Mathematica Bohemica

Atsushi Kadoya; Nobuyuki Kenmochi
A mathematical model for the recovery of human and economic activities in disaster regions

Mathematica Bohemica, Vol. 139 (2014), No. 2, 373-380

Persistent URL: http://dml.cz/dmlcz/143862

Terms of use:

© Institute of Mathematics AS CR, 2014

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

A MATHEMATICAL MODEL FOR THE RECOVERY OF HUMAN AND ECONOMIC ACTIVITIES IN DISASTER REGIONS

Atsushi Kadoya, Hiroshima, Nobuyuki Kenmochi, Kyoto

(Received September 30, 2013)

Abstract

In this paper a model for the recovery of human and economic activities in a region, which underwent a serious disaster, is proposed. The model treats the case that the disaster region has an industrial collaboration with a non-disaster region in the production system and, especially, depends upon each other in technological development. The economic growth model is based on the classical theory of R. M. Solow (1956), and the full model is described as a nonlinear system of ordinary differential equations.

Keywords: economic growth; human activity; economic activity; system of ordinary differential equations

MSC 2010: 91B62, 49J15, 35K40

1. Introduction

In this paper we discuss a design for the recovery process of human and economic activities in the disaster region Ω_{1}, getting support from the government and a (nondisaster) collaborative region Ω_{2}. In our model the basic assumptions and ideas for recovery are mentioned as follows:
(i) The recovery of economy is designed simultaneously with that of human living conditions in the disaster region, and the supply of labor force relies on it.
(ii) For a moment after the disaster, the recover of living conditions and economy of Ω_{1} is supported by the public funds, $v=v(t)$, but it is temporary.
(iii) The region Ω_{1} has an industrial collaboration with a (non-disaster) region Ω_{2}, and the region Ω_{2} contributes part of its capital to the economic recovery of Ω_{1}.

[^0](iv) It is expected that the industrial relationship between Ω_{1} and Ω_{2} goes back to the usual one as soon as possible, and it is finally important to establish a self-reliant recovery system only in Ω_{1}.

2. State Problems

We begin with explaining the meanings of the unknown functions. Let $s:=$ $\left(s_{1}, s_{2}, \ldots, s_{N}\right)$ be the environmental order parameters in Ω_{1}, with constraint $-1 \leqslant$ $s_{i} \leqslant 1, i=1,2, \ldots, N$, and $w:=\left(w_{1}, w_{2}\right)$ the vector function of capitals of Ω_{1} and Ω_{2}. Moreover, let $A:=\left(A_{1}, A_{2}\right)$ be the vector function describing technological order parameters of Ω_{1} and Ω_{2} and $L_{1}:=L_{1}(s)$ the labor force depending on s in Ω_{1}. Our model is described in three time intervals $\left[0, T_{1}\right],\left[T_{1}, T_{2}\right],\left[T_{2}, T_{3}\right]$ and their terminals T_{1}, T_{2} and T_{3} are unknown, too, and they are determined by some optimization conditions mentioned later in detail. Assume that s and w are governed by a system of ordinary differential inclusions or equations of the following form:
$(1) s_{i}^{\prime}+\partial I_{[0, \infty)}\left(s_{i}^{\prime}\right)+F_{i}(s)+\partial I_{(-\infty, 0]}\left(s_{i}\right) \ni \begin{cases}\xi_{0 i} v, & t \in\left[0, T_{1}\right], \\ \xi_{1 i} w_{1}, & t \in\left[T_{1}, T_{2}\right], 1 \leqslant i \leqslant N, \\ \hat{\xi}_{1 i} w_{1}, & t \in\left[T_{2}, T_{3}\right],\end{cases}$
(2) $w_{1}^{\prime}+b_{1} w_{1}=\sigma_{1}\left(A_{1} L_{1}(s)\right)^{1-\alpha} w_{1}^{\alpha}+ \begin{cases}-\kappa_{12} w_{1}+\eta_{0} v, & t \in\left[0, T_{1}\right], \\ -\left(\kappa_{11}+\kappa_{12}\right) w_{1}+\kappa_{21} w_{2}, & t \in\left[T_{1}, T_{2}\right] \\ -\left(\kappa_{11}+\kappa_{12}\right) w_{1}, & t \in\left[T_{2}, T_{3}\right]\end{cases}$
(3) $w_{2}^{\prime}+b_{2} w_{2}=\sigma_{2}\left(A_{2} l_{2}\right)^{1-\beta} w_{2}^{\beta}+ \begin{cases}-\kappa_{22} w_{2}, & t \in\left[0, T_{1}\right], \\ -\left(\kappa_{21}+\kappa_{22}\right) w_{2}, & t \in\left[T_{1}, T_{2}\right], \\ -\kappa_{22} w_{2}, & t \in\left[T_{2}, T_{3}\right],\end{cases}$
(4) $A_{1}^{\prime}+c_{1} A_{1}=g_{1}\left(\kappa_{22} w_{2}\right), \quad A_{2}^{\prime}+c_{2} A_{2}=g_{2}\left(\kappa_{12} w_{1}\right), \quad t \in\left[0, T_{3}\right]$,
with

