
Czechoslovak Mathematical Journal

Filip Krajník; Miroslav Ploščica
Congruence lattices in varieties with compact intersection property

Czechoslovak Mathematical Journal, Vol. 64 (2014), No. 1, 115–132

Persistent URL: http://dml.cz/dmlcz/143954

Terms of use:
© Institute of Mathematics AS CR, 2014

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/143954
http://dml.cz


Czechoslovak Mathematical Journal, 64 (139) (2014), 115–132

CONGRUENCE LATTICES IN VARIETIES WITH COMPACT

INTERSECTION PROPERTY
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Abstract. We say that a variety V of algebras has the Compact Intersection Property
(CIP), if the family of compact congruences of every A ∈ V is closed under intersection.
We investigate the congruence lattices of algebras in locally finite, congruence-distributive
CIP varieties and obtain a complete characterization for several types of such varieties. It
turns out that our description only depends on subdirectly irreducible algebras in V and
embeddings between them. We believe that the strategy used here can be further developed
and used to describe the congruence lattices for any (locally finite) congruence-distributive
CIP variety.
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1. Introduction

It is well known that a lattice is algebraic if and only if it is isomorphic to the

congruence lattice of some algebra. Much less is known about congruence lattices of

algebras of a specific type.

Let K be a class of algebras and denote by ConK the class of all lattices isomorphic

to ConA (the congruence lattice of an algebra A) for some A ∈ K. There are many

papers investigating ConK for various classes K. However, the full description of

ConK has proved to be a very difficult (and probably intractable) problem, even for

the most common classes of algebras, like groups or lattices.

The present paper is motivated by the observation that in most relevant cases

when ConK is well understood, the algebras in K have a special property: the

intersection of any two compact congruences of A ∈ K is compact. This seems
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quite natural. Algebraic lattices are determined by their sets of compact elements.

There is a considerable evidence that the difficulty in describing congruence lattices is

connected with the fact that the compact congruences form a join-semilattice, which

in general is not a lattice. For instance, there are several refinement properties that

are trivial in lattices, but very nontrivial in semilattices ([15], [12], [11]).

There are nice results using the above intersection property. Let us mention the

following two. Every algebraic distributive lattice in which the compact elements

are closed under intersection is isomorphic to the congruence lattice of a lattice

(E.T. Schmidt [14].) Similarly, every algebraic distributive lattice in which the com-

pact elements are closed under intersection is isomorphic to the congruence lattice

of a locally matricial algebra (P.Růžička [13]).

In our paper we first give several characterizations of locally finite, congruence-

distributive varieties with CIP. The most difficult part of this theorem has already

been proved by W. J.Blok and D.Pigozzi in [3]. However, we present a new approach,

which, we believe, provides a valuable insight into the topic and helps to progress in

our main aim: to decribe congruence lattices of algebras in congruence-distributive

CIP varieties. We provide such a description for three of the simplest types of such

varieties. We follow a uniform strategy, which may be effective for solving this

problem in general.

2. Basic facts and notation

Let L be a lattice. An element a ∈ L is called compact if for every X ⊆ L such

that a 6
∨

X there exists a finite Y ⊆ X with a 6
∨

Y . An element a ∈ L is called

strictly meet-irreducible if a =
∧

X implies that a ∈ X for every subset X of L. Note

that the greatest element of L is not strictly meet-irreducible. Let M(L) denote the

set of all strictly meet-irreducible elements. The following assertion is well known.

Theorem 2.1. If L is an algebraic lattice, then for all a ∈ L, a =
∧

X , where

X = {b; a 6 b, b ∈M(L)}. Further, for every x, y ∈ L with x � y there exists

z ∈ M(L) such that z > y, z � x.

If f is a mapping, then dom(f) stands for its domain. By ker(f) we denote the

binary relation on dom(f) given by (x, y) ∈ ker(f) if f(x) = f(y). By f↾X we mean

the restriction of f to X .

Let P be a partially ordered set. For every x ∈ P we set ↑x = {y ∈ P ; y > x},

↓x = {y ∈ P ; y > x}.

The congruence lattice of an algebra A will be denoted by ConA. The set ConcA

of all compact (finitely generated) congruences of A is a (0,∨)-subsemilattice of
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ConA. The smallest element of ConA will be denoted by ∆. The lattice ConA is

uniquely determined by the semilattice ConcA (it is isomorphic to the ideal lattice

of ConcA) and ConcA is often easier to describe.

It is a well known fact that for every θ ∈ ConA the lattice ConA/θ is isomorphic

to ↑θ. Hence, θ ∈ M(ConA) if and only if the quotient algebra A/θ is subdirectly

irreducible. Equivalently, θ ∈ M(ConA) if and only if θ = ker(f) for some surjective

homomorphism f : A→ S, with S subdirectly irreducible.

For algebras A and B, A 6 B denotes that A is a subalgebra of B. For a subset

B ⊆ A let 〈B〉 denote the subalgebra of A generated by B. If B 6 A and θ ∈ ConA,

then θ↾B = θ ∩B2 is the restriction of θ to B. For every homomorphism f : A→ B

we define the mapping

Conc f : ConcA→ ConcB

by the rule that, for every α ∈ ConcA, Conc f(α) is the congruence generated

by the set {(f(x), f(y)); (x, y) ∈ α}. This mapping is a homomorphism of (∨, 0)-

semilattices.

