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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 3 , PAGES 3 7 8 – 3 9 2

ABOUT STABILITY OF RISK-SEEKING OPTIMAL
STOPPING

Raúl Montes-de-Oca and Elena Zaitseva

We offer the quantitative estimation of stability of risk-sensitive cost optimization in the
problem of optimal stopping of Markov chain on a Borel space X. It is supposed that the
transition probability p(·|x), x ∈ X is approximated by the transition probability ep(·|x), x ∈ X,

and that the stopping rule ef∗ , which is optimal for the process with the transition probability ep
is applied to the process with the transition probability p. We give an upper bound (expressed
in term of the total variation distance: supx∈X ‖p(·|x)− ep(·|x)‖) for an additional cost paid for

using the rule ef∗ instead of the (unknown) stopping rule f∗ optimal for p.

Keywords: discrete-time Markov process, risk-seeking expected total cost, optimal stop-
ping rule, stability index, total variation metric

Classification: 60G40, 62L15

1. MOTIVATION

In this paper we continue the study initiated in [24] of stability (or “robustness”) of the
optimal stopping problem. The “quantitative estimation of stability of optimal control”
is understood in the same sense as, for example, in the works [10, 11, 12, 19], where the
stability of some classes of Markov decision processes (MDP’s) was investigated, and
“stability inequalities” were obtained for discounted and average criteria on an infinite
time interval.

Here we consider the problem of minimization of the risk-sensitive expected total cost:

W (τf ) :=
1
µ

log

[
E

(
expµ

(τf−1∑
t=0

c0(xt)− r(xτf
)

))]
, (1.1)

where τf is a stopping time corresponding to a stopping rule f , c0 and r are a current
cost and a terminal reward, respectively, and µ is a negative sensitivity parameter. The
last means that minimizing the functional W (τf ) over f , we deal with a risk-seeking
situation. In spite of the fact that the technique of this work is resembling that employed
in [24], the use of (1.1) instead of the standard in optimal stopping theory criterion:

E

(τf−1∑
t=0

c0(xt)− r
(
xτf

))
, (1.2)
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brings new aspects to stability estimation of optimal stopping rules (due to multiplicative
character of the cost functional).

As far as we know, there are a few papers on the existence of stationary optimal
policies for MDP’s with a risk-sensitive expected total cost, and none of them covers the
kind of MDP’s considered in this paper (see e.g. [1, 6, 23] for finite MDP’s).

On the other hand, during the last 15 years, a significant number of works appears
where risk-sensitive average (per unit of time) control optimization is studied (mostly
with a countable phase space, see, e.g. [3, 4, 5, 14, 16, 17]). In a part of these papers the
emphasis on the risk-averse case is made . Probably this case is the most important in
financial applications, (see e.g. [2, 20, 22]). Nevertheless some people in some situations
prefer “risky behaviour”.(This can be observed, for instance, in the “quiz show stopping
problem”, see [2, Ch. 10].)

The “stability estimation problem” considered in this paper is interpreted as follows
(compare it with [7, 10, 11, 12, 19, 24]). Let the transition probability p of the Markov
process {xt} for which one optimizes a stopping rules:

• either be unknown, and approximated by some statistical estimation p̃;

• or be known, but approximated by a certain more simple transition kernel p̃.

The transition probability p̃ generates a Markov process {x̃t}, which can be considered
as an approximation to {xt}.

In Section 2 we give some preliminaries on the risk-seeking optimal stopping. In
Section 3 we introduce assumptions under which there exist optimal stopping rules f∗
and f̃∗ for {xt} and {x̃t}, respectively (which minimize functionals as in (1.1)). It is
supposed that f̃∗ is used as an available approximation to f∗, that is, the stopping rule
f̃∗ is applied to the process {xt}. (Instead of an unavailable optimal rule f∗.)

Let ‖ · ‖ be the the total variation norm of a signed bounded measure defined on the
state space taken into account. Our aim is to bound (and to offer conditions to be able
to do this) in terms of

d(p, p̃) := sup
x∈X

‖p(·|x)− p̃(·|x)‖, (1.3)

the following stability index

∆ := W (τ ef∗)−W (τf∗) ≡ W (τ ef∗)− inf
f

W (τf ) ≥ 0, (1.4)

where W is calculated by (1.1) for the “original process” {xt}. In Section 4 we will
give simple examples of unstable optimization problems, when d(p, p̃) → 0, while in (1.4)
∆ ≥ M > 0. (Here M can be arbitrarily large, but fixed).