$$
\begin{equation*}
s_{i}(0)=-1, \quad 1 \leqslant i \leqslant N, \quad w_{k}(0)=w_{k 0}, \quad A_{k}(0)=A_{k 0}, \quad k=1,2 \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{1}(s):=\frac{l_{1}}{2 N} \sum_{i=1}^{N}\left(s_{i}+1\right), \quad\left(\left\{\xi_{0 i}\right\}, \eta_{0}\right) \in U_{1}, \quad\left\{\xi_{1 i}\right\} \in U_{2}, \quad\left\{\hat{\xi}_{1 i}\right\} \in U_{3} \tag{6}
\end{equation*}
$$

Here we denote by $s_{i}^{\prime}, w_{k}^{\prime}, A_{k}^{\prime}$ the time derivatives of s_{i}, w_{k}, A_{k}, and
$\triangleright F_{i}:[-1,1]^{N} \rightarrow \mathbb{R}, i=1,2, \ldots, N$, are Lipschitz continuous and non-increasing, $I_{[0, \infty)}$ and $I_{(-\infty, 1]}$ are the indicator functions of the intervals $[0, \infty)$ and $(-\infty, 1]$, respectively, and $\partial I_{[0, \infty)}$ and $\partial I_{(-\infty, 1]}$ are their subdifferentials in \mathbb{R};
$\triangleright 0<\alpha<1,0<\beta<1, b_{k}>0$ (depreciation rate), $c_{k}>0,0<\sigma_{k}<1$ (saving rate), $l_{k}>0$ (normal labor force), $k=1,2$, and $\kappa_{k j}>0$ (support ratio), $k, j=1,2$, are economic constants; in economics, $\left(A_{1} L_{1}\right)^{1-\alpha}$ and $\left(A_{2} l_{2}\right)^{1-\beta}$ are called the production functions of Cobb-Douglas type;
$\triangleright U_{1}, U_{2}, U_{3}$ are control spaces used to determine T_{1}, T_{2} and T_{3}; they are, respectively, given by

$$
\begin{gathered}
U_{1}:=\left\{\left(\left\{\xi_{0 i}\right\}, \eta_{0}\right) ; \xi_{0 i} \geqslant 0, i=1,2, \ldots, N, \eta_{0} \geqslant 0, \sum_{i=1}^{N} \xi_{0 i}+\eta_{0}=1\right\} \\
U_{2}=U_{3}:=\left\{\left\{\xi_{1 i}\right\} ; \xi_{1 i} \geqslant 0, i=1,2, \ldots, N, \sum_{i=1}^{N} \xi_{1 i}=\kappa_{11}\right\}
\end{gathered}
$$

