∞(0, T ;W 1,p
− (Ω))

with
ζτ → z in Lq(0, T ;W 1,q(Ω)),

0 6 −ντ,tζτ 6 zτ for all τ > 0.

In particular, (3.2) holds for ζ = ντ,tζτ (t) + zτ (t). Dividing the resulting inequality

by ντ,t > 0, integrating from 0 to T , passing to τ ↓ 0 and switching to an “a.e. t”

formulation we obtain

∫

Ω

((ε|∇z|q−2 + |∇z|p−2)∇z · ∇ζ + (W δ
,z(c, ε(u), z) + g′(z) + ∂tz)ζ) dx > 0

holding for all ζ ∈ W 1,p
− (Ω) with {ζ = 0} ⊇ {z(t) = 0}.

Lemma 3.5 shows

∫

Ω

(ε|∇z|q−2 + |∇z|p−2)∇z · ∇ζ + (W δ
,z(c, ε(u), z) + g′(z) + ∂tz)ζ dx

>

∫

{z(t)=0}

[W δ
,z(c, ε(u), z) + g′(z) + ∂tz]

+ζ dx

for every ζ ∈ W 1,p
− (Ω). Now, the variational inequality (3.1d) follows by setting

ξ := −1{z=0}[W
δ
,z(c, ε(u), z) + g′(z) + ∂tz]

+.

6. Passing to the limit in the regularization. Finally, we pass ε ↓ 0 in (3.1) by

performing a limit analysis and end up with system (2.1). For details, we refer to [10].
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3.4. Sketch of the existence proof of the degenerating case. For every

δ > 0, we take a weak solution (cδ, uδ, zδ, µδ, ξδ) according to Theorem 3.1 and

perform the following steps.

1. A priori estimates. By Gronwall’s lemma, the left hand side of the energy

inequality (2.1f) stays bounded in the transition δ ↓ 0. We obtain the following

a priori estimates:

{cδ} in L∞(0, T ;H1(Ω;RN )), {∂tcδ} in L2(0, T ; (H1(Ω;RN ))∗),

{zδ} in L∞(0, T ;W 1,p(Ω)), {∂tzδ} in L2(0, T ;L2(Ω)),

{êδ} in L∞(0, T ;L2(Ω;Rn×n)), {W δ(cδ, eδ, zδ)} in L∞(0, T ;L1(Ω)),

{mδ(zδ)
1/2∇µδ} in L2(0, T ;L2(Ω;RN×n))

with eδ := ε(uδ) and êδ := eδ1{zδ>0}.

2. Convergence to a limit system. The a priori estimates lead to the following

convergence properties (with respect to a subsequence):

cδ → c weakly-star in L∞(0, T ;H1(Ω;RN )) ∩H1(0, T ;L2(Ω;RN ))

and strongly in L2(0, T ;L2(Ω;RN )),

zδ → z weakly-star in L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω))

and strongly in C(ΩT ),

êδ → ê weakly in L2(0, T ;L2(Ω;Rn×n)),

µδ → µ weakly in L2
tH

1
x, loc(Ω(·);R

N ),

mδ(zδ)∇µδ → m(z)∇µ weakly in L2(Ω(·);RN ),

W δ
,e(cδ, eδ, zδ) → W,e(c, ê, z) weakly in L2(Ω(·);Rn×n),

W δ
,c(cδ, eδ, zδ) → W,c(c, ê, z) weakly in L2(Ω(·);RN ).

By proving a suitable representation result for Ω(·) = AΓD({z(·) > 0}) with Lipschitz

domains, it is possible to prove ê = ε(u) in Ω(·) for some u ∈ L2
tH

1
x, loc(Ω(·);R

n) with

u = b on (ΓD)T ∩ Ω(·).

Besides the energy inequality (2.1f), we are able to pass to the limit in (2.1) for

test-functions supported in Ω(·) via lower semi-continuity arguments (and setting

e := ê 1{z>0}). Note that ξ = 0 in Ω(·).

3. Establishing energy inequality via Γ-convergence. The initial value z0 may

contain complete damaged regions (this possibility is important in the next step

of the proof). If this is the case, the initial displacements u0
δ need not converge

strongly to a function u0 in H1(Ω;Rn). To obtain an energy inequality regardless of

this difficulty (see next step), we use a Γ-convergence technique for the convergence
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of the right hand side of the energy inequality. We define the reduced energy to be

Eδ(c, ξ, z) :=

{
min

ζ∈H1
ΓD

(Ω;Rn)
E(c, ξ + ζ, z) if 0 6 z 6 1,

∞ else.

The Γ-limit of {Eδ} for δ ↓ 0 in the space H1
weak(Ω) ×W 1,∞(Ω;Rn) ×W 1,p

weak(Ω) is

denoted by E.

Considering a recovery sequence (c0δ, b
0
δ, z

0
δ ) of (c

0, b0, z0) with b0 := b(0) as initial

value, we are able to prove the energy inequality

E(t) +D(0, t) 6 E(0) +Wext(0, t) with E(0) := E(c0, b0, z0).

4. Concatenation of weak solutions. To obtain the full energy inequality with the

jump term, we use a concatenation property of weak solutions constructed above.

We only sketch the argument. The full version requires the application of Zorn’s

lemma.

Let (c, e, u, z, µ) be the weak solution to (c0, z0) and b from the previous step.

Furthermore, let t1 denote the time when a material exclusion occurs, i.e. t1 ∈ JΩ(·).

Then we set c1 := c(t1) and z1 := z(t1)1Ω(t1) and use these functions as new initial

values. By the argumentation above, we get a further weak solution (c̃, ẽ, ũ, z̃, µ̃)

starting from time t1. In conclusion, we have

E(t) +D(0, t) 6 E(0) +Wext(0, t) for a.e. t ∈ (0, t1),(3.4a)

E(t) +D(t1, t) 6 E(t1) +Wext(t1, t) for a.e. t ∈ (t1, T ).(3.4b)

The energy inequality (3.4a) implies

lim
t↑t1

(ess inf
s∈(t,t1)

E(s)) +D(0, t1) 6 E(0) +Wext(0, t1).

Adding this to the inequality (3.4b) shows for a.e. t ∈ (t1, T )

E(t) + lim
t↑t1

(ess inf
s∈(t,t1)

E(s)) − E(t1) +D(0, t) 6 E(0) +Wext(0, t).

Due to E−(t1) = lim
t↑t1

(ess infs∈(t,t1) E(s)), E
+(t1) > E(t1) and E+(0) > E(0), we have

proved an energy inequality which accounts for the energy jump at t1. By extending

this argument via Zorn’s lemma, we obtain the energy inequality in the sense of

Definition 2.5.
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