Finally, Section 5 provides the proofs of the main results in the article.

2. RISK-SEEKING OPTIMAL STOPPING AND ITS APPROXIMATION

Let on a Borel space (X,BX) be defined two discrete-time Markov processes {xt} ≡
{xt, t = 0, 1, . . . } and {x̃t} ≡ {x̃t, t = 0, 1, . . . } with the corresponding transition prob-
abilities:

p = p(B|x); p̃ = p̃(B|x), x ∈ X, B ∈ BX .
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For any fixed initial state x ∈ X, let Px and P̃x denote the distributions of {xt} and {x̃t}
on (X∞,B∞X ), respectively, and let Ex and Ẽx denote the corresponding expectations.

A stopping rule f is a sequence f = {f0, f1, . . . } of measurable functions

fn : (Xn,Bn
X) → A := {0, 1}, (X0 := {x}),

where the action set A consists of two actions:

• a = 0 means to continue observations of the process;

• a = 1 prescribes to stop the process.

Each stopping rule f , when applied to {xt} or to {x̃t}, generates the corresponding
stopping times: τf and τ̃f .

The current cost and the terminal reward are measurable nonnegative functions:

c0 : X → [0,∞); r : X → [0,∞),

where r is supposed to be bounded:

r̄ := sup
x∈X

r(x) < ∞. (2.1)

We will see that under assumptions admitted in Section 3 we can restrict ourselves
with the class Ψ = {f} of stopping rules f such that

Px(τf < ∞) = Px(τ̃f < ∞) = 1, for all x ∈ X.

For every f ∈ Ψ̄, the risk-seeking costs are defined as follows:

W (x, f) := − 1
λ

log

[
Ex exp

{
−λ

[τf−1∑
t=0

c0(xt)− r(xτf
)

]}]
, (2.2)

(
here and throughout the article,

−1∑
t=0

:= 0,

by convention);

W̃ (x, f) := − 1
λ

log

[
Ẽx exp

{
−λ

[τf−1∑
t=0

c0(x̃t)− r
(
x̃τf

)]}]
. (2.3)

Here λ > 0 is a given sensitive parameter (which is considered to be fixed in the rest of
the article).

Optimal stopping rules f∗ and f̃∗ for the processes {xt} and {x̃t}, respectively, are
such that

W (x, f∗) = inf
f∈Ψ

W (x, f), x ∈ X; (2.4)
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W̃ (x, f̃∗) = inf
f∈Ψ

W̃ (x, f), x ∈ X. (2.5)

Now observe that, provided that f∗ and f̃∗ exist, they satisfy the following relations:

U(x, f∗) = sup
f∈Ψ

U(x, f) =: U∗(x), x ∈ X, (2.6)

Ũ(x, f∗) = sup
f∈Ψ

Ũ(x, f) =: Ũ∗(x), x ∈ X, (2.7)

where:

U(x, f) := Ex exp

{
−λ

[τf−1∑
t=0

c0(xt)− r(xτf
)

]}
, (2.8)

and Ũ , defined as in (2.8), replacing {xt} by {x̃t}, and Ex by Ẽx.
The right-hand sides of (2.6) and (2.7) are the corresponding value functions (which

are finite because of boundeness of r).
Under assumptions of Section 3, the following affirmation will be proved.

Proposition 2.1. Let f∗ = {f∗, f∗, . . . }, f̃∗ = {f̃∗, f̃∗, . . . } be the stationary stopping
rules such that for x ∈ X:

f∗(x) =
{

0, x ∈ X\S,
1, x ∈ S; f̃∗(x) =

{
0, x ∈ X\S̃,

1, x ∈ S̃;
(2.9)

where
S :=

{
x ∈ X : U∗(x) = eλr(x)

}
,

S̃ :=
{

x ∈ X : Ũ∗(x) = eλr(x)
}

.
(2.10)

Then the stopping rules f∗ and f̃∗ are optimal for {xt} and {x̃t}, respectively, (i. e. (2.4)
and (2.5) or (2.6) and (2.7) hold).