$\triangleright g_{k}:[0, \infty) \rightarrow[0, \infty), k=1,2$, are Lipschitz continuous, bounded and nondecreasing functions such that $g_{k}(0)>0, g_{k}^{*}:=\max g_{k}=g_{k}\left(r_{k}^{*}\right)$ and $g_{k}^{\prime}>0$ on $\left(0, r_{k}^{*}\right)$; note that in real cases, each of functions g_{1} and g_{2} depend on both of w_{1} and w_{2}, but we treat unusual cases as above in order to emphasize the influence of technological collaboration between Ω_{1} and Ω_{2}.
In general, for two vectors $u=\left(u_{1}, u_{2}, \ldots, u_{M}\right)$ and $\tilde{u}=\left(\tilde{u}_{1}, \tilde{u}_{2}, \ldots, \tilde{u}_{M}\right)$, we simply denote by $u \leqslant \tilde{u}$ or $u<\tilde{u}$ the inequalities " $u_{i} \leqslant \tilde{u}_{i}$ " or " $u_{i}<\tilde{u}_{i}$ ", respectively, $i=1,2, \ldots, M$.

One of the characteristics of our model is the setup of check points $\left\{s^{(k)}, w^{(k)}\right.$, $\left.A^{(k)}\right\}, k=1,2$, with $s^{(k)}:=\left(s_{1}^{(k)}, s_{2}^{(k)}, \ldots, s_{N}^{(k)}\right), w^{(k)}:=\left(w_{1}^{(k)}, w_{2}^{(k)}\right)$ and $A^{(k)}:=$ $\left(A_{1}^{(k)}, A_{2}^{(k)}\right)$ such that
(7) $\left\{\begin{array}{l}0<s^{(1)}<s^{(2)} \leqslant(1,1, \ldots, 1), \\ 0<w^{(1)}<w^{(2)} \leqslant\left(r_{1}^{*} / \kappa_{12}, r_{2}^{*} / \kappa_{22}\right), \quad 0<A^{(1)}<A^{(2)} \leqslant\left(g_{1}^{*} / c_{1}, g_{2}^{*} / c_{2}\right),\end{array}\right.$
(8) $\left\{\begin{array}{l}\left(b_{1}+\kappa_{11}+\kappa_{12}\right) w_{1}^{(1)} \leqslant \sigma_{1}\left\{A_{1}^{(1)} L_{1}\left(s^{(1)}\right)\right\}^{1-\alpha}\left(w_{2}^{(1)}\right)^{\alpha}+\kappa_{21} w_{2}^{(1)}, \\ \left(b_{2}+\kappa_{21}+\kappa_{22}\right) w_{2}^{(1)} \leqslant \sigma_{2}\left\{A_{2}^{(1)} l_{2}\right\}^{1-\beta}\left(w_{2}^{(1)}\right)^{\beta}, \\ c_{1} A_{1}^{(1)} \leqslant g_{1}\left(\kappa_{22} w_{2}^{(1)}\right), \quad c_{2} A_{2}^{(1)} \leqslant g_{2}\left(\kappa_{12} w_{1}^{(1)}\right), \\ \sum_{i=1}^{N} \max _{s \geqslant s^{(1)}} F_{i}(s)+\varepsilon_{0} \leqslant \kappa_{11} w_{1}^{(1)} \quad \text { for some constant } \varepsilon_{0}>0,\end{array}\right.$
and
(9) $\left\{\begin{array}{l}\left(b_{1}+\kappa_{11}+\kappa_{12}\right) w_{1}^{(2)} \leqslant \sigma_{1}\left\{A_{1}^{(2)} L_{1}\left(s^{(2)}\right)\right\}^{1-\alpha}\left(w_{1}^{(2)}\right)^{\alpha}, \\ \left(b_{2}+\kappa_{22}\right) w_{2}^{(2)} \leqslant \sigma_{2}\left\{A_{2}^{(2)} l_{2}\right\}^{1-\beta}\left(w_{2}^{(2)}\right)^{\beta}, \\ c_{1} A_{1}^{(2)} \leqslant g_{1}\left(\kappa_{22} w_{2}^{(2)}\right), \quad c_{2} A_{2}^{(2)} \leqslant g_{2}\left(\kappa_{12} w_{1}^{(2)}\right) .\end{array}\right.$

