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RICCI-FLAT LEFT-INVARIANT LORENTZIAN METRICS

ON 2-STEP NILPOTENT LIE GROUPS

Mohammed Guediri and Mona Bin-Asfour

Abstract. The purpose of this paper is to investigate Ricci-flatness of
left-invariant Lorentzian metrics on 2-step nilpotent Lie groups. We first show
that if 〈 , 〉 is a Ricci-flat left-invariant Lorentzian metric on a 2-step nilpotent
Lie group N , then the restriction of 〈 , 〉 to the center of the Lie algebra of
N is degenerate. We then characterize the 2-step nilpotent Lie groups which
can be endowed with a Ricci-flat left-invariant Lorentzian metric, and we
deduce from this that a Heisenberg Lie group H2n+1 can be endowed with
Ricci-flat left-invariant Lorentzian metric if and only if n = 1. We also show
that the free 2-step nilpotent Lie group on m generators Nm,2 admits a
Ricci-flat left-invariant Lorentzian metric if and only if m = 2 or m = 3, and
we determine all Ricci-flat left-invariant Lorentzian metrics on the free 2-step
nilpotent Lie group on 3 generators N3,2.

1. Introduction

A pseudo-Riemannian manifold is called flat (resp. Ricci-flat) if its Riemannian
curvature tensor (resp. Ricci tensor) vanishes identically. Ricci-flat metrics play a
crucial role in string theory, since they appear as the fixed-points of the so-called
Ricci-flow. In 3 dimensions, the Ricci tensor completely determines the curvature
tensor, and therefore Ricci-flatness in 3 dimensions implies flatness. This is not
true in higher dimensions.

It is well known that every left-invariant pseudo-Riemannian metric on a com-
mutative Lie group is flat. In [19], it has been shown that a Lie group G admits a
flat left-invariant Riemannian metric if and only if its Lie algebra G splits as an
orthogonal direct sum G = B ⊕ A where B is a commutative subalgebra, A is a
commutative ideal, and where the linear transformation adb is skew-adjoint for
every b ∈ B. Lie groups which can carry a flat left-invariant Lorentzian metric (i.e.,
with signature −,+, . . . ,+) have been classified in [11] (see also [6] and [15]).
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On the other hand, it has been shown in [1] that a Ricci-flat left invariant
Riemannian metric on a Lie group is necessarily flat. This is not true in the general
pseudo-Riemannian case, and the following question then arises naturally: Which
Lie groups can carry a Ricci-flat left-invariant Lorentzian metric?

In this paper we are interested in the particular case when the Lie group is
2-step nilpotent and the metric is Lorentzian. We recall here that, although they
are close to being abelian, 2-step nilpotent Lie groups possess a very rich geometry
(see [3], [4], [5], [7], [8], [9], [10], [12], [13], [14], [15], [16], [17], [18]).

In [14], it has been shown that a 2-step nilpotent Lie group N admits a flat
left-invariant Lorentzian metric if and only if N is a trivial central extension of the
three-dimensional Heisenberg group H3. Ricci-flat left-invariant pseudo-Riemannian
metrics on 2-step nilpotent Lie groups have been studied in [5], using a different
method from ours.

The paper is organized as follows. In Section 1, we will review all necessary
definitions of curvatures of a left-invariant pseudo-Riemannian metric on a general
Lie group. In Section 2, we will compute the curvatures of a left-invariant Lorentzian
metric on a 2-step nilpotent Lie group. Section 3 is devoted to determining all
2-step nilpotent Lie groups that can admit a Ricci-flat left-invariant Lorentzian
metric. We will first show that if 〈 , 〉 is a Ricci-flat left-invariant Lorentzian metric
on a 2-step nilpotent Lie group N, then the restriction of 〈 , 〉 to the center of the
Lie algebra of N is degenerate. We then will characterize the 2-step nilpotent Lie
groups which can be endowed with a Ricci-flat left-invariant Lorentzian metric, and
we will deduce from this that a Heisenberg Lie group H2n+1 can be endowed with
Ricci-flat left-invariant Lorentzian metric if and only if n = 1. In Section 4, we will
study Ricci-flatness for left-invariant Lorentzian metrics on free 2-step nilpotent Lie
groups. Using a result in [22] which asserts that a free 2-step nilpotent Lie group
on m generators admits a bi-invariant metric if and only if m = 3, we will first
show that this bi-invariant metric is unique and has signature (−,−,−,+,+,+).
We will then determine all Ricci-flat left-invariant Lorentzian metrics on the free
2-step nilpotent Lie group on 3 generators N3,2 in terms of the eigenvalues of
the self-adjoint endomorphism that relies each left-invariant Lorentzian metric
on N3,2 to the (unique) bi-invariant metric. We will close this section by proving
that the free 2-step nilpotent Lie group on m generators Nm,2 admits a Ricci-flat
left-invariant Lorentzian metric if and only if m = 2 or m = 3.

2. Curvatures of left-invariant metrics on Lie groups

Let G be a Lie group with Lie algebra G. Each scalar product (i.e., nondege-
nerate symmetric bilinear form) 〈 , 〉 on G can be extended in a unique way to
a semi-Riemannian metric, also denoted 〈 , 〉, on G so that the left translations
Lg are isometries of the semi-Riemannian homogeneous manifold (G, 〈 , 〉). Such a
metric is called the left-invariant metric determined by the scalar product 〈 , 〉, and
it satisfies

〈X,Y 〉g =
〈
DgLg−1 (X) , DgLg−1 (Y )

〉
e
,

for all X, Y ∈ TgG.
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In this case, the function g 7→ 〈X,Y 〉g is constant for any left-invariant vector
fields X,Y ∈ G. In particular, we have X 〈Y,Z 〉 = 0 for all X,Y, Z ∈ G, from which
we deduce that for each X ∈ G the map Y 7→ ∇XY is skew-symmetric. These
observations lead to the simplification ∇ as follows

(1) ∇XY = 1
2
{

[X,Y ]− (adX)∗ Y − (adY )∗X
}
,

where (adX)∗ denotes the adjoint of adX with respect to 〈 , 〉. The Riemannian
curvature tensor R is defined in terms of ∇ by the following formula:

(2) R (X,Y )Z = ∇[X,Y ]Z −∇X∇Y Z +∇Y∇XZ ,

for all X, Y , Z ∈ G.
Let g ∈ G. If P is a plane in TgG, then we say that P is nondegenerate if the

restriction 〈 , 〉|P of 〈, 〉 to P is nondegenerate. This means that 〈X,X〉 〈Y, Y 〉 −
〈X,Y 〉2 6= 0, for any basis {X,Y } of P. A nondegenerate plane P is said to be
spacelike or timelike if 〈 , 〉|P is positive definite or indefinite (i.e., it has signature
(−,+)), respectively.

The sectional curvature of a nondegenerate plane P = span {X,Y } spanned by
X, Y ∈ TgG is defined by the formula:

(3) K (X,Y ) = 〈R (X,Y )X,Y 〉
〈X,X〉 〈Y, Y 〉 − 〈X,Y 〉2

.

We say that (G, 〈 , 〉) is flat if the Riemannian curvature tensor R vanishes, or
equivalently if the sectional curvature K is identically zero.