Remark 2.1. The rules above dictate to stop the processes on the first entrance into
the “stopping set” S (or S̃, respectively). Analogous result is well-known for stopping
problem with the cost functional (1.2) (see, e. g. [21]). Probably in the risk-sensitive
case Proposition 2.1 can be shown directly. Anyway, we get its proof as a by-product of
our assumptions and calculations related to the estimation of stability indices.

According to (2.4), (2.5) and (2.6) – (2.8) we define two such indices:

∆(x) := W (x, f̃∗)−W (x, f∗) ≥ 0, (2.11)

δ(x) := U(x, f∗)− U(x, f̃∗) ≥ 0. (2.12)
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3. ASSUMPTIONS AND RESULTS

Our assumptions are similar to those used in [24]. They demand “uniform geometric
ergodicity” of processes under consideration.

Assumption 1.
(a) The processes {xt} and {x̃t} have stationary probabilities π and π̃.

(b) There exist constants η, 0 ≤ η < 1, and M < ∞, such that,

sup
x∈X

‖pt(·|x)− π(·)‖ ≤ Mηt, t = 1, 2, . . . , and (3.1)

sup
x∈X

‖p̃t(·|x)− π̃(·)‖ ≤ Mηt, t = 1, 2, . . . , (3.2)

where pt and p̃t are the t-step transition probabilities for the processes {xt} and {x̃t},
respectively, and ‖ · ‖ is the total variation norm of a signed bounded measure.

Let S and S̃ be the sets defined in (2.10).

Assumption 2. There exist α > 0 such that

π(S) ≥ α, π(S̃) ≥ α, π̃(S) ≥ α, π̃(S̃) ≥ α. (3.3)

Remark 3.1.
(a) Conditions (3.1) and (3.2) can be ensured by the well-known Lyapunov type condi-
tions (see e. g. [15, 18]).
(b) Assumption 2 is somewhat delicate by two reasons. Firstly, in general, the set S in
(2.10) is supposed to be unknown (since p could be unknown). Secondly, the constants
in the “stability inequalities” (3.4) and (3.7) below tend to infinity as in (3.3) α ↓ 0. On
the other hand, the invariant probabilities π and π̃ in (3.3) depend (generally, in some
untractable way) on the transition probabilities p and p̃, and therefore, on “the nearness
parameter” ‖p(·|x)− p̃(·|x)‖ in (3.4) and (3.7).

In some particular cases (for instance as in Example 4.4 of Section 4, or for random
walks on a compact group), it is possible, using the structure of the functions c0 and r,
to give some a priory bounds of α in (3.3) (which are valued for certain classes of the
transition probabilities p and p̃).

On the other hand, if one can establish the two last inequalities in (3.3) (for the
“known” transition probability p̃ ), then under Assumption 1, if d(p, p̃) in (1.3) is small
enough then, ‖π− π̃‖ can be bounded in terms of d(p, p̃) (see Theorem 3.5 in [15]). Thus
two first inequalities in (3.3) can be ensured.

In any case, the counterexamples given in the next section show that both Assump-
tions 1 and 2 are essential for the validity of the stability inequalities (3.4) and (3.7)
below.

Let d(p, p̃) be the distance defined in (1.3). Recall that stability indices ∆(x) and
δ(x) were defined in (2.11) and (2.12).
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Theorem 3.1. Let Assumptions 1 and 2 hold. Then for any λ > 0,

sup
x∈X

δ(x) ≤ Keλr̄d(p, p̃), (3.4)

where

K =
2
3
α−1N(N + 1), and N =

[
log
(

α
2M

)
log(η)

]
+ 2. (3.5)

Here, [z] denotes the integer part of z ∈ R.

Theorem 3.2. Under Assumptions 1 and 2, if

d(p, p̃) ≤ 1
2
eλ(r(x)−r̄), (3.6)

then
∆(x) ≤ 2Kλ−1eλ(r̄−r(x))d(p, p̃). (3.7).

Remark 3.2. Example 4.3 below shows that the presence of the term growing expo-
nentially with λ → ∞ on the right-hand side of inequality (3.4) is justifiable. On the
other hand, the appearance of a similar term on the right hand side of (3.7) is due to
lack of sharpness in the estimation of logarithms in (2.2). Thus inequality (3.7) could
be useful for small λ > 0, but it is poor for large λ.