3. MAIN THEOREMS

By virtue of the theory of ODEs (cf. [5], [1], [2] and [3]), for given parameters $\left(\left\{\xi_{0 i}\right\}, \eta_{0}\right) \in U_{1}$ and any $T_{1}>0, P_{1}\left(0, T_{1}\right)$ (hence $P_{1}(0, \infty)$) has a unique solution $\{s, w, A\}$. We define $t_{1}\left(\left\{\xi_{0 i}\right\}, \eta_{0}\right)$ by

$$
t_{1}\left(\left\{\xi_{0 i}\right\}, \eta_{0}\right):=\min \left\{t \geqslant 0 ; s(t) \geqslant s^{(1)}, w(t) \geqslant w^{(1)}, A(t) \geqslant A^{(1)}\right\}
$$

if $\left\{t \geqslant 0 ; s(t) \geqslant s^{(1)}, w(t) \geqslant w^{(1)}, A(t) \geqslant A^{(1)}\right\}$ is nonempty, and define $t_{1}\left(\left\{\xi_{0 i}\right\}, \eta_{0}\right)=\infty$ otherwise.

As to the problem in the first period, we have:
Theorem 3.1. Assume that the initial data $w_{k 0}, A_{k 0}$ are positive and close to 0 for $k=1,2$ so that

$$
\begin{gather*}
\left(b_{1}+\kappa_{11}+\kappa_{12}\right) w_{10} \leqslant \kappa_{21} w_{20},\left(b_{2}+\kappa_{21}+\kappa_{22}\right) w_{20} \leqslant \sigma_{2}\left(A_{20} l_{2}\right)^{1-\beta} w_{20}^{\beta} \tag{10}\\
c_{1} A_{10} \leqslant g_{1}(0), c_{2} A_{20} \leqslant g_{2}(0) \tag{11}
\end{gather*}
$$

and the public fund v satisfies
(12) $\left(b_{1}+\kappa_{11}+\kappa_{12}\right) w_{1}^{(1)}+\sum_{i=1}^{N} \max _{s \in[-1,1]^{N}} F_{i}(s)+\delta_{0} \leqslant v$ for some constant $\delta_{0}>0$.

Then there exist a parameter $\left(\left\{\xi_{0 i}^{*}\right\}, \eta_{0}^{*}\right) \in U_{1}$ and a finite time $T_{1}^{*}>0$ such that

$$
\begin{equation*}
T_{1}^{*}=t_{1}\left(\left\{\xi_{0 i}^{*}\right\}, \eta_{0}^{*}\right)=\inf _{\left(\left\{\xi_{0 i}\right\}, \eta_{0}\right) \in U_{1}} t_{1}\left(\left\{\xi_{0 i}\right\}, \eta_{0}\right) \tag{13}
\end{equation*}
$$

We denote by P_{1}^{*} the problem to find $\left(\left\{\xi_{0 i}^{*}\right\}, \eta_{0}^{*}\right) \in U_{1}$ and a finite time $T_{1}^{*}>0$ satisfying (13) and the solution $\left\{s^{*}, w^{*}, A^{*}\right\}$ of (1)-(5) on $\left[0, T_{1}^{*}\right]$ associated with the parameter $\left(\left\{\xi_{0 i}\right\}, \eta_{0}\right)=\left(\left\{\xi_{0 i}^{*}\right\}, \eta_{0}^{*}\right)$. The set $\left\{\left\{s^{*}, w^{*}, A^{*}\right\} ;\left\{\xi_{0 i}^{*}\right\}, \eta_{0}^{*} ; T_{1}^{*}\right\}$ is called a solution of P_{1}^{*}.

Next, we consider the second period problem. Let $\left\{\left\{s^{*}, w^{*}, A^{*}\right\} ;\left\{\xi_{0 i}^{*}\right\}, \eta_{0}^{*} ; T_{1}^{*}\right\}$ be a solution of P_{1}^{*} as obtained by Theorem 3.1 and let us fix it. Given any parameter $\left\{\xi_{1 i}\right\} \in U_{2}$ and any $T_{2}>T_{1}^{*}$, by the theory of ODEs (cf. [5], [1], [2] and [3]) again we see that (1)-(4) has a unique solution $\{s, w, A\}$ on $\left[T_{1}^{*}, T_{2}\right]$ associated with the initial conditions $s\left(T_{1}^{*}\right)=s^{*}\left(T_{1}^{*}\right), w\left(T_{1}^{*}\right)=w^{*}\left(T_{1}^{*}\right), A\left(T_{1}^{*}\right)=A^{*}\left(T_{1}^{*}\right)$. Just as in the first period problem, we define $t_{2}\left(\left\{\xi_{1 i}\right\}\right)$ by

