Communications in Mathematics

Werner Georg Nowak
Lower bounds for simultaneous Diophantine approximation constants

Communications in Mathematics, Vol. 22 (2014), No. 1, 71--76
Persistent URL: http://dml.cz/dmlcz/143907

Terms of use:

© University of Ostrava, 2014

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Editor-in-Chief

Olga Rossi, The University of Ostrava \& La Trobe University, Melbourne
Division Editors
Ilka Agricola, Philipps-Universität Marburg
Attila Bérczes, University of Debrecen
Anthony Bloch, University of Michigan
George Bluman, The University of British Columbia, Vancouver
Karl Dilcher, Dalhousie University, Halifax
Stephen Glasby, University of Western Australia
Yong-Xin Guo, Eastern Liaoning University, Dandong
Haizhong Li, Tsinghua University, Beijing
Vilém Novák, The University of Ostrava
Geoff Prince, La Trobe University, Melbourne
Thomas Vetterlein, Johannes Kepler University Linz

Technical Editors

Jan Štěpnička, The University of Ostrava
Jan Šustek, The University of Ostrava

Lower bounds for simultaneous Diophantine approximation constants ${ }^{1}$

Werner Georg Nowak

Abstract

After a brief exposition of the state-of-art of research on the (Euclidean) simultaneous Diophantine approximation constants θ_{s}, new lower bounds are deduced for θ_{6} and θ_{7}.

1 Introduction

For a fixed positive integer s, the (Euclidean) simultaneous Diophantine approximation constant θ_{s} is defined as the supremum of all constants c such that, for every point \mathbf{a} in $\mathbb{R}^{s} \backslash \mathbb{Q}^{s}$, there exist infinitely many $(s+1)$-tuples $(\mathbf{p}, q) \in \mathbb{Z}^{s} \times \mathbb{N}^{*}$ with

$$
\begin{equation*}
\left|\mathbf{a}-\frac{1}{q} \mathbf{p}\right| \leq \frac{1}{q \sqrt[s]{c q}}, \tag{1}
\end{equation*}
$$

where $|\cdot|$ denotes the Euclidean norm in \mathbb{R}^{s}.
This notion generalizes a question whose answer is known as Hurwitz' classic theorem. This involves the special case $s=1$ and tells us that $\theta_{1}=\sqrt{5}$; see, e.g., Niven and Zuckerman 11, p. 189 and p. 221].

By some very deep analysis, Davenport and Mahler 6] were able to prove that $\theta_{2}=\frac{1}{2} \sqrt{23}$.

For $s \geq 3$, the exact values of θ_{s} are unknown, and only more or less precise bounds have been established.

We remark parenthetically that the problem becomes even considerably more difficult if one replaces in (1) the Euclidean norm by the maximum norm: The constants arising, say $\theta_{s}^{(\infty)}$, are unknown for all $s \geq 2$, the only general successful approach being due to Spohn 16 who combined the calculus of variation with a classic method of Blichfeldt 2 to estimate $\theta_{s}^{(\infty)}$ from below.

[^0]
2 Survey of methods and known results

The usual approach to estimate θ_{s} is based on tools from the geometry of numbers; cf. throughout the monograph by Gruber and Lekkerkerker 7 .

We briefly recall a few basic concepts of this theory: For a star-body \mathcal{B} in \mathbb{R}^{s}, a lattice $\Lambda=A \mathbb{Z}^{s}$ (A a nonsingular real $(s \times s)$-matrix) is called admissible if its only point in the interior of \mathcal{B} is the origin. The critical determinant $\Delta(\mathcal{B})$ of \mathcal{B} is then defined as the infimum of the lattice constants $d(\Lambda)=|\operatorname{det} A|$, taken over all lattices Λ admissible for \mathcal{B}.