For g ∈ G and X, Y ∈ TgG, the Ricci tensor Ric (X,Y ) evaluated at (X,Y )
is defined to be the trace of the linear map of TgG given by ξ −→ R (X, ξ)Y . If
{e1, e2, . . . , en} is an orthonormal basis of TeG ∼= G and X, Y ∈ G, then

(4) Ric (X,Y ) =
n∑
i=1

εi 〈R (X, ei)Y, ei〉 , where εi = 〈ei, ei〉 .

We should note that, since it is symmetric in the sense that Ric (X,Y ) =
Ric (Y,X), the Ricci tensor is completely determined by the quantities Ric (ei, ei)
for all vectors i, 1 ≤ i ≤ n. We say that (G, 〈 , 〉) is Ricci-flat if the Ricci curvature
Ric is identically zero. In the Riemannian case, it is shown in [1] that a left-invariant
Riemannian metric on a Lie group is Ricci-flat if and only if it is flat.

3. Curvatures for 2-step nilpotent Lie groups

Recall that a non-abelian Lie algebra N is called 2-step nilpotent if [N ,N ] is
contained in the center Z of N , or equivalently, if ad2

X = 0 for all X ∈ N . A
connected Lie group N is called 2-step nilpotent if its Lie algebra N is 2-step
nilpotent. The standard example of a 2-step nilpotent Lie group is the Heisenberg
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group H2n+1 of dimension 2n+ 1, which is defined as the vector space H2n+1 =
R× Cn endowed with the group law

(z, v) · (z′, v′) =
(
z + z′ + 1

2B (v, v′) , v + v′
)
,

where B is the nondegenerate alternating R-bilinear form

B (v, v′) =
n∑
i=1

xiy
′
i − yix′i ,

with v =
(
xi +

√
−1yi

)
1≤i≤n , v

′ =
(
x′i +

√
−1y′i

)
1≤i≤n and z, z′ ∈ R. Its Lie

algebra H2n+1 has a basis {Z,X1, . . . , Xn, Y1, . . . , Yn} such that all brackets are
zeros except [Xi, Yi] = Z for 1 ≤ i ≤ n.

A 2-step nilpotent Lie algebra N with center Z is said to be nonsingular if
[X,N ] = Z for all X ∈ N \Z. A 2-step nilpotent Lie group N is nonsingular
provided its Lie algebra N is nonsingular. For example, the Heisenberg group
H2n+1 is nonsingular.

Throughout this paper, N will be a 2-step nilpotent Lie group with Lie algebra
N and 〈, 〉 a left-invariant Lorentzian metric on N, that is, we shall assume that
〈, 〉 has signature (−,+, . . . ,+). In this case, we recall that a tangent vector X
to N is said to be spacelike, timelike, or lightlike (null) if 〈X,X〉 is > 0, < 0, or
= 0, respectively. Similarly, a subspace W of N is said to be nondegenerate or
degenerate according to whether the restriction of 〈, 〉 to W is nondegenerate or
degenerate, respectively. Therefore, if Z denotes the center of N , then we shall
distinguish two cases.

3.1. The center is nondegenerate. In this case, let V denote the orthogonal
complement of Z in N relative to 〈 , 〉, and write N as an orthogonal direct sum

N = V
⊥
⊕Z .

For each Z ∈ Z, we define a skew-symmetric linear map j (Z) : V → V by

j (Z)X = ad∗X Z , for all X ∈ V ,

where ad∗X Z denotes the adjoint of adX relative to 〈, 〉. Equivalently, the map j (Z)
is given by

〈j (Z)X,Y 〉 = 〈[X,Y ] , Z〉 , for all X,Y ∈ V .
This endomorphism was defined first by Kaplan to study Riemannian 2-step

nilmanifolds of Heisenberg type ([16], [17], [18]). In the Riemannian case, being
skew-symmetric with respect to a positive definite inner product, j (z) has all its
nonzero characteristic roots purely imaginary, where by a characteristic root of an
operator J we mean any eigenvalue of the complexified operator Jc associated to
J . However, in the Lorentzian case, a skew-symmetric operator of an indefinite
inner product might have nonzero real eigenvalues, and its complexified operator
might contain Jordan blocks.
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The following propositions can be obtained by using formulas (1), (2), (3), and
(4).

Proposition 1. With the notation above, if x, y ∈ V and z, z′ ∈ Z, we have
1. ∇xy = 1

2 [x, y].
2. ∇xz = ∇zx = − 1

2 j (z).
3. ∇zz = 0.

Proposition 2. With the notation above, if x1, x2, x3 ∈ V and z1, z2 ∈ Z, we
have

1. R (x1, x2)x3 = − 1
2j ([x1, x2])x3 + 1

4j ([x2, x3])x1 − 1
4j ([x1, x3])x2.

2. R (x1, x2) z1 = 1
4 {[x1, j (z1)x2]− [x2, j (z1)x1]}.

3. R (x1, z1)x2 = 1
4 [x1, j (z1)x2].

4. R (x1, z1) z2 = 1
4 {j (z1) ◦ j (z2)x1}.

5. R (z1, z2)x1 = − 1
4 {j (z1) ◦ j (z2)x1 − j (z2) ◦ j (z1)x1}.

6. R (z1, z2) z3 = 0.

Proposition 3. With the notation above, we have

1. If z1, z2 ∈ Z are orthonormal, then K (z1, z2) = 0.
2. If x, y ∈ V are orthonormal, then K (x, y) = − 3

4ε 〈[x, y] , [x, y]〉, where
ε = −1 or ε = 1 depending up on whether the plane P = span {x, y} is
timelike or spacelike, respectively.

3. If x ∈ V and z ∈ Z are orthonormal, then K (x, z) = 1
4ε 〈j (z)x, j (z)x〉,

where ε = −1 or ε = 1 depending up on whether the plane P = span {x, y}
is timelike or spacelike, respectively.

Proposition 4. With the notation above, if {e1, . . . , em} is an orthonormal basis
of V and {z1+m, . . . , zn} is an orthonormal basis of Z, then for any x, y ∈ V and
z, z1, z2 ∈ Z, we have

1. Ric (z, x) = 0.
2. Ric (z1, z2) = 1

4
∑m
i=1 εi 〈j (z2) ei, j (z1) ei〉, where εi = 〈ei, ei〉.

3. Ric (x, y) = − 1
2

n∑
i=1+m

ε
′

i 〈j (zi) y, j (zi)x〉, where ε′i = 〈zi, zi〉.

As a consequence of the above proposition, we have

Corollary 5. With the notation above, the scalar curvature of (N, 〈 , 〉) is

ρ = −1
4

m∑
i=1

n∑
j=m+1

εiε
′

j 〈j (zj) ei, j (zj) ei〉 ,

where εi = 〈ei, ei〉 and ε′j = 〈zj , zj〉.
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3.2. The center is degenerate. If the center is degenerate, then it turns out
that the maps j (Z) defined above have no meaning in this case. To overcome the
difficulties in this case, we will proceed as in [13]. We first observe that, as a vector
subspace, Z is tangent to the light cone at the identity e of N . Thus, one can write
Z = Z1 ⊕Rb with Z1 a Euclidean subspace, and since the orthogonal complement
Z⊥1 of Z1 in N is Lorentzian, one can find another null vector c ∈ Z⊥1 such that
〈b, c〉 = 1. Hence, N can be written as an orthogonal decomposition of the form

N = Z1 ⊕ U1 ⊕ span {b, c} ,
with U1 a Euclidean subspace of N .