$$
\begin{equation*}
t_{2}\left(\left\{\xi_{1 i}\right\}\right):=\min \left\{t \geqslant T_{1}^{*} ; s(t) \geqslant s^{(2)}, w(t) \geqslant w^{(2)}, A(t) \geqslant A^{(2)}\right\} \tag{14}
\end{equation*}
$$

if $\left\{t \geqslant T_{1}^{*} ; s(t) \geqslant s^{(1)}, w(t) \geqslant w^{(1)}, A(t) \geqslant A^{(1)}\right\}$ is nonempty, and define time $t_{2}\left(\left\{\xi_{0 i}\right\}\right)=\infty$ otherwise.

In order to discuss the second period problem we need additional assumptions as follows: Fixing $s \in[-1,1]^{N}$ as a parameter, we consider two curves in the $w_{1} w_{2}$-plane

$$
\begin{aligned}
C_{1}(s):\left(b_{1}+\kappa_{11}+\kappa_{12}\right) w_{1} & =\sigma_{1}\left\{\frac{L_{1}(s)}{c_{1}} g_{1}\left(\kappa_{22} w_{2}\right)\right\}^{1-\alpha} w_{1}^{\alpha}+\kappa_{21} w_{2} \\
C_{2}:\left(b_{2}+\kappa_{21}+\kappa_{22}\right) w_{2} & =\sigma_{2}\left\{\frac{l_{2}}{c_{2}} g_{2}\left(\kappa_{12} w_{1}\right)\right\}^{1-\beta} w_{2}^{\beta}
\end{aligned}
$$

These curves $C_{1}(s)$ and C_{2} are described in the explicit forms:

$$
C_{1}(s): w_{2}=\Gamma_{1}^{s}\left(w_{1}\right), \quad C_{2}: w_{2}=\Gamma_{2}\left(w_{1}\right):=\left(\frac{\sigma_{2}}{b_{2}+\kappa_{21}+\kappa_{22}}\right)^{1 /(1-\beta)} \frac{l_{2}}{c_{2}} g_{2}\left(\kappa_{12} w_{1}\right)
$$

Theorem 3.2. Assume that $\Gamma_{1}^{s^{(2)}}\left(w_{1}\right)<\Gamma_{2}\left(w_{1}\right)$ for all $w_{1} \in\left[w_{1}^{(1)}, w_{1}^{(2)}\right]$. Let $\left\{\left\{s^{*}, w^{*}, A^{*}\right\} ;\left\{\xi_{0 i}^{*}\right\}, \eta_{0}^{*} ; T_{1}^{*}\right\}$ be a solution of P_{1}^{*} and let us fix it, and let $t_{2}(\cdot)$ be the function on U_{2} defined by (14). Then there exist a parameter $\left\{\xi_{1 i}^{*}\right\} \in U_{2}$ and a finite time $T_{2}^{*}>T_{1}^{*}$ such that

$$
\begin{equation*}
T_{2}^{*}=t_{2}\left(\left\{\xi_{1 i}^{*}\right\}\right)=\inf _{\left\{\xi_{1 i}\right\} \in U_{2}} t_{2}\left(\left\{\xi_{1 i}\right\}\right) \tag{15}
\end{equation*}
$$

We denote by P_{2}^{*} the problem to find $\left\{\xi_{1 i}^{*}\right\} \in U_{2}$ and a finite time $T_{2}^{*}>T_{1}^{*}$ satisfying (15) and the solution $\left\{\tilde{s}^{*}, \tilde{w}^{*}, \tilde{A}^{*}\right\}$ of (1)-(4) on $\left[T_{1}^{*}, T_{2}^{*}\right]$ with the parameter $\left\{\xi_{1 i}\right\}=\left\{\xi_{1 i}^{*}\right\}$ and initial conditions $\tilde{s}^{*}\left(T_{1}^{*}\right)=s^{*}\left(T_{1}^{*}\right), \tilde{w}^{*}\left(T_{1}^{*}\right)=w^{*}\left(T_{1}^{*}\right), \tilde{A}^{*}\left(T_{1}^{*}\right)=$ $A^{*}\left(T_{1}^{*}\right)$. The set $\left\{\left\{\tilde{s}^{*}, \tilde{w}^{*}, \tilde{A}^{*}\right\} ;\left\{\xi_{1 i}^{*}\right\} ; T_{1}^{*}, T_{2}^{*}\right\}$ is called a solution of P_{2}^{*}.