By a celebrated result of Davenport 5 (see also 7, p. 480, Theorem 4]), θ_{s} is equal to the critical determinant $\Delta\left(\mathcal{B}_{s+1}\right)$ of the $(s+1)$-dimensional star body of points $\left(x_{0}, x_{1}, \ldots, x_{s}\right) \in \mathbb{R}^{s+1}$

$$
\begin{equation*}
\mathcal{B}_{s+1}: \quad\left|x_{0}\right|\left(\sum_{j=1}^{s} x_{j}^{2}\right)^{s / 2} \leq 1 \tag{2}
\end{equation*}
$$

For $s=3,4,5$, the sharpest known lower ${ }^{2}$ estimates for θ_{s} have been obtained by a method which is based on inequalities relating the critical determinants of star bodies in different dimensions. In its essence it goes back to Mordell 8, 9, 10, and Armitage 1. Combining these tools with the known critical determinant $\overline{\Delta(\mathcal{P})}=\frac{1}{2}$ of the three-dimensional double paraboloid

$$
\begin{equation*}
\mathcal{P}: \quad x^{2}+y^{2}+|z| \leq 1, \tag{3}
\end{equation*}
$$

it has been proved 13, 14 that

$$
\begin{equation*}
\theta_{3} \geq 1.879 \ldots, \quad \theta_{4} \geq 1.3225 \ldots, \quad \theta_{5} \geq 0.876 \tag{4}
\end{equation*}
$$

For $s \leq 5$, it appears that this is the very limit of present methods. For $s \geq 6$, the only successful approach is due to Prasad 15. This is based on the simple idea to apply the arithmetic-geometric mean inequality to the left-hand side of (2). In terms of geometry, this amounts to inscribing an $(s+1)$-dimensional ellipsoid

$$
\begin{equation*}
\mathcal{E}_{s+1}: \quad \frac{1}{s+1} x_{0}^{2}+\frac{s}{s+1} \sum_{j=1}^{s} x_{j}^{2} \leq 1 \tag{5}
\end{equation*}
$$

into \mathcal{B}_{s+1}. It follows that

$$
\begin{equation*}
\theta_{s}=\Delta\left(\mathcal{B}_{s+1}\right) \geq \Delta\left(\mathcal{E}_{s+1}\right)=\frac{(s+1)^{(s+1) / 2}}{s^{s / 2}} \Delta\left(\mathcal{S}_{s+1}\right) \tag{6}
\end{equation*}
$$

where \mathcal{S}_{s+1} is the unit sphere in \mathbb{R}^{s+1}. Now the critical determinants of the unit spheres are known up to dimension 8: See 7. p. 410]; in particular, $\Delta\left(\mathcal{S}_{7}\right)=\frac{1}{8}$, $\Delta\left(\mathcal{S}_{8}\right)=\frac{1}{16}$. Hence, using (6), it readily follows that

$$
\begin{equation*}
\theta_{6} \geq \frac{343}{1728} \sqrt{7}, \quad \theta_{7} \geq \frac{256}{343} \frac{1}{\sqrt{7}} . \tag{7}
\end{equation*}
$$

[^1]We conclude this section by the remark that the question of upper bounds for θ_{s} has been dealt with in 14 , section 4]. It amounts to finding certain number fields of degree $s+1$ with small absolute discriminant.

3 Improvement of the estimate (7)

The critical determinants $\Delta\left(\mathcal{S}_{7}\right), \Delta\left(\mathcal{S}_{8}\right)$ once known, the deduction of the lower bounds (7) seems so natural that one might believe that this could be the end-of--the-art for this problem in the cases $s=6,7$. In this little note, however, we will establish a slight refinement.

Theorem 1. The inequalities

$$
\theta_{6} \geq \frac{343}{1728} \sqrt{7}\left(1+\omega_{6}\right), \quad \theta_{7} \geq \frac{256}{343} \frac{1}{\sqrt{7}}\left(1+\omega_{7}\right)
$$

hold true, with certain small constants $\omega_{6}>9 \times 10^{-4}$, $\omega_{7}>3 \times 10^{-4}$. I.e., numerically, $\theta_{6} \geq 0.52564, \theta_{7} \geq 0.28218$.