For each z1 + yc ∈ Z1 ⊕ Rc, we can define a linear skew-symmetric map
j (z1 + yc) ∈ End (U1 ⊕ span {b, c}) by

j (z1 + yc)X = ad∗X (z1 + yc) for all X ∈ U1 ⊕ span {b, c} ,
where ad∗X Z denotes as above the adjoint of adX relative to 〈, 〉. However, we
will need to modify this definition because, as we can easily check, we have
j (z1 + yc) b = 0, j (z1 + yc) c ∈ U1, and j (z1 + yc)X1 ∈ U1 ⊕Rb for all X1 ∈ U1.
Instead, we will adopt the following definition

j : Z1 ⊕ Rc −→ Hom (U1 ⊕ Rc,U1 ⊕ Rb) ,
where Hom (U1 ⊕ Rc,U1 ⊕ Rb) denotes the set of all homomorphisms (i.e., linear
maps) from U1 ⊕ Rc to U1 ⊕ Rb.

The following propositions can be obtained by using formulas (1), (2), (3), and
(4).

Proposition 6. With the notation above, if z1, z2 ∈ Z1 and u1, u2 ∈ U1, we have

1. ∇b = ∇z1z2 = 0.
2. ∇cc = −j (c) c.
3. ∇cz1 = ∇z1c = − 1

2j (z1) c.
4. ∇u1z1 = ∇

z1
u1 = − 1

2j (z1)u1.

5. ∇cu1 = 1
2 [[c, u1]− j (c)u1].

6. ∇u1c = − 1
2 [[c, u1] + j (c)u1].

7. ∇u1u2 = 1
2 [u1, u2].

Proposition 7. With the notation above, if z, z1, z2, z3 ∈ Z1 and u, u1, u2,
u3 ∈ U1, we have

1. R (u1, z1)u2 = 1
4
(
[u1, j (z1)u2]− ad∗u1

j (z1)u2
)
.

2. R (u1, c)u2 = − 1
2ad
∗
u2

[u1, c]+ 1
4 ad∗u1

[c, u2]− 1
4 ad∗c [u1, u2]+ 1

4 [u1, j (c)u2].
3. R (z, c)u = − 1

4 [c, j (z)u]− 1
4j (z) j (c)u+ 1

4j (c) j (z)u.
4. R (c, u) z = 1

4 [[j (z) c, u]− j (c) j (z)u+ [c, j (z)u]].
5. R (u, z) c = 1

4j (z) j (c)u+ 1
4 [u, j (z) c].
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6. R (c, z) c = 1
4 [[c, j (z) c]− j (c) j (z) c+ 2j (z) j (c) c].

7. R (z1, z2) z3 = 0.
8. R (z1, z2) c = − 1

4 {j (z1) ◦ j (z2) c− j (z2) ◦ j (z1) c}.
9. R (z1, c) z2 = − 1

4j (z1) ◦ j (z2) c.

10. R (z1, z2)u1 = − 1
4

{
ad∗j(z2)u1

z1 − ad∗j(z1)u1
z2

}
.

11. R (z1, u) z2 = − 1
4ad
∗
j(z2)uz1.

12. R (u1, u2)u3 = − 1
2ad
∗
u3

[u1, u2] + 1
4 ad∗u1

[u2, u3]− 1
4 ad∗u2

[u1, u3].
13. R (u1, u2) z1 = 1

4 ([u1, j (z1)u2]− [u2, j (z1)u1]).
14. R (u1, u2) c = − 1

2 ad∗c [u1, u2]− 1
4 ad∗u1

[c, u2]+ 1
4 ad∗u2

[c, u1]+ 1
4 [u1, j (c)u2]

− 1
4 [u2, j (c)u1].

15. R (b, x) y = R (v, w) b = 0, for all x, y, v, w ∈ N .

As a consequence of the above proposition, we have

Corollary 8. With the notation above, if u, u1, u2 ∈ U1 and z, z1, z2 ∈ Z1, we
have

1. 〈R (z1, z2) z1, z2〉 = 0.
2. 〈R (u, z)u, z〉 = 1

4 ‖j (z)u‖2.
3. 〈R (c, z) c, z〉 = 1

4 ‖j (z) c‖2.
4. 〈R (u, c)u, c〉 = − 3

4 ‖[u, c]‖
2 + 1

4 ‖j (c)u‖2.
5. 〈R (u1, u2)u1, u2〉 = − 3

4 ‖[u1, u2]‖2.
6. 〈R (b, x) b, y〉 = 0, for all x, y ∈ N .

Proposition 9. With the notation above, if v = b+c√
2 and w = b−c√

2 , we have

1. R (v, w) = 0.
2. 〈R (z1, v) z2, v〉 = 〈R (z1, w) z2, w〉 = 1

8 〈j (z2) c, j (z1) c〉, for all z1,
z2 ∈ Z1.

3. 〈R (z, v)u, v〉 = 〈R (z, w)u,w〉 = − 1
4 〈j (z)u, j (c) c〉+ 1

8 〈j (c)u, j (z) c〉,
for all z ∈ Z1, u ∈ U1.

4. 〈R (u1, v)u2, v〉 = 〈R (u1, w)u2, w〉 = − 3
8 〈[u1, c] , [u2, c]〉

+ 1
8 〈j (c)u2, j (c)u1〉, for all u1, u2 ∈ U1.

5. 〈R (v, z)w, z〉 = − 1
8 ‖j (z) c‖2, for all z ∈ Z1.

6. 〈R (v, u)w, u〉 = 3
8 ‖[u, c]‖

2 − 1
8 ‖j (c)u‖2, for all u ∈ U1.

As a consequence of the above proposition, we have

Corollary 10. With the notation above, if v = b+c√
2 , w = b−c√

2 , u, u1, u2 ∈ U1, and
z, z1, z2 ∈ Z1, we have

1. If z1, z2 are orthonormal, then K (z1, z2) = 0.
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2. If u1, u2 are orthonormal, then K (u1, u2) = − 3
4 ‖[u1, u2]‖2 ≤ 0.

3. If u and z are orthonormal, then K (u, z) = 1
4 ‖j (z)u‖2 ≥ 0.

4. If v, w are orthonormal, then K (v, w) = 0.
5. If v and z are orthonormal, then K (z, v) = 1

8 ‖j (z) c‖2.

6. If w and z are orthonormal, then K (z, w) = − 1
8 ‖j (z) c‖2.

7. If u and v are orthonormal, then K (u, v) = − 3
8 ‖[u, c]‖

2 + 1
8 ‖j (c)u‖2.

8. If u and w are orthonormal, then K (u,w) = 3
8 ‖[u, c]‖

2 − 1
8 ‖j (c)u‖2.

Proposition 11. With the notation above, if {U1, U2, . . . , Um} is an orthonormal
basis of U1 and {Z1+m, Z2+m, . . . , Zn−2} is an orthonormal basis of Z1, then for
all v = b+c√

2 , w = b−c√
2 , u, u1, u2 ∈ U1, and z, z1, z2 ∈ Z1, we have

1. Ric (b, x) = 0, for all x ∈ N .
2. Ric (u, z) = 0.

3. Ric (z1, z2) = 1
4

m∑
i=1
〈j (z1)Ui, j (z2)Ui〉.

4. Ric (u1, u2) = − 1
2

n−2∑
i=1+m

〈j (Zi)u1, j (Zi)u2〉.