Remark 3.3. The distance d(p, p̃) = supx∈X ‖p(·|x)− p̃(·|x)‖ (“discrepancy measure”)
on the right-hand side of (3.4) and (3.7) could be (at least theoretically) evaluated when
p̃ is “a simplifying approximation” to p. If p is considered to be unknown, and p̃ is some
statistical estimation of p, then again, sometimes the value of d(p, p̃) can be bounded.
For example, if xt = F (xt−1, at, ξt), t ≥ 1 with ξ1, ξ2, . . . , being i.i.d. random vectors
in Rm, and if an unknown density fξ1 is estimated by “kernel-type” empirical densities
f̂n = f̂n(ξ1, . . . , ξn), then in certain classes of densities fξ1 and functions F one can
obtain that Ed(p, p̃) ≡ Ed(p, p̃n) ≤ Ln−γ with specific constants L and γ > 0 (see, e. g.,
[8]).

4. EXAMPLES AND COUNTEREXAMPLES

First, we consider two counterexamples which show that Assumptions 1 and 2 are es-
sential in Theorems 3.1 and 3.2 in Section 3.

Example 4.1. (Similar to Example 3 in [24]) Let X = {0, 1, 2, 3}, ε ∈ (0, 1);

p({1}|0) = p({2}|1) = p({3}|3) = 1, p({3}|2) = ε, p({2}|2) = 1− ε;
p̃({1}|0) = p̃({2}|1) = p̃({2}|2) = p̃({3}|3) = 1,

and also, c0(0)=c0(2)=c0(3)=0; c0(1)=1, r(0)=r(1)=r(2)=0; r(3) = M + 1,M > 1,
where M is any positive number given.
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Choose x = 0 as the initial state for {xt} and {x̃t}. It is clear that the optimal
stopping rule for {xt} is f∗(j) = 0, j = 0, 1, 2; f∗(3) = 1 (to stop on the first entrance
in j = 3), and in (2.6), (2.8) U(0, f∗) = eλM , and so in (2.2), (2.4), W (0, f∗) = −M for
every λ > 0.

On the other hand, the optimal rule for {x̃t} is f̃∗(0) = 1; f̃∗(1) = f̃∗(2) = f̃∗(3) = 0
(to stop immediately, since “the rewarding state” j = 3 is not attainable). Therefore, for
any λ > 0, U(0, f̃∗) = 1, W (0, f̃∗) = 0, and in view of (2.11), (2.12) for every ε ∈ (0, 1),

∆(0) = M ; δ(0) = eλM − 1.

Meanwhile, denoting pε := p, we get that d(pε, p̃) → 0, as ε → 0. It is evident that
the processes in this example do not satisfy Assumption 1.

Example 4.2. Let X = [0, 1], c0 ≡ 0; r(x) =
{

x, x ∈ [0, 1),
2, x = 1.

For a given ε ∈ (0, 1),

let {ξt} be i.i.d ∼ U [0, 1], {ξ̃t} be i.i.d ∼ U [0, 1 − ε]. Let us define: x0 = x̃0 = x ∈ X;
and for t ≥ 1,

xt =

8<:
ξt with probability (1 − ε),
1 with probability ε/2,
1 − ε with probability ε/2;

ext =

 eξt with probability (1 − ε),
1 − ε with probability ε;

and suppose that x1, x2, . . . are independent, and also x̃1, x̃2, . . . are independent.

It is clear that Assumption 1 of Section 3 is satisfied. Then optimal for {x̃t} stopping
rule f̃∗ is to stop on the first entrance in S̃ = {1 − ε}, and f∗, optimal for {xt}, is to
stop on the first entrance into S = {1}. Taking into account (2.2) – (2.12) we get that
(for any x ∈ X, λ > 0, ε ∈ (0, 1)):

δ(x) = e2λ − e(1−ε)λ; ∆(x) = 1 + ε.

It is easy to verify that for these processes d(p, p̃) → 0 as ε → 0. In this example,
Assumption 2 does not hold since π̃(S) = 0.