Of course, this improvement is fairly small, the main interest lying in the method applied. This in turn is inspired by classic work due to Davenport 3, 4, and Žilinskas 17, as well as by an earlier article by the author 12$]^{3}$.

4 Proof of the theorem

For better readability, we give the details only for $s=6$, the case $s=7$ being completely analogous. In principle, the argument can be extended to $s>7$ as well, but this is of less importance, since $\Delta\left(\mathcal{S}_{s+1}\right)$ is known for $s \leq 7$ only.

The star body \mathcal{B}_{7} defined in (2) is automorphic, hence there exists a critical lattic $\S^{4} \Lambda$ with a point on the boundary of $\mathcal{B}_{7} ;$ cf. 7 7, p. 305, Theorem 4]. Applying to Λ a suitable automorphism of \mathcal{B}_{7}, if necessary, we can assume this point to be $\mathbf{e}=(1,1,0,0,0,0,0)$. With $\mathbf{x} \in \mathbb{R}^{7}$, the function

$$
G(\mathbf{x}):=\left(\frac{1}{7} x_{0}^{2}+\frac{6}{7} \sum_{j=1}^{6} x_{j}^{2}\right)^{1 / 2}
$$

which is the square-root of the left-hand side of (5) for $s=6$, is called the distance function of the ellipsoid \mathcal{E}_{7}; it is homogeneous of order 1 . Since, according to 7 p. 195, Theorem 3], any o-symmetric ellipsoid has anomaly 1 , there exist seven linearly independent lattice points $\mathbf{u}^{(k)}$ of Λ, with $\left(G\left(\mathbf{u}^{(k)}\right)\right)_{k=1}^{7}$ nondecreasing, and

$$
\begin{equation*}
\Delta\left(\mathcal{E}_{7}\right) \prod_{k=1}^{7} G\left(\mathbf{u}^{(k)}\right) \leq d(\Lambda)=\Delta\left(\mathcal{B}_{7}\right)=\theta_{6} \tag{8}
\end{equation*}
$$

[^2]We pick $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{6}\right) \in\left\{\mathbf{u}^{(1)}, \mathbf{u}^{(2)}\right\}$ in such a way that $\mathbf{u} \neq \pm \mathbf{e}$. Then $\mathbf{u} \pm \mathbf{e}$ are nontrivial lattice points of Λ. Since Λ is admissible for \mathcal{B}_{7}, a look back to (2) shows that

$$
\begin{equation*}
\left|u_{0}\right|\left(\sum_{j=1}^{6} u_{j}^{2}\right)^{3} \geq 1, \quad\left|u_{0} \pm 1\right|\left(\left(u_{1} \pm 1\right)^{2}+\sum_{j=2}^{6} u_{j}^{2}\right)^{3} \geq 1 \tag{9}
\end{equation*}
$$

Since $\mathcal{E}_{7} \subset \mathcal{B}_{7}$, it follows that $G\left(\mathbf{u}^{(1)}\right) \geq 1$, hence (8) implies that

$$
\begin{equation*}
\frac{\theta_{6}}{\Delta\left(\mathcal{E}_{7}\right)} \geq(G(\mathbf{u}))^{6} \tag{10}
\end{equation*}
$$

To prove the Theorem, it remains to minimize $G(\mathbf{u})$ under the constraints (9). We put $S=\sum_{j=2}^{6} u_{j}^{2}$ for short, and may assume, w.l.o.g., that $u_{0}>0$. Hence we have to deal with a minimization problem in three variables only, namely u_{0}, u_{1} and S. In fact,

$$
\begin{equation*}
M:=\min _{[9]} G^{2}(\mathbf{u})=\min _{[12]}\left(\frac{1}{7} u_{0}^{2}+\frac{6}{7}\left(u_{1}^{2}+S\right)\right), \tag{11}
\end{equation*}
$$

with

$$
\begin{equation*}
u_{0}\left(u_{1}^{2}+S\right)^{3} \geq 1, \quad\left|u_{0} \pm 1\right|\left(\left(u_{1} \pm 1\right)^{2}+S\right)^{3} \geq 1 \tag{12}
\end{equation*}
$$