In the third period problem, fixing a solution $\left\{\left\{\tilde{s}^{*}, \tilde{w}^{*}, \tilde{A}^{*}\right\} ;\left\{\xi_{1 i}^{*}\right\} ; T_{1}^{*}, T_{2}^{*}\right\}$ of P_{2}^{*}, we define $t_{3}\left(\left\{\hat{\xi}_{1 i}\right\}\right)$ for each $\left\{\hat{\xi}_{1 i}\right\} \in U_{3}$ by

$$
\begin{equation*}
t_{3}\left(\left\{\hat{\xi}_{1 i}\right\}\right)=\min \left\{t \geqslant T_{2}^{*} ; s(t)=(1,1, \ldots, 1)\right\} \tag{16}
\end{equation*}
$$

where $\{s, w, A\}$ is a unique solution of (1)-(4) on $\left[T_{2}^{*}, T_{3}\right]$ for any $T_{3}>T_{2}^{*}$, associated with the parameter $\left\{\hat{\xi}_{1 i}\right\} \in U_{3}$ and initial conditions $s\left(T_{2}^{*}\right)=\tilde{s}^{*}\left(T_{2}^{*}\right), w\left(T_{2}^{*}\right)=$ $\tilde{w}^{*}\left(T_{2}^{*}\right), A\left(T_{2}^{*}\right)=\tilde{A}^{*}\left(T_{2}^{*}\right)$.

Theorem 3.3. Let $\left\{\left\{\tilde{s}^{*}, \tilde{w}^{*}, \tilde{A}^{*}\right\} ;\left\{\xi_{1 i}^{*}\right\} ; T_{1}^{*}, T_{2}^{*}\right\}$ be a solution of P_{2}^{*}, and let $t_{3}(\cdot)$ be the function on U_{3} defined by (16). Then there exist a parameter $\left\{\hat{\xi}_{1 i}^{*}\right\} \in U_{3}$ and $T_{3}^{*} \geqslant T_{2}^{*}$ such that

$$
\begin{equation*}
T_{3}^{*}=t_{3}\left(\left\{\hat{\xi}_{1 i}^{*}\right\}\right)=\inf _{\left\{\tilde{\xi}_{1 i}\right\} \in U_{3}} t_{3}\left(\left\{\tilde{\xi}_{1 i}\right\}\right) \tag{17}
\end{equation*}
$$

We denote by P_{3}^{*} the problem to find $\left\{\hat{\xi}_{1 i}^{*}\right\} \in U_{2}$ and a finite time $T_{3}^{*}>T_{2}^{*}$ satisfying (17) and the solution $\left\{\hat{s}^{*}, \hat{w}^{*}, \hat{A}^{*}\right\}$ of (1)-(4) on $\left[T_{2}^{*}, T_{3}^{*}\right]$ with the parameter $\left\{\hat{\xi}_{1 i}\right\}=\left\{\hat{\xi}_{1 i}^{*}\right\}$ and initial conditions $\hat{s}^{*}\left(T_{2}^{*}\right)=\tilde{s}^{*}\left(T_{2}^{*}\right), \hat{w}^{*}\left(T_{2}^{*}\right)=\tilde{w}^{*}\left(T_{2}^{*}\right), \hat{A}^{*}\left(T_{2}^{*}\right)=$ $\tilde{A}^{*}\left(T_{2}^{*}\right)$. The set $\left\{\left\{\hat{s}^{*}, \hat{w}^{*}, \hat{A}^{*}\right\} ;\left\{\hat{\xi}_{1 i}^{*}\right\} ; T_{2}^{*}, T_{3}^{*}\right\}$ is called a solution of P_{3}^{*}.