5. Ric (c) = − 1
2

n−2∑
j=1+m

‖j (Zj) c‖2 + 1
4

m∑
i=1
‖j (c)Ui‖2.

6. Ric (u, c) = − 1
2

n−2∑
i=1+m

〈j (Zi) c, j (Zi)u〉.

7. Ric (z, c) = 1
4

m∑
i=1
〈j (c)Ui, j (z)Ui〉.

8. Ric (v, w) = − 1
8

m∑
i=1
‖j (c)Ui‖2 + 1

4

n−2∑
j=1+m

‖j (Zi) c‖2.

9. Ric (v) = Ric (w) = − 1
4

n−2∑
j=1+m

‖j (Zi) c‖2 + 1
8

m∑
i=1
‖j (c)Ui‖2.

10. Ric (u, v) = − 1
2
√

2

n−2∑
i=1+m

〈j (Zi) c, j (Zi)u〉.

11. Ric (u,w) = 1
2
√

2

n−2∑
i=1+m

〈j (Zi) c, j (Zi)u〉.

12. Ric (z, v) = 1
4
√

2

m∑
i=1
〈j (c)Ui, j (z)Ui〉.

13. Ric (z, w) = − 1
4
√

2

m∑
i=1
〈j (c)Ui, j (z)Ui〉.

As a consequence of the above proposition, we have
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Corollary 12. With the notation above, the scalar curvature of (N, 〈 , 〉) is

ρ = −1
4

m∑
i=1

n−2∑
i=1+m

∥∥j (Zi)Ui
∥∥2
.

In the following example, we will show using direct computation that the
(2n+ 1)-dimensional Heisenberg group H2n+1 admits a Ricci-flat left-invariant
Lorentzian metric if and only if n = 1, and if 〈 , 〉 is such a metric on H3 then its
restriction to the center of H3 is necessarily degenerate.

Example 13. Let 〈 , 〉 be a left-invariant Lorentzian metric 〈 , 〉 on Heisenberg
group H2n+1.
Case 1. Assume first that the center of H2n+1 is nondegenerate. In this case, it is
not difficult to see that there exists an orthonormal basis {X1, Y1, . . . , Xn, Yn, Z}
of the Lie algebra H2n+1 of H2n+1 such that [Xi, Yi] = Z, 1 ≤ i ≤ n, and all other
brackets are zeros. With the notation of Subsection 3.1 and relative to this basis,
we have

j (Z) = 〈Z,Z〉
(

0 −In
In 0

)
.

By setting εi = 〈Xi, Xi〉 and ε
′

i = 〈Yi, Yi〉, we easily verify that the non-trivial
Ricci curvatures are

Ric (Z,Z) = 1
2

n∑
i=1

εiε
′

i ,

Ric (Xi, Xi) = −1
2 〈Z,Z〉 ε

′

i ,

Ric (Yi, Yi) = −1
2 〈Z,Z〉 εi .

It follows that (H2n+1, 〈, 〉) is non Ricci-flat.
Case 2. Assume now that the center of H2n+1 is degenerate. In this case, it is not
difficult to see that there exists a pseudo-orthonormal basis {X1, Y1, . . . , Xn, Yn, Z}
of H2n+1 with all scalar products are zeros except 〈Z,X1〉 = 〈Xi, Xi〉 = 〈Yj , Yj〉 = 1
for 2 ≤ i ≤ n and 1 ≤ j ≤ n, such that [Xi, Yi] = Z, 1 ≤ i ≤ n, and all other
brackets are zeros. We can easily verify that the non-trivial Ricci curvatures are

Ric (v) = Ric (w) = −Ric (v, w) = 1
4 (n− 1) ,

where v = 1√
2 (X1 + Z), w = 1√

2 (X1 − Z). It follows that (H2n+1, 〈 , 〉) is Ricci-flat
if and only if n = 1. In this case, the metric is even flat.

4. Main results

It has been shown in [14] that a 2-step nilpotent Lie group N admits a flat
left-invariant Lorentzian metric if and only if N is a trivial central extension of the
three-dimensional Heisenberg group H3. At this point, a natural question arises:
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What are the 2-step nilpotent Lie groups which can admit a Ricci-flat left-invariant
Lorentzian metric?

The aim of this section is to answer this question by identifying the 2-step
nilpotent Lie groups which can admit a Ricci-flat left-invariant Lorentzian metric
(compare [5], Theorem 5.1). For this, we shall first characterize 2-step nilpotent
Lie groups endowed with a Ricci-flat left-invariant Lorentzian metric.

Lemma 14. Let N be a 2-step nilpotent Lie group with Lie algebra N , and let
〈 , 〉 be a Ricci-flat left-invariant Lorentzian metric on N . Then, the restriction of
〈 , 〉 to the center Z of N is degenerate.

Proof. Assume now that (N, 〈, 〉) is Ricci-flat, and assume to the contrary that
the restriction of 〈 , 〉 to Z is nondegenerate. In this case, we write as usual

N = V
⊥
⊕Z ,

where V denotes the orthogonal complement of Z relative to 〈 , 〉. Let {e1, . . . , eq}
be an orthonormal basis of V and {z1, . . . , zp} an orthonormal basis of Z. Then,
we have

[ei, ej ] =
p∑
k=1

εk 〈[ei, ej ] , zk〉 zk

=
p∑
k=1

εk 〈j (zk) ei, ej〉 zk ,

where εk = 〈zk, zk〉. Setting aikj = εk 〈j (zk) ei, ej〉 and ε
′

i = 〈ei, ei〉, we get after
computing that

Ric (ei, ei) = −1
2

q∑
j=1

p∑
k=1

ε
′

jεka
2
ikj , 1 ≤ i ≤ q,(5)

Ric (zk, zk) = 1
4

q∑
i,j=1

ε
′

iε
′

ja
2
ikj , 1 ≤ k ≤ p .(6)

If V is spacelike, then we get by (6) that aikj = 0 for all i, j such that 1 ≤ i,
j ≤ q and 1 ≤ k ≤ p. This implies that [x, y] = 0 for all x, y ∈ N (i.e., N is abelian),
a contradiction. Thus, V is necessarily timelike. So, without loss of generality we
can assume that ε′1 = −1 and ε

′

i = 1 for all i ≥ 2. Since aiki = 0 for all i, k such
that 1 ≤ i ≤ q and 1 ≤ k ≤ p, then (5) yields

Ric (e1, e1) = −1
2

q∑
j=2

p∑
k=1

a2
1kj ,

from which we deduce, by Ricci-flatness, that

(7) a1kj = 0 , for all j, k such that 2 ≤ j ≤ q and 1 ≤ k ≤ p .
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Recalling that aikj = −ajki for all i, j, k such that 1 ≤ i, j ≤ q and 1 ≤ k ≤ p,
and substituting (7) into (5) and (6) we get

Ric (ei, ei) = −1
2

q∑
j=2

p∑
k=1

a2
ikj , 2 ≤ i ≤ q ,

Ric (zk, zk) = 1
4

q∑
i,j=2

a2
ikj , 1 ≤ k ≤ p ,

respectively.
We deduce, by Ricci-flatness, that aikj = 0 for all i, j, k such that 2 ≤ i, j ≤ q

and 1 ≤ k ≤ p. It follows that [x, y] = 0 for all x, y ∈ N , that is N is abelian, a
contradiction. We deduce that the restriction of 〈 , 〉 to the center Z is degenerate,
as desired. �

The following theorem which is the main result of the paper will characterize the
2-step nilpotent Lie groups which can be endowed with a Ricci-flat left-invariant
Lorentzian metric.

