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SOME NOTES ON OSCILLATION OF TWO-DIMENSIONAL

SYSTEM OF DIFFERENCE EQUATIONS

Zdeněk Opluštil, Brno

(Received September 30, 2013)

Abstract. Oscillatory properties of solutions to the system of first-order linear difference
equations

∆uk = qkvk

∆vk = −pkuk+1,

are studied. It can be regarded as a discrete analogy of the linear Hamiltonian system of
differential equations.
We establish some new conditions, which provide oscillation of the considered system.

Obtained results extend and improve, in certain sense, results presented in Opluštil (2011).
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1. Introduction

We consider the two-dimensional system of linear difference equations

(1.1) ∆uk = qkvk

∆vk = −pkuk+1,

where

∆xk = xk+1 − xk, pk, qk ∈ R for k ∈ N.

By a solution of system (1.1) we understand a vector sequence {(uk, vk)}∞k=1
satis-

fying system (1.1) for every natural k.

Published results were supported by Grant No. FSI-S-14-2290 “Modern methods of ap-
plied mathematics in engineering”.

417



System (1.1) is a possible, the best one in certain sense, discrete analogy of the

linear Hamiltonian system of differential equations

u′ = q(t)v

v′ = −p(t)u,

and discrete analogy of the second-order linear differential equation

(
u′

1

q(t)

)
′

+ p(t)u = 0.

Oscillation theory for linear ordinary differential equations is a widely studied

and well-developed topic of the general theory of differential equations. We should

mention, in particular, the results which are closely related to those of this paper,

see e.g., [4], [2], [5], [6], [7], [9]. On the other hand, there are many interesting and

open problems in the difference case.

Definition 1.1. A nontrivial solution {(uk, vk)}∞k=1
of system (1.1) is said to be

oscillatory if there exists an infinite set N0 ⊆ N such that

ukuk+1 6 0 for k ∈ N0.

If the sequence {qk}∞ is nonnegative and system (1.1) has at least one oscillatory
solution, then it is known (see, e.g., [1]) that all solutions of (1.1) are oscillatory. So

it is possible to introduce the following definition.

Definition 1.2. System (1.1) is said to be oscillatory if all its solutions are

oscillatory, it is said to be and nonoscillatory otherwise.

R em a r k 1.1. Oscillatory properties of system (1.1) are known in the case where

0 < m 6 qk for k ∈ N and

∞∑

j=1

pj = ∞

or in the case where the following conditions

0 < m 6 qk for k ∈ N and −∞ = lim inf
k→∞

k∑

j=1

pj < lim sup
k→∞

k∑

j=1

pj

are fulfilled (see, e.g., [1]). System (1.1) is oscillatory in both cases above. We note

that the original version (for the second-order linear differential equation) of these

oscillation criteria can be found in [3], [10], [11].
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We can see that one of the cases which is not covered in the above mentioned

criteria is that
∞∑
j=1

pj converges to a finite number, i.e.,

(1.2)

∞∑

j=1

pj = c0,

where c0 ∈ R. In this case, some oscillatory criteria are presented in [8]. Actually,

we build on the work done in [8] and we establish new conditions, which guarantee

that system (1.1) is oscillatory.

Consequently, in what follows, we assume (1.2) is fulfilled and the sequence {qk}∞
is bounded, i.e.,

(1.3) 0 < m 6 qk 6 M < ∞ for k ∈ N,

where m,M are real positive constants.

Note that, since
∞∑
j=1

pj converges to a finite number, there exists

lim
k→∞

ck = c0,

where

(1.4) ck =
1

k−1∑
j=1

qj

k−1∑

j=1

qj

j−1∑

i=1

pi for k ∈ N.