Solving (12), we infer that

$$
u_{1}^{2}+S \geq \max \left(u_{0}^{-1 / 3},\left(u_{0}+1\right)^{-1 / 3}-1-2 u_{1},\left|u_{0}-1\right|^{-1 / 3}-1+2 u_{1}\right)
$$

Hence, in view of (11),

$$
\begin{array}{r}
7 M=\min _{u_{0}>0, u_{1}}\left(\operatorname { m a x } \left(u_{0}^{2}+6 u_{0}^{-1 / 3}, u_{0}^{2}+6\left(u_{0}+1\right)^{-1 / 3}-6-12 u_{1}\right.\right. \\
\\
\left.\left.u_{0}^{2}+6\left|u_{0}-1\right|^{-1 / 3}-6+12 u_{1}\right)\right) .
\end{array}
$$

Keeping u_{0} fixed for the moment and seeking the minimum with respect to u_{1}, we observe that the maximum of the last two expressions becomes minimal when they are equal. This obviously happens for

$$
u_{1}=\frac{1}{4}\left(\left(u_{0}+1\right)^{-1 / 3}-\left|u_{0}-1\right|^{-1 / 3}\right) .
$$

Consequently,

$$
\begin{equation*}
7 M=\min _{u_{0}>0}\left(\max \left(u_{0}^{2}+6 u_{0}^{-1 / 3}, u_{0}^{2}+3\left(u_{0}+1\right)^{-1 / 3}+3\left|u_{0}-1\right|^{-1 / 3}-6\right)\right) \tag{13}
\end{equation*}
$$

In order to solve this ultimate minimization problem, the figure below is very helpful.

Figure 1: The graphs of $f_{1}: u_{0} \mapsto u_{0}^{2}+6 u_{0}^{-1 / 3}$ (dashed)

$$
\text { and } f_{2}: u_{0} \mapsto u_{0}^{2}+3\left(u_{0}+1\right)^{-1 / 3}+3\left|u_{0}-1\right|^{-1 / 3}-6
$$

In fact, let f_{1}, f_{2} be defined as in the graphics, then an easy calculus exercise shows that f_{1} decreases on $] 0,1[$ and increases on $] 1, \infty\left[\right.$, and that f_{2} increases on $] 0,1\left[\right.$. Furthermore, $f_{1}-f_{2}$ increases on $] 1, \infty[$, since there

$$
\frac{\mathrm{d}}{\mathrm{~d} u_{0}}\left(f_{1}\left(u_{0}\right)-f_{2}\left(u_{0}\right)\right)=\frac{1}{\left(u_{0}+1\right)^{4 / 3}}+\frac{1}{\left(u_{0}-1\right)^{4 / 3}}-\frac{2}{u_{0}^{4 / 3}}>0
$$

on applying the mean inequality to the first two fractions. It readily follows that the equation $f_{1}\left(u_{0}\right)=f_{2}\left(u_{0}\right)$ has exactly two solutions, $u_{0}^{(1)}<1$ and $u_{0}^{(2)}>1$, say, and that, recalling (13),

$$
7 M=\min \left(f_{1}\left(u_{0}^{(1)}\right), f_{1}\left(u_{0}^{(2)}\right)\right)
$$

Carrying out the numerics, we get $u_{0}^{(1)}=0.97012 \ldots, u_{0}^{(2)}=1.030799 \ldots$, hence,

$$
7 M=\min (7.002111 \ldots, 7.00218 \ldots) \geq 7.002111
$$

Going back to (10) and 11), we finally infer that

$$
\frac{\theta_{6}}{\Delta\left(\mathcal{E}_{7}\right)} \geq\left(\frac{7.002111}{7}\right)^{3} \geq 1.0009
$$

which completes the proof of the Theorem.