Theorem 15. A connected 2-step nilpotent Lie group N admits a Ricci-flat
left-invariant Lorentzian metric if and only if N is a product of the form Rn ×G,
so that the Lie algebra of G has a basis {b, z1, . . . , zp, c, e1, . . . , eq} satisfying

[c, ei] = aib+
p∑
k=1

cikzk , 1 ≤ i ≤ q,

[ei, ej ] = aijb , 1 ≤ i, j ≤ q,

with
q∑

i,j=1
a2
ij = 2

p∑
k=1

q∑
i=1
c2
ik. Moreover, for each such a metric, there exists a

pseudo-orthonormal basis like above with 〈c, c〉 = 〈b, b〉 = 0 and 〈b, c〉 = ±1.
In particular, the restriction of the metric to the commutator subgroup N

′ is
degenerate.

Proof. Let N be a 2-step nilpotent Lie group with a Ricci-flat left-invariant
Lorentzian metric, and let N be the Lie algebra of N and Z the center of N .
By Lemma 14, the restriction of 〈 , 〉 to Z is degenerate. It follows that Z is an
orthogonal direct sum of the form Z = Z1⊕Rb, with b a null vector and Z1 is a
spacelike subspace. Since the orthogonal complement Z⊥1 of Z1 in N relative to
〈 , 〉 is timelike, we may choose a second null vector c ∈ Z⊥1 so that 〈c, b〉 = 1. Thus,
we get the orthogonal direct sum

N = Z1 ⊕ U1 ⊕ span {b, c} ,

where U1 is a spacelike subspace of N with dimU1 ≥ 1.
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Let {z1, z2, . . . , zp, e1, e2, . . . , eq} be an orthonormal basis of Z1 ⊕ U1, with
z1, z2, . . . , zp span Z1 and e1, e2, . . . , eq span U1. Write

[c, ei] = aib+
p∑
k=1

cikzk ,(8)

[ei, ej ] = aijb+
p∑
k=1

cikjzk , 1 ≤ i, j ≤ q ,(9)

with

ai = 〈j (c) c, ei〉 ,
cik = 〈j (zk) c, ei〉 ,
aij = 〈j (c) ei, ej〉 ,
cikj = 〈j (zk) ei, ej〉 1 ≤ i, j ≤ q, 1 ≤ k ≤ p ,

where j (zi) and j (c) are defined as in Subsection 3.2 of the above section.
An easy computation shows that

Ric (c, c) = −1
2

p∑
k=1

q∑
i=1

c2
ik + 1

4

q∑
i,j=1

a2
ij ,(10)

Ric (b, b) = 0 ,

Ric (zk, zk) = 1
4

q∑
i,j=1

c2
ikj , 1 ≤ k ≤ p ,(11)

Ric (ei, ei) = −1
2

q∑
j=1

p∑
k=1

c2
ikj , 1 ≤ i ≤ q .

Since we are assuming that (N, 〈 , 〉) is Ricci-flat, then we deduce from (10) and

(11) that
q∑

i,j=1
a2
ij = 2

p∑
k=1

q∑
i=1
c2
ik and cikj = 0 for all i, j such that 1 ≤ i, j ≤ q and

1 ≤ k ≤ p, respectively. Thus, N is as desired, and the proof of the theorem is
complete. �

As a straightforward consequence of the above theorem, we have the following
result that we have previously reported in Example 13.

Corollary 16. H2n+1 admits a Ricci-flat left-invariant Lorentzian metric if and
only if n = 1.

Proof. As we have seen in Example 13, Case 2, any left-invariant Lorentzian metric
〈 , 〉 on H3 for which the center is degenerate is flat (see also [14] or [20]). Conversely,
by Theorem 15, if H2n+1 admits a Ricci-flat left-invariant Lorentzian metric, then
its Lie algebra H2n+1 has a pseudo-orthonormal basis {b, z1, . . . , zp, c, e1, . . . , eq},
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with 〈c, c〉 = 〈b, b〉 = 0 and 〈b, c〉 = ±1, and which satisfies

[c, ei] = aib+
p∑
k=1

cikzk , 1 ≤ i ≤ q ,

[ei, ej ] = aijb , 1 ≤ i, j ≤ q ,

with
q∑

i,j=1
a2
ij = 2

p∑
k=1

q∑
i=1
c2
ik. Here, we have p+ q + 2 = 2n+ 1.

Since the center of H2n+1 is degenerate and one-dimensional, it follows that
cik = 0 for all i, k, which in turn implies that aij = 0 for all i, j Thus, the structure
of H2n+1 reduces as follows

[c, ei] = aib , 1 ≤ i ≤ q ,

[ei, ej ] = 0 , 1 ≤ i, j ≤ q .

Since H2n+1 is not abelian, then ai0 6= 0 for some i0, say i0 = 1 to simplify. By
changing ei with e′i = ei− ai

a1
e1 for all i ∈ {2, . . . , q} which is still an element of U1,

we see that [c, e1] = a1b and all other brackets are zeros. In other words, H2n+1
is isomorphic to the product R2(n−1) ×H3, where H3 is the Heisenberg algebra.
However, this can happen only if n = 1, as desired. �

5. Ricci-flatness for free 2-step nilpotent Lie groups

In this section, we shall determine the Ricci-flat left-invariant Lorentzian metrics
on free 2-step nilpotent Lie groups that admit a bi-invariant metric. We shall first
see that there is only one such a group, namely the free 2-step nilpotent Lie group
on 3 generators N3,2. We shall then classify the Ricci-flat metrics on N3,2 that
come from a bi-invariant metric. In order to state our results precisely we need to
recall first a few definitions and facts concerning free 2-step nilpotent Lie groups.

Definition 17. A 2-step nilpotent Lie algebra Nm,2 is said to be free on m ≥ 2 ge-
nerators if there exists a generating set {e1, e2, . . . , em} for Nm,2 with the following
property: Let N ∗m,2 be any 2-step nilpotent Lie algebra, and let {e′1, e

′

2, . . . , e
′

m}
be any subset of m elements in N ∗m,2. Then, there exists a unique Lie algebra
homomorphism T : Nm,2 → N ∗m,2 such that T (ei) = e

′

i, 1 ≤ i ≤ m. A 2-step
nilpotent Lie group Nm,2 is said to be free on m ≥ 2 generators if its Lie algebra
Nm,2 is so.

The following results are well known (see [9]).

Proposition 18. For every integer m ≥ 2, there exists a free 2-step nilpotent Lie
algebra Nm,2 on m generators which is unique up to a Lie algebra isomorphism.
Moreover, dimNm,2 = m(m+1)

2 .

Proposition 19. Let m ≥ 2 be an integer, and let Nm,2 be the free 2-step nilpotent
Lie algebra on m generators. Let Zm,2 denote the center of Nm,2. Then

1. dimZm,2 = m(m−1)
2 .
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2. If {e1, . . . , em} is any generating set for Nm,2 with m elements, then{
[ei, ej ] : 1 ≤ i < j ≤ m

}
is a basis for Zm,2. In particular, Zm,2 =

[Nm,2,Nm,2].
The following result determines the free nilpotent Lie algebras which can admit

a bi-invariant metric (see [22]).
Theorem 20. Let Nm,k be a free k-step nilpotent Lie algebra in m generators. Then,
Nm,k admits a bi-invariant metric if and only if (m, k) = (3, 2) or (m, k) = (2, 3).