Let us introduce the following notations for simpler formulation of the main results:

Qk =

(
c0 −

k−1∑

j=1

pj

) k−1∑

j=1

qj =

k−1∑

j=1

qj

∞∑

j=k

pj for k ∈ N,(1.5)

Hk =
1

k−1∑
j=1

qj

k−1∑

j=1

pj

( j∑

i=1

qi

)2
for k ∈ N,(1.6)

Q∗ = lim inf
k→∞

Qk, Q∗ = lim sup
k→∞

Qk,(1.7)

H∗ = lim inf
k→∞

Hk, H∗ = lim sup
k→∞

Hk.
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2. Main results

The statements formulated below complement criteria established in [8] and can

be regarded as a difference analogy of oscillatory theorems for ordinary differential

equations presented in [9].

Theorem 2.1. Let Q∗ > −∞ and

(2.1) lim sup
k→∞

k−1∑
j=1

pj
j∑

i=1

qi

k∑
j=1

(
qj

/ j∑
i=1

qi

) >
1

4
.

Then system (1.1) is oscillatory.

R em a r k 2.1. It follows from the proof of Theorem 2.1 (see bellow), particulary

from (4.13), that a sufficient condition for the system (1.1) to be oscillatory has also

the form

lim sup
k→∞

(c0 − ck)
k−1∑
j=1

qj

k−1∑
j=k0

(
qj

/ j∑
i=1

qi

) >
1

4
.

Theorem 2.2. Let

(2.2) lim sup
k→∞

(Qk +Hk) > 1.

Then system (1.1) is oscillatory.

Theorem 2.3. Let the conditions

0 6 Q∗ 6
1

4
and 0 6 H∗ 6

1

4

be fulfilled and let either

(2.3) Q∗ > Q∗ +
1

2

(√
1− 4Q∗ +

√
1− 4H∗

)
,

or

(2.4) H∗ > H∗ +
1

2

(√
1− 4Q∗ +

√
1− 4H∗

)
.

Then system (1.1) is oscillatory.
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R em a r k 2.2. The condition (2.4) improves, under the additional assumption

0 6 H∗ 6 1/4, the second inequality of

(2.5) 0 6 Q∗ 6
1

4
and H∗ >

1

2

(
1 +

√
1− 4Q∗

)

presented in [8], Theorem 2.1, which also guarantees oscillation of system (1.1).

Indeed, if we put H∗ = 0 in (2.4) then we get exactly the second inequality

in (2.5). Moreover, for 0 < H∗ 6 1/4, the condition (2.4) improves the second

inequality in (2.5). Analogically, the condition (2.3) improves the condition (5) in

[8], Theorem 2.2, under the additional assumption 0 6 Q∗ 6 1/4.

R em a r k 2.3. All the above statements can be regarded as discrete analogies

of known results for two-dimensional system of differential equations (see [9], Theo-

rem 1.2, Corollary 1.1, Theorem 1.3, Theorem 1.5).

3. Auxiliary propositions

In [8], the following properties and estimates of nonoscilatory solutions of system

(1.1) were established. The lemmas presented below presented lemmas are used to

prove the main results.

Lemma 3.1 ([8], Lemma 3.1). Let {(uk, vk)}∞ be a nonoscillatory solution of
system (1.1). Then

∞∑
Rj < ∞,

where

(3.1) wj =
vj
uj

and Rj =
w2

j qj

1 + wjqj
.

Lemma 3.2 ([8], Lemma 3.2). Let 0 6 Q∗ 6 1/4 and {(uk, vk)}∞ be a nonoscil-
latory solution of system (1.1). Then

lim inf
k→∞

vk
uk

k−1∑

j=1

qj >
1

2

(
1−

√
1− 4Q∗

)
.
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Lemma 3.3 ([8], Lemma 3.3). Let 0 6 H∗ 6 1/4 and {(uk, vk)}∞ is a nonoscil-
latory solution of system (1.1). Then

lim sup
k→∞

vk
uk

k−1∑

j=1

qj 6
1

2

(
1 +

√
1− 4H∗

)
.

4. Proofs of main results

P r o o f of Theorem 2.1. Let us suppose on the contrary that system (1.1) is

nonoscillatory. Then there exists a solution {uk, vk}∞ of (1.1) and k0 ∈ N such that

ukuk+1 > 0 for k > k0.