Example 4.3. This example shows that under the conditions of Theorem 3.1 the left-
hand side of inequality (3.4) could be of order `eβλ, as λ →∞ (with some `, β > 0).

Let X = {0, 1, 2, 3}; c0(0) = 10; c0(1) = 10; c0(2) = c0(3) = 2000; r(0) = r(1) =
r(3) = 0; r(2) = 1000.

The process {xt} has the following transition probability matrix (ε ∈ (0, 1)) :

p({1}|0) = 1; p({2}|1) = ε, p({3}|1) = 1− ε; p({3}|2) = 1;
p({0}|3) = p({1}|3) = p({2}|3) = 1/3.

(4.1)

The probability matrix p̃ of the process {x̃t} is the same as in (4.1), but with ε = 0.
Let x = 0 be the initial state (common for {xt} and {x̃t}). Both Markov chains

{xt} and {x̃t} are irreducible and nonperiodic. So, Assumption 1 holds (as well as
Assumption 2).
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It is easy to see that the stopping rule (optimal for {x̃t}) f̃∗ is to stop at S̃ = {0}
(immediately), while for every ε > 0 fixed and all λ > 0 large enough, the rule f∗
(optimal for {xt}) is to stop on the first entrance into S = {2, 3}. By simple calculations
we obtain in (2.12) that,

δ(0) = εe980λ + (1− ε)e−20λ − 1 ∼ εe980λ as λ →∞. (4.2)

Particularly, this means that for large λ > 0 the rule f̃∗ provides a poor approximation
to the “really risky policy” f∗ to stop at S (winning a lot with a small probability ε > 0).

In spite of this circumstance, the considered example of stopping optimization is
stable. Indeed, as ε → 0, for every fixed λ > 0 in (2.8),

U(0, f∗) = εe980λ + (1− ε)e−20λ → e−20λ < 1 = U(0, f̃∗).

So, for all ε > 0 small enough, the policy f̃∗ is optimal for {xt} (rather than f∗), and
the left-hand sides of inequalities (3.4) and (3.7) become zero.

Remark that in case (4.2) in inequality (3.7) ∆(0) ∼ 980. Therefore inequality (3.7)
for large λ has the unreasonably large right-hand side.

Example 4.4. (Stability in an asset selling problem) The version of this example with
habitual criterion (1.2) was considered in [24], where, in particular, Assumptions 1 and
2 were verified. We recall that in this example a sequence of successive offers {xt} forms
geometrically ergodic process on the state space X = [0, L] with a transition probability
p(·|x), x ∈ X; c0 is a positive constant, and r(x) = x, x ∈ X. The process {xt} is
approximated by a sequence of i.i.d. random variables with a common distribution F̃ .
Since Assumptions 1 and 2 hold true one can apply for this example inequalities (3.4)
and (3.7) with

d(p, p̃) = sup
x∈[0,L]

sup
B∈B[0,L]

|p(B|x)− F̃ (B)|

on their right-hand sides.

In one particular case considered in [24], when xt = εxt−1 +(1−ε)ξt, t = 1, 2, . . . with
i.i.d. random variables {ξt}, the constant α in (3.3) of Assumption 2 can be effectively
bounded from below (with a bound independent on ε).

5. THE PROOFS

5.1. Reduction to Markov decision processes.

Using a standard approach (see, e. g. [21]), let us define two MDP’s {zt} and {z̃t} on
the space (X ,BX ) where X = X∪{Θ}, and Θ is an absorbing state, where zt or z̃t move
at the moment of stopping of {xt} or {x̃t}. Control sets are A(x) ≡ A = {0, 1}. The
one step cost function is

c(x, a) :=

 c0(x), x ∈ X, a = 0,
−r(r) + r̄, x ∈ X, a = 1,
0, x = Θ, a ∈ A.

(5.1)
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Finally, the transition probability γ for {zt} is defined as follows (x ∈ X , B ∈ BX ):

γ(B|x, 0) :=

 p(B\{Θ}|x), x ∈ X,

δ∗(B), x = Θ; γ(B|x, 1) := δ∗(B);
(5.2)

where δ∗ is the Dirac measure.
The transition probability γ̃ for {z̃t} is defined by (5.2) replacing p by p̃.
For any control policy π (see definitions, e. g. in [9]) and any initial state x ∈ X ,

let Pπ
x , P̃π

x , Eπ
x , Ẽπ

x denote probabilities (on the space of trajectories) and expectations
corresponding to the kernels γ and γ̃.