Before we present the main result of this section, we shall first establish some
useful lemmas.
Lemma 21. Up to isometry, N3,2 admits a unique bi-invariant metric 〈 , 〉. It has
signature (3, 3), and its restriction to the center Z3,2 of N3,2 vanishes identically
(i.e., Z3,2 is totally degenerate).
Proof. Let 〈 , 〉 be a bi-invariant metric on N3,2, and let e1, e2, e3 be generators
of N3,2. By setting e4 = [e1, e2], e5 = [e1, e3], and e6 = [e2, e3], the vectors
e1, e2, . . . , e6 form a basis of N3,2. The bi-invariance of 〈 , 〉 shows that

〈e1, ei〉 = 0 , for i = 4, 5 ,
〈e2, ei〉 = 0 , for i = 4, 6 ,
〈e3, ei〉 = 0 , for i = 5, 6 ,

and

〈ei, ej〉 = 0 , for i, j ∈ {4, 5, 6} .
In particular, the center of N3,2 is totally degenerate. Moreover, we have

〈e1, [e2, e3]〉 = 〈e2, [e3, e1]〉 = 〈e3, [e1, e2]〉, that is 〈e1, e6〉 = −〈e2, e5〉 = 〈e3, e4〉. If
we denote this value by λ, we see that λ 6= 0 since 〈 , 〉 is nondegenerate.

Now, by changing e1, e2, e3 if necessary, we can without loss of generality assume
that e1, e2, e3 are null and orthogonal to each other. It follows that the signature
of 〈 , 〉 is (3, 3).

It is easy to see that e1, e2, e3 should be null vectors and span a totally degenerate
subspace. By changing the basis {e1, . . . , e6} with

{
e1√
|λ|
, . . . , e6√

|λ|

}
we see that for

this new basis all scalar products are zeros except
〈
e
′

1, e
′

6
〉

= −
〈
e
′

2, e
′

5
〉

=
〈
e
′

3, e
′

4
〉

=
1. In other words, we have shown that for any bi-invariant metric 〈 , 〉 on N3,2, there
exists a basis {e1, . . . , e6} of N3,2 such that e1, e2, e3 are generators, e4 = [e1, e2],
e5 = [e1, e3], e6 = [e2, e3], and e1, . . . , e6 are null vectors with 〈ei, ej〉 = 0 for all i,
j except 〈e1, e6〉 = −〈e2, e5〉 = 〈e3, e4〉 = ±1. This shows that 〈 , 〉 is unique up to
an isometry. �

Lemma 22. Let N3,2 be the free 2-step nilpotent Lie group on 3 generators, endo-
wed with a bi-invariant metric 〈 , 〉 . For any pseudo-orthonormal basis {e1, e2, . . . , e6}
ofN3,2 such that all inner products are zeros except 〈e1, e6〉 = −〈e2, e5〉 = 〈e3, e4〉 =
1, with e4, e5, e6 spanning the center Z3,2 of N3,2, we have

[e1, e2] = µe4 , [e1, e3] = µe5 , [e2, e3] = µe6 , for some µ 6= 0.
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Proof. Let e1, e2, e3, e4, e5, e6 be a pseudo-orthonormal basis for N3,2 such that
all products are zero except 〈e1, e6〉 = −〈e2, e5〉 = 〈e3, e4〉 = 1, with e4, e5, e6
spanning the center Z3,2. In this case, we see that e1, e2, e3 are generators for N3,2.
Setting

[e1, e2] = α1e4 + α2e5 + α3e6 ,

[e1, e3] = β1e4 + β2e5 + β3e6 ,

[e2, e3] = γ1e4 + γ2e5 + γ3e6 ,

we deduce, after an easy computation which uses the bi-invariance of 〈 , 〉, that

[e1, e2] = µe4 , [e1, e3] = µe5 , [e2, e3] = µe6 , for some µ 6= 0.

�

Lemma 23. LetN3,2 be the free 2-step nilpotent Lie group on 3 generators endowed
with a bi-invariant metric 〈 , 〉. Then, for any orthonormal basis {e1, e2, . . . , e6} of
N3,2, with Z3,2 = span {e3 − e4, e2 − e5, e1 − e6}, such that 〈e1, e1〉 = −〈e2, e2〉 =
〈e3, e3〉 = −〈e4, e4〉 = 〈e5, e5〉 = −〈e6, e6〉 = 1 and all other products are zeros, we
have

[e1, e2] = [e6, e2] = [e1, e5] = [e6, e5] = µ
e3 − e4

2
√

2
,

[e1, e3] = [e6, e3] = [e1, e4] = [e6, e4] = µ
e2 − e5

2
√

2
,

[e2, e3] = [e2, e4] = [e5, e3] = [e5, e4] = µ
e1 − e6

2
√

2
,

and all the other brackets are zeros.

Proof. Let {e1, e2, . . . , e6} be as in the statement of the lemma. By setting

E1 = e1 + e6√
2

, E2 = e2 + e5√
2

, E3 = e3 + e4√
2

,

E4 = e3 − e4√
2

, E5 = e2 − e5√
2

, E6 = e1 − e6√
2

,

we see that all the vectors Ei are null, 〈E1, E6〉 = −〈E2, E5〉 = 〈E3, E4〉 = 1, and
Z3,2 = span {E4, E5, E6}. The hypotheses of Lemma 22 are therefore fulfilled, and
this leads to the required result. �

Lemma 24. Let N3,2 be the free 2-step nilpotent Lie group on 3 generators
endowed with a bi-invariant metric 〈 , 〉. Then, for any pseudo-orthonormal basis
{e1, . . . , e6} of N3,2, with Z3,2 = span {e5 − e6, e3 − e4, e2}, such that 〈e1, e2〉 =
−〈e3, e3〉 = 〈e4, e4〉 = 〈e5, e5〉 = −〈e6, e6〉 = 1 and all products are zeros except,
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we have

[e1, e3] = [e1, e4] = µ
e5 − e6

2 ,

[e1, e5] = [e1, e6] = µ
e3 − e4

2 ,

[e3, e5] = [e3, e6] = µ
e2

2 ,

[e4, e5] = [e4, e6] = µ
e2

2 ,

and all the other brackets are zeros.