If we put wk = vk/uk for k > k0, then system (1.1) can be rewritten as

(4.1) ∆wk + pk +Rk = 0 for k > k0,

where Rk is defined by (3.1). Moreover, it is clear that

(4.2) Rk =
w2

kqk
1 + wkqk

> 0 for k > k0.

Sum of equality (4.1) from k to l results in

(4.3) wk − wl+1 =
l∑

j=k

pj +
l∑

j=k

Rj for k > k0,

On the other hand, according to Lemma 3.1 and (1.3) we have

(4.4) lim
l→∞

wl = 0.

Hence, we obtain from (4.3) by letting l → ∞ that

(4.5) wk =

∞∑

j=k

pj +

∞∑

j=k

Rj for k > k0.

Consequently, by virtue of (1.2), we get

wk = c0 −
k−1∑

j=1

pj +

∞∑

j=k

Rj for k > k0.
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The multiplication of this relation by qk and the summation from k0 to k− 1 lead to

(4.6)

k−1∑

j=k0

wjqj = c0

k−1∑

j=k0

qj −
k−1∑

j=k0

qj

j−1∑

i=1

pi +

k−1∑

j=k0

qj

∞∑

i=j

Ri for k > k0.

Let us denote

(4.7) Ck,k0
= (c0 − ck)

k−1∑

j=1

qj − c0

k0−1∑

j=1

qj for k > k0,

where ck is defined by (1.4). Now we can write equality (4.6) in the form

(4.8)
k−1∑

j=k0

wjqj = Ck,k0
+

k0−1∑

j=1

qj

j−1∑

i=1

pi +
k−1∑

j=k0

qj

∞∑

i=j

Ri for k > k0.

It is not difficult to verify that

k−1∑

j=k0

qj

∞∑

i=j

Ri =

k−1∑

j=1

qj

∞∑

j=k

Rj +

k−1∑

j=k0

Rj

j∑

i=1

qi −
k0−1∑

j=1

qj

∞∑

i=k0

Ri for k > k0

and
k0−1∑

j=1

qj

j−1∑

i=1

pi =

k0−1∑

j=1

qj

k0−1∑

j=1

pj −
k0−1∑

j=1

pj

j∑

i=1

qi for k > k0.

By using these equalities in (4.8) we obtain

(4.9)

k−1∑

j=k0

[
wjqj −Rj

j∑

i=1

q1

]

= Ck,k0
+

k−1∑

j=1

qj

∞∑

j=k

Rj −
k0−1∑

j=1

pj

j∑

i=1

qi +Ak0
for k > k0,

where

Ak0
=

k0−1∑

j=1

qj

( k0−1∑

j=1

pj −
∞∑

j=k0

Rj

)
.

On the other hand, in view of (1.3) and (4.5), Ak0
can be rewritten as

Ak0
=

k0−1∑

j=1

qj

(
c0 +

∞∑

j=k0−1

∆wj −∆wk0−1

)
= c0

k0−1∑

j=1

qj − wk0

k0−1∑

j=1

qj .
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Hence, by virtue of (4.7), we get from (4.9) that

(4.10) (c0 − ck)

k−1∑

j=1

=

k−1∑

j=k0

[
wjqj −Rj

j∑

i=1

q1

]
−

k−1∑

j=1

qj

∞∑

j=k

Rj + R̃ for k > k0,

where

(4.11) R̃ = wk0

k0−1∑

j=1

qj +

k0−1∑

j=1

pj

j∑

i=1

qi

is a finite number.

Let ε > 0 be arbitrary. Then, in view of relations (1.3) and (4.4), there exists

k1(ε) > k0 such that

(4.12) |wkqk| 6 ε for k > k1(ε).

Obviously, (√
qkwk

1 + ε
−

√
qk

2
∑k

j=1
qj

)2
> 0 for k > k1(ε).

Hence, by using (1.3) and (4.12), we obtain

(1 + ε)

4

qk∑k

j=1
qj

> wkqk −Rk

k∑

j=1

qj for k > k1(ε),

where Rk is defined by (3.1). In view of the latter inequality, (1.3) and (4.2) we get

from (4.10) that

(4.13) (c0 − ck)

k−1∑

j=1

qj 6
1 + ε

4

k−1∑

j=k0

qj∑j

i=1
qi

+ R̃ for k > k1(ε).