References

[1] J.V. Armitage: On a method of Mordell in the geometry of numbers. Mathematika 2 (1955) 132-140.
[2] H. Blichfeldt: A new principle in the geometry of numbers, with some applications. Trans. Amer. Math. Soc. 15 (1914) 227-235.
[3] H. Davenport: On the product of three homogeneous linear forms. J. London Math. Soc. 13 (1938) 139-145.
[4] H. Davenport: On the minimum of a ternary cubic form. J. London Math. Soc. 19 (1944) 13-18.
[5] H. Davenport: On a theorem of Furtwängler. J. London Math. Soc. 30 (1955) 185-195.
[6] H. Davenport, K. Mahler: Simultaneous Diophantine approximation. Duke Math. J. 13 (1946) 105-111.
[7] P.M. Gruber, C.G. Lekkerkerker: Geometry of numbers. North Holland, Amsterdam (1987).
[8] L.J. Mordell: The product of three homogeneous linear ternary forms. J. London Math. Soc. 17 (1942) 107-115.
[9] L.J. Mordell: Observation on the minimum of a positive quadratic form in eight variables. J. London Math. Soc. 19 (1944) 3-6.
[10] L.J. Mordell: On the minimum of a ternary cubic form. J. London Math. Soc. 19 (1944) 6-12.
[11] I. Niven, H.S. Zuckerman: Einführung in die Zahlentheorie. Bibliograph. Inst., Mannheim (1975).
[12] W.G. Nowak: On simultaneous Diophantine approximation. Rend. Circ. Mat. Palermo, Ser. II 33 (1984) 456-460.
[13] W.G. Nowak: The critical determinant of the double paraboloid and Diophantine approximation in \mathbb{R}^{3} and \mathbb{R}^{4}. Math. Pannonica 10 (1999) 111-122.
[14] W.G. Nowak: Diophantine approximation in \mathbb{R}^{s} : On a method of Mordell and Armitage. In: Algebraic number theory and Diophantine analysis. Proceedings of the conference held in Graz, Austria, August 30 to September 5, 1998. W. de Gruyter, Berlin (2000) 339-349.
[15] A.V. Prasad: Simultaneous Diophantine approximation. Proc. Indian Acad. Sci. A 31 (1950) 1-15.
[16] W.G. Spohn: Blichfeldt's theorem and simultaneous Diophantine approximation. Amer. J. Math. 90 (1968) 885-894.
[17] G. Žilinskas: On the product of four homogeneous linear forms. J. London Math. Soc. 16 (1941) 27-37.

Author's address:
Institute of Mathematics, Department of Integrative Biology, BOKU Wien, 1180
Vienna, Austria
E-mail: nowak@boku.ac.at
Received: 9 September, 2013
Accepted for publication: 9 March, 2014
Communicated by: Olga Rossi

[^0]: 2010 MSC: 11J13, 11H16
 Key words: Geometry of numbers, Diophantine approximation, approximation constants, critical determinant
 ${ }^{1}$ Presented at the 21st Czech and Slovak International Conference on Number Theory (September 2-6, 2013, Ostravice, Czech Republic)

[^1]: ${ }^{2}$ Obviously, lower bounds are the more interesting ones, since they guarantee, for every c less than the bound, the existence of infinitely many solutions of the inequality (1).

[^2]: ${ }^{3}$ Carrying out the numerical details on the basis of the argument developed in that latter paper, one would get only $\omega_{6}>6 \times 10^{-5}, \omega_{7}>1.5 \times 10^{-5}$.
 ${ }^{4}$ I.e., Λ is admissible for \mathcal{B}_{7}, and $d(\Lambda)=\Delta\left(\mathcal{B}_{7}\right)$.