Proof. Let {e1, e2, . . . , e6} be as in the statement of the lemma. By setting

E1 = e1 , E2 = e3 + e4√
2

, E3 = e5 + e6√
2

,

E4 = e5 − e6√
2

, E5 = e3 − e4√
2

, E6 = e2 ,

we see that all the vectors Ei are null, 〈E1, E6〉 = −〈E2, E5〉 = 〈E3, E4〉 = 1, and
Z3,2 = span {E4, E5, E6}. The hypotheses of Lemma 22 are therefore fulfilled, and
this leads to the required result. �

Theorem 25. Let N3,2 be the free 2-step nilpotent Lie group on 3 generators, and
〈〈 , 〉〉 a bi-invariant metric on N3,2. Let 〈 , 〉 be a left-invariant Lorentzian metric
on N3,2, and φ the self-adjoint map φ : N3,2 → N3,2 relative to 〈〈 , 〉〉 determining
〈 , 〉 in the sense that 〈X,Y 〉 = 〈〈φ (X) , Y 〉〉 for all X, Y ∈ N3,2. Then, (N3,2, 〈 , 〉)
is Ricci-flat if and only if φ has a matrix of exactly one of the following types:

1. Relative to an orthonormal basis {e1, . . . , e6} of (N3,2, 〈〈 , 〉〉) such that
〈〈e1, e1〉〉 = −〈〈e2, e2〉〉 = 〈〈e3, e3〉〉 = −〈〈e4, e4〉〉 = 〈〈e5, e5〉〉 =
−〈〈e6, e6〉〉 = 1 and all other scalar products are zeros, we have

φ = diag (λ1,−λ2, λ3,−λ4, λ5, λ1) ,
with λi > 0, 1 ≤ i ≤ 5, and λ2

1 = λ2λ5 + λ3λ4.
2. Relative to a pseudo-orthonormal basis {e1, . . . , e6} of (N3,2, 〈〈 , 〉〉) such

that 〈〈e1, e2〉〉 = −〈〈e3, e3〉〉 = −〈〈e6, e6〉〉 = 〈〈e4, e4〉〉 = 〈〈e5, e5〉〉 = 1 and
all other scalar products are zeros, we have

φ =
(
λ 0
1 λ

)
⊕ diag (−λ3, λ4, λ5,−λ6) ,

with λ 6= 0, and λi > 0, 3 ≤ i ≤ 6, and λ2 = λ5λ6 + λ3λ4,.
3. Relative to a pseudo-orthonormal basis {e1, . . . , e6} of (N3,2, 〈〈 , 〉〉) such

that 〈〈e1, e2〉〉 = 〈〈e3, e3〉〉 = 〈〈e5, e5〉〉 = −〈〈e4, e4〉〉 = −〈〈e6, e6〉〉 = 1 and
all other scalar products are zeros, we have

φ =

λ 0 1
0 λ 0
0 1 λ

⊕ diag (−λ4, λ5,−λ6) ,
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with λ > 0, λi > 0, 4 ≤ i ≤ 6, and λ2 = λ5λ6 + λλ4.

Proof. It is well known that a self-adjoint endomorphism in a indefinite vector
space need not be diagonalizable. In the present situation, where the signatures
of 〈〈 , 〉〉 and 〈, 〉 are respectively (3, 3) and (1, 2), we can easily show (by using a
result of [21], pp 224) that φ can be one of the following four forms (see [2]).
Case 1. φ is diagonalizable. In this case, φ has the form

φ = diag (λ1,−λ2, λ3,−λ4, λ5, λ6) , with λi > 0 for all i,

relative to an orthonormal basis {e1, e2, . . . , e6} of (N3,2, 〈〈 , 〉〉) such that

〈〈e1, e1〉〉 = −〈〈e2, e2〉〉 = 〈〈e3, e3〉〉 = −〈〈e4, e4〉〉 = 〈〈e5, e5〉〉 = −〈〈e6, e6〉〉 = 1 ,

and all other scalar products are zeros.
We claim that we can suppose that Z3,2 = span {e1 − e6, e2 − e5, e3 − e4}. In-

deed, since Z3,2 is three-dimensional and totally degenerate relative to 〈〈 , 〉〉, then
without loss of generality we can assume that Z3,2 is spanned by three null vectors
u, v, w so that u ∈ span {e1, e6}, v ∈ span {e2, e5}, and w ∈ span {e3, e4}. It follows
that

u = α (e1 ± e6) , v = β (e2 ± e5) , w = γ (e3 ± e4) , where α, β, γ ∈ R ,

and the claim is therefore proved.
According to Lemma 23, the nonzero brackets are

[e1, e2] = [e6, e2] = [e1, e5] = [e6, e5] = µ (e3 − e4)
2
√

2
,

[e1, e3] = [e6, e3] = [e1, e4] = [e6, e4] = µ (e2 − e5)
2
√

2
,

[e2, e3] = [e2, e4] = [e5, e3] = [e5, e4] = µ (e1 − e6)
2
√

2
.

Since {e1, . . . , e6} is orthogonal with respect to 〈 , 〉, we let {e1, . . . , e6} with

e1 = e1√
λ1

, e2 = e2√
λ2

, e3 = e3√
λ3

, e4 = e4√
λ4

, e5 = e5√
λ5

, e6 = e6√
λ6

,
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which is an orthonormal basis. Next, we compute the Ricci curvatures:

Ric (e1) = −
µ2λ6 (λ3 + λ4) (λ2 + λ5)

(
λ3λ4 + λ2λ5 − λ2

1
)

16λ1λ2λ3λ4λ5λ6
,

Ric (e2) = −
µ2λ5 (λ1 − λ6) (λ3 + λ4)

(
λ1λ6 − λ3λ4 + λ2

2
)

16λ1λ2λ3λ4λ5λ6
,

Ric (e3) = −
µ2λ4 (λ2 + λ5) (λ1 − λ6)

(
λ1λ6 − λ2λ5 + λ2

3
)

16λ1λ2λ3λ4λ5λ6
,

Ric (e4) = −
µ2λ3 (λ2 + λ5) (λ1 − λ6)

(
λ1λ6 − λ2λ5 + λ2

4
)

16λ1λ2λ3λ4λ5λ6
,

Ric (e5) = −
µ2λ2 (λ1 − λ6) (λ3 + λ4)

(
λ1λ6 − λ3λ4 + λ2

5
)

16λ1λ2λ3λ4λ5λ6
,

Ric (e6) = −
µ2λ1 (λ3 + λ4) (λ2 + λ5)

(
λ3λ4 + λ2λ5 − λ2

6
)

16λ1λ2λ3λ4λ5λ6
,

Ric (e1, e6) = −µ
2 (λ3 + λ4) (λ2 + λ5) (λ2λ5 − λ1λ6 + λ3λ4)

16λ2λ5λ3λ4
√
λ1λ6

,

Ric (e2, e5) = µ2 (λ3 + λ4) (λ1 − λ6) (λ2λ5 − λ1λ6 + λ3λ4)
16λ1λ6λ3λ4

√
λ2λ5

,

Ric (e3, e4) = µ2 (λ2 + λ5) (λ1 − λ6) (λ2λ5 − λ1λ6 + λ3λ4)
16λ1λ2λ5λ6

√
λ3λ4

.

It follows that the metric 〈 , 〉 is Ricci-flat if and only if the following identities
are fulfilled:

λ3λ4 + λ2λ5 − λ2
1 = 0 ,

λ3λ4 + λ2λ5 − λ2
6 = 0 ,

(λ1 − λ6)
(
λ1λ6 − λ3λ4 + λ2

2
)

= 0 ,

(λ1 − λ6)
(
λ1λ6 − λ3λ4 + λ2

5
)

= 0 ,

(λ1 − λ6)
(
λ1λ6 − λ2λ5 + λ2

3
)

= 0 ,

(λ1 − λ6)
(
λ1λ6 − λ2λ5 + λ2

4
)

= 0 ,

λ3λ4 + λ2λ5 − λ1λ6 = 0 ,

(λ1 − λ6) (λ3λ4 + λ2λ5 − λ1λ6) = 0 .

It is now clear that all these identities reduce to λ1 = λ6 and λ3λ4 + λ2λ5 = λ2
1.