Also for every x ∈ X , and any nonrandomized policy of control π applied to {zt}, let
τπ denote a moment of first application of the action a = 1 (to stop). Similarly, τ̃π is
defined for the process {z̃t}.

Let Π denote the set of all nonrandomized control policies π such that

Px(τπ < ∞) = P̃x(τ̃π < ∞) = 1, for all x ∈ X.

Now we introduce new versions of U , Ũ in (2.8). For x ∈ X and π = (a0, a1, . . . ) ∈ Π,
let

V (x, π) := Eπ
xe−λ

P∞
t=0 c(xt,at), Ṽ (x, π) := Ẽπ

xe−λ
P∞

t=0 c(x̃t,at) (5.3)

(e−∞ := 0). In view of (5.1), the function c is nonnegative. Therefore V and Ṽ ∈ [0, 1],
also V (Θ, π) = Ṽ (Θ, π) = 1 (see (5.1) and (5.2)).

The value functions (corresponding to functionals (5.3)) are defined as follows:

V∗(x) := supπ∈Π V (x, π), x ∈ X ;

Ṽ∗(x) := supπ∈Π Ṽ (x, π), x ∈ X .

(5.4)

Lemma 5.1. (Optimality Equation)
For any x ∈ X ,

V∗(x) = max
a∈A

e−λc(x,a)

∫
X

V∗(y)γ(dy|x, a), (5.5)

and also for every x ∈ X,

V∗(x) = max
{
eλr(x)−λr̄, e−λc0(x)

∫
X

V∗(y)p(dy|x)
}

. (5.6)

Similar equations (with γ̃ and p̃) hold for Ṽ∗.

The proof of (5.5) is accomplished as the proof of Lemma 3 in [6].
Equation (5.6) follows from (5.1), (5.2), (5.5) and the fact that V∗(Θ) = 1.
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5.2. New kernels and corresponding operators

Define on (X ×A,BX ) the following kernels:

q(B|x, a) := e−λc(x,a)γ(B|x, a); q̃(B|x, a) := e−λc(x,a)γ̃(B|x, a). (5.7)

For every stationary policy f ∈ Π, f ≡ (f, f, . . . ), (f : X → A) we write: q(·|x, f) ≡
q(·|x, f(x)), q̃(·|x, f) ≡ q(·|x, f(x)), x ∈ X , and define in a standard manner qn (n =
1, 2, . . . ):

qn(B|x, f);=
∫
X

qn−1(B|y, f(y))q(dy|x, f(x)). (5.8)

The kernels q̃n are defined similarly.
Let D denote the space of all measurable functions ϕ : X → [0, 1], such that ϕ(Θ) = 1.

We equip D with the uniform metric:

ρ(ϕ, ϕ′) := sup
x∈X

|ϕ(x)− ϕ′(x)| ≡ sup
x∈X

|ϕ(x)− ϕ′(x)|. (5.9)

For each f ∈ F (where F is a subset of stationary policies from Π), we define two
operators: Tf : D → D; T̃f : D → D as follows:

Tfϕ(x) :=
∫
X

ϕ(y)q(dy|x, f(x)), x ∈ X . (5.10)

Replacing q by q̃, the operator T̃f is defined similarly. From (5.2), it follows that Tf , T̃f

indeed map D into D.

Lemma 5.2. For each f ∈ F,

Vf = TfVf and Ṽf = T̃f Ṽf , (5.11)

where Vf (x) := V (x, f(x)), Ṽf (x) := Ṽ (x, f(x)), x ∈ X and V, Ṽ were defined in (5.3).

The proof of Lemma 5.2 is a straightforward usage of Markov property.

5.3. Relations between control policies and stopping rules

From the definitions of the control processes {zt} and {z̃t} above it follows that each
control policy π ∈ Π generates the stopping rule fπ ∈ Ψ (where Ψ is the class of all
stopping rules with a.s. finite stopping times, see Section 2). Moreover, comparing (2.8)
and (5.3), since τπ, τ̃π are almost surely finite, and at instance τπ, c(xτπ

) = −r(xτπ
)+ r̄,

we find that for every x ∈ X and π ∈ Π,

V (x, π) = U(x, fπ)e−λr̄; Ṽ (x, π) = Ũ(x, fπ)e−λr̄. (5.12)

Consequently, in (2.6), (2.7) and (5.4), for each x ∈ X.