Moreover, it follows from (1.3) that

(4.14) lim
k→∞

k−1∑

j=k0

qj∑j

i=1
qi

= ∞.

Now, in view of (1.2) and (1.4), (4.13) can be rewritten in the form

k−1∑

j=1

qj

∞∑

j=k

pj +

k−1∑

j=1

pj

j∑

i=1

qi 6
1 + ε

4

k−1∑

j=k0

qj∑j

i=1
qi

+ R̃ for k > k1(ε).
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Obviously, the last relation yields

k−1∑
j=1

pj
j∑

i=1

qi

k−1∑
j=k0

(
qj

/ j∑
i=1

qi

) 6 −

k−1∑
j=1

qj
∞∑
j=k

pj

k−1∑
j=k0

(
qj

/ j∑
i=1

qi

) +
1 + ε

4
+

R̃
k−1∑
j=k0

(
qj

/ j∑
i=1

qi

) for k > k1(ε).

Hence, by virtue of the assumption Q∗ > −∞, (4.11) and (4.14), we get

lim sup
k→∞

k−1∑
j=1

pj
j∑

i=1

qi

k−1∑
j=k0

(
qj

/ j∑
i=1

qi

) 6
1 + ε

4

which, since ε > 0 was chosen arbitrary, contradicts (2.1). �

P r o o f of Theorem 2.2. Let us assume on the contrary that system (1.1) is

nonoscillatory. Analogously as in the proof of Theorem 2.1 we obtain equality (4.5).

Multiplication of (4.5) by
k−1∑
j=1

qj leads to

(4.15) wk

k−1∑

j=1

qj =
∞∑

j=k

pj

k−1∑

j=1

qj +
∞∑

j=k

Rj

k−1∑

j=1

qj for k > k0,

where wk, Rk are given by (3.1).

On the other hand, we can obtain from (4.1) (see the proof of Lemma 3.3 in [8])

the following equality

(4.16) wk

( k−1∑

j=1

qj

)
= −Hk +

1
∑k−1

j=1
qj

k−1∑

j=n

DJ + Pk,n for k > n > k0,

where Hk is defined by (1.6),

(4.17) Dj = wjqj

(
2

j−1∑

i=1

qi + qj

)
−Rj

( j∑

i=1

qi

)2

and

(4.18) Pk,n =
1

∑k−1

j=1
qj

( n−1∑

j=1

qj

)2
wn +

1
∑k−1

j=1
qj

n−1∑

j=1

pj

( j∑

i=1

qi

)2
.

425



Moreover, it is clear that

(4.19) lim sup
k→∞

Pk,n = 0.

Furthermore, the inequality
(
wj

√
qj

j∑
i=1

qi − (1 + wjqj)
√
qj

)2

> 0 implies that

Dj 6 qj for j > n > k0.

Using this inequality in (4.16) results in

(4.20) wk

( k−1∑

j=1

qj

)
6 −Hk + 1 + Pk,n for k > k0,

where Pk,n is defined by (4.18).

In view of (1.3) and (4.2), relations (4.15) and (4.20) imply

Qk +Hk 6 1 + Pk,n for k > k0,

where Qk is defined by (1.5). Hence, by virtue of (4.19), we get

lim sup
k→∞

(Qk +Hk) 6 1,

which contradicts (2.2). �

P r o o f of Theorem 2.3. Let us assume on the contrary that system (1.1) is

nonoscillatory. We obtain (4.15) similarly as in the proof of Theorem 2.2.

We denote

(4.21) α =
1

2

(
1−

√
1− 4Q∗

)
, β =

1

2

(
1 +

√
1− 4H∗

)
.

If α = 0 or β = 1 then, according to Theorems 2.1 and 2.2 in [8], conditions (2.3)

and (2.4) guarantee that system (1.1) is oscillatory.