Case 2. φ admits complex eigenvalues. In this case, φ has the form

φ =
(
a b
−b a

)
⊕ diag (λ3,−λ4, λ5,−λ6) ,
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with b 6= 0 and λi > 0 for all i, relative to an orthonormal basis {e1, e2, . . . , e6}
of (N3,2, 〈〈 , 〉〉) such that 〈〈e1, e1〉〉 = −〈〈e2, e2〉〉 = 〈〈e3, e3〉〉 = −〈〈e4, e4〉〉 =
〈〈e5, e5〉〉 = −〈〈e6, e6〉〉 = 1, and all other scalar products are zeros.

As before, we can assume that Z3,2 = span {e1 − e6, e2 − e5, e3 − e4}. According
to Lemma 23, the nonzero brackets are

[e1, e2] = [e6, e2] = [e1, e5] = [e6, e5] = µ (e3 − e4)
2
√

2
,

[e1, e3] = [e6, e3] = [e1, e4] = [e6, e4] = µ (e2 − e5)
2
√

2
,

[e2, e3] = [e2, e4] = [e5, e3] = [e5, e4] = µ (e1 − e6)
2
√

2
.

Since {e1, e2, . . . , e6} is not an orthonormal basis with respect to 〈 , 〉 , we consider
the new orthonormal basis {e1, e2, . . . , e6} such that

e1 = e1√
a
, e2 = ae2 − be1√

a (a2 + b2)
, e3 = e3√

λ3
, e4 = e4√

λ4
, e5 = e5√

λ5
, e6 = e6√

λ6
.

We compute

Ric (e2, e6) = 1
2
baµ2 (λ3 + λ4)

(
λ3λ4 + λ5λ6 + λ2

5 − 2aλ5
)

8aλ5λ3λ4
√
aλ6 (a2 + b2)

,

Ric (e5, e6) = 1
2
bµ2 (λ3 + λ4)

(
λ3λ4 −

(
a2 + b2)+ λ6λ5

)
8λ3λ4 (a2 + b2)

√
λ5λ6

.

It follows that the metric 〈 , 〉 is Ricci-flat if and only if λ3λ4+λ5λ6+λ2
5−2aλ5 = 0

and λ3λ4 + λ5λ6 = a2 + b2. This implies that (a− λ5)2 + b2 = 0, from which we
deduce that b = 0, a contradiction. Hence, this case cannot occur.

Case 3. φ is not diagonalizable and has the form

φ =
(
λ 0
1 λ

)
⊕ diag (−λ3, λ4, λ5,−λ6) ,

with λ 6= 0 and λi > 0 for all i, relative to a pseudo-orthonormal basis {e1, . . . , e6}
of (N3,2, 〈〈 , 〉〉) such that 〈〈e1, e2〉〉 = − 〈〈e3, e3〉〉 = 〈〈e4, e4〉〉 = 〈〈e5, e5〉〉 =
−〈〈e6, e6〉〉 = 1, and all other scalar products are zeros.

We claim that we can suppose that Z3,2 = span {e2, e3 − e4, e5 − e6}. Indeed,
since Z3,2 is three-dimensional and totally degenerate with respect to 〈〈 , 〉〉 , then
without loss of generality we can assume that Z3,2 is spanned by three null vectors
u, v, w so that u ∈ Re2, v ∈ span {e3, e4} , and w ∈ span {e5, e6}. This implies that

u = αe2 , v = β (e3 ± e4) , w = γ (e5 ± e6) , where α, β, γ ∈ R ,

and the claim is therefore proved.
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According to Lemma 24, the nonzero brackets are

[e1, e3] = [e1, e4] = µ (e5 − e6)
2 ,

[e1, e5] = [e1, e6] = µ (e3 − e4)
2 ,

[e3, e5] = [e3, e6] = [e4, e5] = [e4, e6] = e2

2 .

Since {e1, . . . , e6} is not a pseudo-orthonormal basis with respect to 〈 , 〉, we let
{e1, . . . , e6} with

e1 = e1−
1

2λe2 , e2 = e2

λ
, e3 = e3√

λ3
, e4 = e4√

λ4
, e5 = e5√

λ5
, e6 = e6√

λ6
,

to obtain a pseudo-orthonormal basis.
The only non trivial Ricci curvature is

Ric (e1) = −µ
2

2

{ (λ3 + λ4) (λ5 + λ6)
(
λ3λ4 + λ5λ6 − λ2)

4λ3λ4λ5λ6

}
.

It follows that the metric 〈 , 〉 is Ricci-flat if and only if λ3λ4 + λ5λ6 − λ2 = 0,
as desired.
Case 4. φ is not diagonalizable and has the form

φ =

λ 0 1
0 λ 0
0 1 λ

⊕ diag (−λ4, λ5,−λ6) ,

with λ, λi > 0 for all i, relative to a pseudo-orthonormal basis {e1, e2, . . . , e6}
of (N3,2, 〈〈 , 〉〉) such that 〈〈e1, e2〉〉 = 〈〈e3, e3〉〉 = −〈〈e4, e4〉〉 = 〈〈e5, e5〉〉 =
−〈〈e6, e6〉〉 = 1, and all other scalar products are zeros.

This case can be handed in a similar way as we did in Case 3, by choosing
u = αe1 instead of u = αe2. This completes the proof of Theorem 25. �

The following result will show that the free 2-step nilpotent Lie group on m
generators Nm,2 cannot admit a Ricci-flat left-invariant Lorentzian metric if m ≥ 4.

Theorem 26. The free 2-step nilpotent Lie group on m generators Nm,2 admits a
Ricci-flat left-invariant Lorentzian metric if and only if m = 2 or m = 3.

Proof. First we prove that both N2,2 and N3,2 admit Ricci-flat left-invariant
Lorentzian metrics. We know that the free 2-step nilpotent Lie group on 2 generators
N2,2, which is nothing but the three-dimensional Heisenberg group H3, admits a
flat (hence a Ricci-flat) left-invariant Lorentzian metric (see [14] or [20]). We also
know, by Theorem 25, that N3,2 admits a lot of Ricci-flat left-invariant Lorentzian
metrics.

Conversely, assume that Nm,2 admits a Ricci-flat left-invariant Lorentzian metric
〈 , 〉. Then, by Theorem 15, there exists a pseudo-orthonormal basis {b, z1, . . . , zp, c,
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e1, . . . , eq} of Nm,2 so that b and c are null vectors with 〈b, c〉 = 1 and the Lie
brackets are

[c, ei] = aib+
p∑
k=1

cikzk , [ei, ej ] = aijb ,

with 1 ≤ i, j ≤ q and
q∑

i,j=1
a2
ij = 2

p∑
k=1

q∑
i=1
c2
ik.

From this we deduce that dim [Nm,2,Nm,2] ≤ min (p, q) + 1, and by Proposi-
tion 19, we have Zm,2 = [Nm,2,Nm,2] and dimZm,2 = m(m−1)

2 . Thus,

m (m− 1) ≤ 2 min (p, q) + 2 .

Since by Proposition 18, we have dimNm,2 = m(m+1)
2 , it follows that p+ q + 2 =

m(m+1)
2 . Hence,

m (m− 1) ≤ 2 min (p, q) + 2 ≤ p+ q + 2 = m (m+ 1)
2 ,

which is equivalent to saying that m ≤ 3, as desired. �
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