V∗(x) = U∗(x)e−λr̄;V∗(x) = U∗(x)e−λr̄, (5.13)
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(because each a.s. finite stopping rule is generated by some policy from Π). For this
reason we can rewrite “the stopping sets” in (2.10) in the following equivalent form:

S :=
{

x ∈ X : V∗(x) = eλr(x)−λr̄
}

, S̃ :=
{

x ∈ X : Ṽ∗(x) = eλr(x)−λr̄
}

. (5.14)

Now we define two key stationary control policies (compare them with (2.9) in Propo-
sition 2.1):

f∗(x) :=

 0, x ∈ X\S,
1, x ∈ S,
1, x = Θ,

and (5.15)

f̃∗(x) :=

 0, x ∈ X\S̃,

1, x ∈ S̃,
1, x = Θ.

(5.16)

In view of Assumptions 1 and 2 and the well-known properties of Markov processes
(see e. g. [18]) we get that f∗ and f̃∗ ∈ Π, and therefore they generate stopping rules
with a.s. finite stopping times τf∗ and τ̃f∗ .

5.4. Contracting properties of operators Tf∗ and T ef∗
For any f ∈ F := {f∗, f̃∗} (see (5.15) and (5.16), let Tf and T̃f be operators defined in
(5.10), and

N :=

[
log
(

α
2M

)
log(η)

]
+ 2,

where M,η and α are constants involved in Assumptions 1 and 2. Let also ρ be the
uniform metric in (5.9).

Lemma 5.3. For every f ∈ F and u, v ∈ D,

ρ
(
TN

f u, TN
f v
)
≤
(
1− 3

4
α
)
ρ(u, v), ρ

(
T̃N

f u, T̃N
f v
)
≤
(
1− 3

4
α
)
ρ(u, v). (5.17)

P r o o f . Let, for example, f = f∗. It is easy to see that

Tn
f u(x) =

∫
X

u(y)qn(dy|x, f(x)) (x ∈ X ), u ∈ D,n ≥ 1,

and qn was defined in (5.8). Thus, by (5.9), for any u, v ∈ D,

ρ(Tn
f u, Tn

f v) = sup
x∈X

∣∣∣∣∫
X

u(y)qn(dy|x, f(x))−
∫
X

v(y)qn(dy|x, f(x))
∣∣∣∣

≤ ρ(u, v) sup
x∈X

qn(X|x, f(x)). (5.18)

Taking (5.7) into account, we obtain than for every x ∈ X and B ∈ BX ,

qn(B|x, f(x)) ≤ γn(B|x, f(x)), (5.19)
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where γn is the nth power of the kernel γ in (5.2). Using (5.18), (5.19), and the result
proved in Lemma 4.1 in [24]:

qN (X|x, f(x)) ≤
(

1− 3
4
α

)
, x ∈ X,

we obtain the desired inequalities (5.17). �

5.5. Optimality of stationary policies f∗ and f̃∗

Lemma 5.4. The stationary policies of control f∗ and f̃∗ are optimal correspondingly
for the processes {zt} and {z̃t}, respectively, (with respect to criterion (5.3)).

P r o o f . Let us prove the optimality of f∗. By (5.14) and (5.15) the policy f∗ maximizes
the right-hand sides of the optimality equations (5.5) and (5.6). By definitions (5.14)
and (5.15), for every x ∈ X ,

Tf∗V∗(x) =
∫
X

V∗(y)q(dy|x, f∗(x)) = e−λc(x,f∗(x))

∫
X

V∗(y)γ(dy|x, f∗(x))

= max
a∈A

e−λc(x,a)

∫
X

V∗(y)γ(dy|x, a) = V∗(x)

by virtue of (5.5). Thus Tf∗V∗ = V∗. On the other hand, by Lemma 5.2

V (x, f∗(x)) ≡ Vf∗(x) = Tf∗Vf∗(x).