Now suppose that α > 0 and β < 1. By virtue of (1.3), (4.4), Lemmas 3.2 and

3.3, there exists k1(ε) > k0 such that the following inequalities

(4.22) wk

k−1∑

j=1

qj > α− ε, wk

k−1∑

j=1

qj < β + ε,
∣∣∣

wkqk
1 + wkqk

∣∣∣ 6 ε

are satisfied for k > k1(ε), where wk is defined by (3.1) and ε ∈ ]0,min{α, β − 1}[ is
arbitrary.
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By using inequalities (4.22) we obtain

(4.23)

k−1∑

j=1

qj

∞∑

j=k

Rj >
(α − ε)2

1 + ε

k−1∑

j=1

qj

∞∑

j=k

qj(∑j−1

i=1
qi
)2 >

(α− ε)2

1 + ε
for k > k1(ε).

In view of (4.22) and (4.23), we get from (4.15)

Qk < β + ε− (α− ε)2

1 + ε
for k > k1(ε),

where Qk is defined by (1.5). Since ε > 0 was chosen arbitrary, the last inequality

leads to

Q∗ 6 β − α2,

where Q∗ is given by (1.7). Consequently, in view of (4.21), we have

Q∗
6 Q∗ +

1

2

(√
1− 4Q∗ +

√
1− 4H∗

)

which contradicts (2.3).

On the other hand, we can rewrite Dj as

Dj = qj

(
wj

j−1∑

i=1

qi

(
2− wj

j−1∑

i=1

qi

)
+

wjqj
1 + wjqj

(
wj

j−1∑

i=1

qi − 1

)2)
for j > n > k0,

where Dj is given by (4.17). Hence, by virtue of (4.22), we get from (4.16)

H∗ 6 −α+ ε+ (β + ε)(2− β − ε) + ε(β + ε− 1)2,

where H∗ is given by (1.7).

Consequently, since ε > 0 was arbitrary, we have

H∗
6 −α+ β(2 − β).

Hence, in view of (4.21), we get

H∗
6 H∗ +

1

2

(√
1− 4Q∗ +

√
1− 4H∗

)
,

which contradicts (2.4). �

427



References

[1] R.P.Agarwal: Difference Equations and Inequalities: Theory, Methods and Applica-
tions. Pure and Appl. Math., Marcel Dekker, New York, 1992.

[2] T.Chantladze, N.Kandelaki, A. Lomtatidze: Oscillation and nonoscillation criteria for
a second order linear equation. Georgian Math. J. 6 (1999), 401–414.

[3] P.Hartman: Ordinary Differential Equations. John Wiley, New York, 1964.
[4] E.Hille: Non-oscillation theorems. Trans. Am. Math. Soc. 64 (1948), 234–252.
[5] A.Lomtatidze: Oscillation and nonoscillation criteria for second-order linear differential
equations. Georgian Math. J. 4 (1997), 129–138.

[6] A.Lomtatidze, N. Partsvania: Oscillation and nonoscillation criteria for two-dimensional
systems of first order linear ordinary differential equations. Georgian Math. J. 6 (1999),
285–298.

[7] Z.Nehari: Oscillation criteria for second-order linear differential equations. Trans. Am.
Math. Soc. 85 (1957), 428–445.

[8] Z.Opluštil: Oscillatory criteria for two-dimensional system of difference equations. Tatra
Mt. Math. Publ. 48 (2011), 153–163.

[9] L.Polák: Oscillation and nonoscillation criteria for two-dimensional systems of linear
ordinary differential equations. Georgian Math. J. 11 (2004), 137–154.

[10] A.Wintner: A criterion of oscillatory stability. Q. Appl. Math. 7 (1949), 115–117.
[11] A.Wintner: On the non-existence of conjugate points. Am. J. Math. 73 (1951), 368–380.

Author’s address: Zdeněk Opluštil, Institute of Mathematics, Faculty of Mechanical
Engineering, Technická 2, 616 69 Brno, Czech Republic, e-mail: oplustil@fme.vutbr.cz.

428


		webmaster@dml.cz
	2020-07-01T18:45:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