For detailed proofs of Theorems 3.1-3.3, see [2].
After time T_{3}^{*}, w and A are governed by the system with technological collaboration in the normal situation:

$$
\begin{gather*}
w_{1}^{\prime}+\left(b_{1}+\kappa_{12}\right) w_{1}=\sigma_{1}\left(A_{1} l_{1}\right)^{1-\alpha} w_{1}^{\alpha}, \quad t \geqslant T_{3}^{*}, \tag{18}\\
w_{2}^{\prime}+\left(b_{2}+\kappa_{22}\right) w_{2}=\sigma_{2}\left(A_{2} l_{2}\right)^{1-\beta} w_{2}^{\beta}, \quad t \geqslant T_{3}^{*} \\
A_{1}^{\prime}+c_{1} A_{1}=g_{1}\left(\kappa_{22} w_{2}\right), \quad A_{2}^{\prime}+c_{2} A_{2}=g_{2}\left(\kappa_{12} w_{1}\right), \quad t \geqslant T_{3}^{*},
\end{gather*}
$$

since $s(t)=(1,1, \cdot, 1)$ for $t \geqslant T_{3}^{*}$ and it is not necessary to consider (1) any longer. On account of the general result on the asymptotic behaviour (cf. [1], [2]) $w(t)$ and $A(t)$ converge as $t \rightarrow \infty$. Also, it is expected from some economical points of view that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} w(t)=\left(\left(\frac{\sigma_{1}}{b_{1}+\kappa_{12}}\right)^{1 /(1-\alpha)} \frac{g_{1}^{*} l_{1}}{c_{1}},\left(\frac{\sigma_{2}}{b_{2}+\kappa_{22}}\right)^{1 /(1-\beta)} \frac{g_{2}^{*} l_{2}}{c_{2}}\right) \tag{19}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\lim _{t \rightarrow \infty} A(t)=\left(\frac{g_{1}^{*}}{c_{1}}, \frac{g_{2}^{*}}{c_{2}}\right) \tag{20}
\end{equation*}
$$

These convergences will be proved under some additional assumptions on functions g_{1} and g_{2}.

4. Numerical experiment

In this section we give a numerical experiment of our model with the following parameters:

$$
\begin{gathered}
b_{1}=1, b_{2}=0.9, \alpha=0.5, \beta=0.5, \sigma_{1}=0.975, \sigma_{2}=0.945, \xi_{0}=0.45, \eta_{0}=0.55, \\
\kappa_{11}=0.11, \kappa_{12}=0.4, \kappa_{21}=0.12, \kappa_{22}=0.3 \\
l_{1}=64 / 9, l_{2}=2000 / 81, c_{1}=1 / 8, c_{2}=1 / 3 \\
v=5.1, w_{10}=0.01, w_{20}=0.5, s_{0}=-1, A_{10}=0.1, A_{20}=0.3
\end{gathered}
$$

As $F(\cdot):=F_{1}(\cdot), g_{1}(\cdot)$ and $g_{2}(\cdot)$ we choose the following functions:

$$
\begin{aligned}
& g_{1}(x)= \begin{cases}0.1, & x \leqslant 0, \\
2\left(\frac{x}{8}\right)^{2}+0.1, & 0<x \leqslant 4.0 \\
-2\left(\frac{x-8}{8}\right)^{2}+1.1, & 4.0<x \leqslant 8.0 \\
1.1, & 8.0<x\end{cases} \\
& g_{2}(x)= \begin{cases}0.1, & x \leqslant 0, \\
2\left(\frac{x}{3}\right)^{2}+0.1, & 0<x \leqslant 1.5 \\
-2\left(\frac{x-3}{3}\right)^{2}+1.1, & 1.5<x \leqslant 3.0 \\
1.1, & 3.0<x\end{cases} \\
& F(x)= \begin{cases}-x+1.0, & -1.0 \leqslant x \leqslant 0 \\
-\frac{1}{4} x+1.0, & 0<x \leqslant 4.0\end{cases}
\end{aligned}
$$

and we set up the check points as follows:

$$
\begin{aligned}
& \left(w_{1}^{(1)}, w_{2}^{(1)}, s^{(1)}, A_{1}^{(1)}, A_{2}^{(1)}\right)=(2,5,3.5,0.5,0.4) \\
& \left(w_{1}^{(2)}, w_{2}^{(2)}, s^{(2)}, A_{1}^{(2)}, A_{2}^{(2)}\right)=(7.5,25,4,4,2) .
\end{aligned}
$$