Therefore, V (x, f∗(x)) = V∗(x) since, by Lemma 5.3, the operator Tf∗ has a unique fixed
point in D. �

5.6. Estimation of closeness of the operators Tf and T̃f∗

Lemma 5.5. For each f ∈ F and every n ≥ 1, ϕ ∈ D,

ρ(Tn
f ϕ, T̃n

f ϕ) ≤ n

2
d(p, p̃), (5.20)

where d(p, p̃) was defined in (1.3).

P r o o f . For every x ∈ X fixed we have, (for example, for f = f∗):

In :=
∣∣∣Tn

f ϕ(x)− T̃n
f ϕ(x)

∣∣∣ ≤ ∣∣∣∣∫
X

ϕ(y)
∫
X

q(dz|x, f)qn−1(dy|z, f)

−
∫
X

ϕ(y)
∫
X

q̃(dz|x, f)qn−1(dy|z, f)
∣∣∣∣+ ∣∣∣∣∫

X
ϕ(y)

∫
X

q̃(dz|x, f)qn−1(dy|z, f)

−
∫
X

ϕ(y)
∫
X

q̃(dz|x, f)q̃n−1(dy|z, f)
∣∣∣∣ =: I1,n + I2,n.

(5.21)
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Then by Fubini’s theorem,

I1,n =
∣∣∣∣∫
X

[
q(dz|x, f)− q̃(dy|z, f)

] ∫
X

ϕ(y)qn−1(dy|z, f)
∣∣∣∣ ,

where the last integral represents a function from D with values in [0, 1] and with value
1 at the point x = Θ. Thus by (5.7) and (5.2),

I1,n =≤ 1
2
‖p(·|x)− p̃(·|x)‖. (5.22)

Now applying the similar arguments to I2,n in (5.21) we obtain that

I2,n ≤
∫
X

q̃(dz|x, f)
∣∣∣∣∫
X

ϕ(y)
[
qn−1(dy|z, f)− q̃n−1(dy|z, f)

]∣∣∣∣
≤ 1

2 supx∈X ‖pn−1(·|x)− p̃n−1(·|x)‖

≤ n−1
2 supx∈X ‖pn−1(·|x)− p̃(·|x)‖,

(5.23)

where the last inequality was shown, for example, in [24]. Combining (5.21) – (5.23), we
get (5.20). �

5.7. The rest of the proof of Theorems 3.1 and 3.2

From (5.12) and Lemma 5.4 it follows that the stability index δ(x) in (2.12) is

δ(x) = eλr̄
[
V (x, f∗)− V (x, f̃∗)

]
, (5.24)

where V is defined in (5.3). Using Lemmas 5.2, 5.3 and 5.4, an upper bound for V (x, f∗)−
V (x, f̃∗) is found in a similar way as in the proof of Theorem 2.1 in [24]. This results in
the following inequality (valued for all x ∈ X)

0 ≤ V (x, f∗)− V (x, f̃∗) ≤
2
3α

N(N + 1)d(p, p̃), (5.25)

where d is from (1.3), α is from Assumption 2, and, as in Lemma 5.3, N is an integer
from (3.5).

From (5.24) and (5.25) inequality (3.4) of Theorem 3.1 follows.
Now, from (2.2), (2.8) and (5.12) we find that the stability index ∆(x) in (2.11) is

expressed as follows:

∆(x) =
1
λ

log
(
eλr̄V (x, f∗)

)
− 1

λ
log
(
eλr̄V (x, f̃∗)

)

=
1
λ

log
V (x, f∗)

V (x, f̃∗)
≤ 1

λ

V (x, f∗)− V (x, f̃∗)

V (x, f̃∗)
. (5.26)
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Denoting in (5.25) K := 2
3αN(N + 1), we obtain from the last inequality that

V (x, f̃∗) = V (x, f∗)−Kd(p, p̃) ≥ eλ(r(x)−r̄) −Kd(p, p̃) ≥ 1
2
eλ(r(x)−r̄), (5.27)

provided that condition (3.6) holds. The first inequality in (5.27) is due to the fact that
f∗ gives a maximum to V (x, π), so V (x, f∗) ≥ V (x, h) , where h is the policy: “to stop
at t = 0”. Combining (5.25) – (5.27) we prove Theorem 3.2.
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