We remark here that in our numerical experiment the upper threshold value of s is 4 in place of 1 , namely, the range of s is assumed to be $-1 \leqslant s \leqslant 4$ in place of $-1 \leqslant s \leqslant 1$. This treatment is just for the sake of indicating more effectively the character of our model, and the original one has the same character.

Figure 1 shows the behavior of the economic curve $w(t):=\left(w_{1}(t), w_{2}(t)\right)$ in the case of the above data. The parts of the curve between $(0.01,0.5)-A, A-B$ and $B-$ correspond, respectively, to the first period, the second period and the third period.
P is the first check point $w^{(1)}=(2,5), Q$ is the second check point $w^{(2)}=(7.5,25)$.
In the first period, both of $w_{1}(t)$ and $w_{2}(t)$ increase in time. The solution curve $\{w, s, A\}$ completely gets over the first check point $\left(w^{(1)}, s^{(1)}, A^{(1)}\right)$ at time $t=3.6798$ when A_{1} reaches at the check value 0.5 in this numerical experience. By the way, $w(3.6798)=(3.74,7.21)=: A, s(3.6798)=3.79$ and $A(3.6798)=(0.5,0.83)$.

The second period starts with initial time $t=3.6798$ and initial data (3.74, 7.21), 3.79 and $(0.5,0.83)$ for w, s and A. After time $t=3.6798$ the capital $w_{1}(t)$ decreases a little bit, because of the switching of support system. However, as is also seen from the numerical experiment, we see that $w(t)$ never get lower the first check point. After a while, both of $w_{1}(t)$ and $w_{2}(t)$ increase in time. This behaviour of $w(t)$ suggests from the economic point of view that the switching time of support system

Figure 1.
should be made after $t=3.6798$, otherwise $w(t)$ might fall down to $(0,0)$ under less support system than the one of the first period; note that in general the support system of the first period is richer than the second period.

At time $t=10.7178$ the solution curve $\{w, s, A\}$ gets over the second check point $\left(w^{(2)}, s^{(2)}, A^{(2)}\right)$. By the way, $w(10.7178)=(13.27,29.77)=: B, s(10.7178)=4.00$ and $A(10.7178)=(4.00,2.77)$.

References

[1] A. Kadoya, N. Kenmochi: Revival model of human and economic activities in disaster regions. Adv. Math. Sci. Appl. 22 (2012), 349-390.
[2] A. Kadoya, N. Kenmochi: Economic growth model in two regions with mutual dependence. Proceedings of the 5th Polish-Japanese Days on Nonlinear Analysis in Interdisciplinary Sciences: Modelling, Theory and Simulations, GAKUTO Intern. Ser. Math. Sci. Appl. 36 (2013), 135-151(T. Aiki et al., eds.). Gakkōtosho, Tokyo.
[3] N. Kenmochi: Monotonicity and compactness methods for nonlinear variational inequalities. Handbook of Differential Equations: Stationary Partial Differential Equations 4. Elsevier, Amsterdam, 2007, pp. 203-298.
[4] R. M. Solow: A contribution to the theory of economic growth. The Quarterly Journal of Economics 70 (1956), 65-94.
[5] E. Zeidler: Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems. Translated from the German. Springer, New York, 1986.

Authors' addresses: Atsushi Kadoya, Hiroshima Shudo University, 1-1-1 Ohtsukahigashi, Asaminami-ku, Hiroshima 731-3195, Japan, e-mail: kadoya@shudo-u.ac.jp; Nobuyuki Kenmochi, Bukkyo University, 96 Kitahananobo-cho, Murasakino, Kita-ku, Kyoto 603-8301, Japan, e-mail: kenmochi@bukkyo-u.ac.jp.

[^0]: This work is supported by Grant of Bukkyo University, "Tokubetu-Kenkyuhi", 2013.