Now let ϕ : K → L be a (0,∨)-homomorphism of finite (0,∨)-semilattices. We

define a map ϕ← : L→ K by

ϕ←(β) =
∨

{α; ϕ(α) 6 β}.

Note that if K = ConcA, L = ConcB and ϕ = Conc f for some algebras A, B

and a homomorphism f : A → B, then ϕ←(β) = {(x, y) ∈ A; (f(x), f(y)) ∈ β}. If

A is a subalgebra of B and f : A→ B is the inclusion, then ϕ←(β) is the restriction

of β ∈ ConB to A.

(The construction also works for infinite complete lattices.) Such a pair (ϕ, ϕ←)

is also known as a Galois connection. The following facts are well known.

Lemma 2.2. Let ϕ : K → L be a (0,∨)-homomorphism of finite lattices.

(1) ϕ← preserves ∧ and the largest element.

(2) ϕ(α) =
∧

{β; α 6 ϕ←(β)}.

(3) ϕ(α) 6 β ⇔ α 6 ϕ←(β).

(4) If ψ : L→M is another (0,∨)-homomorphism of finite lattices, then (ψϕ)← =

ϕ←ψ←.

Lemma 2.3. If ϕ : K → L is a 0, 1-preserving homomorphism of finite distribu-

tive lattices, then ϕ←(c) ∈ M(K) for every c ∈M(L).

We will also use the following simple assertion.

Lemma 2.4. Let ϕ : L1 → L2 be a (0,∨)-homomorphism of finite lattices. If

ϕ←(M(L2)) ⊆M(L1), then ϕ(1) = 1.
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P r o o f. Suppose that ϕ(1) < 1, then ϕ(1) 6 c for some c ∈ M(L2). Hence

ϕ←(c) = 1, which is in contradiction with ϕ←(c) ∈M(L1). �

Next we recall the algebraic constructions of the direct and inverse limits. Let P

be an ordered set. Let K be a class of algebras. A P -indexed diagram ~A in K consists

of a family (Ap, p ∈ P ) of algebras in K and a family (fp,q, p 6 q) of homomorphisms

fp,q : Ap → Aq such that fp,p is the identity of Ap and fp,r = fq,rfp,q for all p 6 q 6 r.

If the index set P is directed (for every p, q ∈ P there exists r ∈ P with p, q 6 r),

then we define the direct limit of ~A as

lim−→
~A := lim−→Ap :=

⊔

p∈P

Ap/ ∼,

where
⊔

p∈P

Ap is the disjoint union of the family (Ap, p ∈ P ) and the equivalence

relation ∼ is defined by

x ∼ y ⇔ ∃r ∈ P : fp,r(x) = fq,r(y).

A special case of the direct limit is the directed union, when all the homomorphisms

are set inclusions. Note that in the category theory this construction corresponds to

the (directed) colimit.

The inverse limit of ~A is defined for any partially ordered set P as a subalgebra

of the direct product of
∏

p∈P

Ap, namely

lim←−
~A := lim←−Ap :=

{

a ∈
∏

p∈P

Ap; aq = fp,q(ap) for every p, q ∈ P, p 6 q

}

.

(The elements of
∏

p∈P

Ap are written in the form a = (ap)p∈P .) A special case of

this construction is the direct product, which arises when P is an antichain. In the

category theory language, this construction is the limit.

It is well known that any variety K is closed under the formation of direct and

inverse limits.

The direct limit construction will be used to obtain the description of ConcA for

infinite A ∈ K from the description of ConcA for finite A. This is possible due to

the following two facts. First, Conc is a functor preserving the direct limits, which

means that for every directed P -indexed diagram ~A in K we have the P -indexed

diagram Conc ~A = (ConcAp,Conc ϕp,q) in the category of (∨, 0)-semilattices and

(∨, 0)-homomorphisms, and

Conc lim−→
~A ≃ lim−→Conc ~A.

118



Second, let ~A = (Ap, ϕp,q) and ~B = (Bp, ψp,q) be directed P -indexed diagrams and

let hp : Ap → Bp be an isomorphism for every p ∈ P such that the following diagram

commutes:

Ap

hp

��

fp,q
// Aq

hq

��

Bp
ψp,q

// Bq

Then

lim−→
~A ≃ lim−→

~B.

The inverse limits will be used to construct algebras with a prescribed finite (dis-

tributive) congruence lattice. This is possible due to the following result.

Theorem 2.5 ([10]). Let V be a locally finite congruence distributive variety.

Let L be a finite distributive lattice and let P = M(L). Let ~A = (Ap, ϕp,q) be

a P -indexed diagram in V satisfying the following conditions:

(1) For every p ∈ P and every u ∈ Ap there exists

a ∈ lim←−Ap

such that ap = u.

(2) For every p, q ∈ P , p � q there exist

a, b ∈ lim
←−

Ap

such that ap = bp and aq 6= bq.

(3) For every p ∈ P , the sets {ker(ϕp,q); p 6 q} and M(ConAp) coincide.

Then

A := lim←−Ap

is an algebra whose congruence lattice is isomorphic to L. The isomorphism h :

M(L) → M(ConA) can be defined by h(p) = ker(αp), where αp is the projection

A→ Ap.

3. Compact intersection property

For any class V of algebras, let SI(V) denote the class of all subdirectly irreducible

members of V .
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Theorem 3.1. Let V be a locally finite congruence distributive variety. The

following conditions are equivalent.

(1) The intersection of two compact congruences of A is compact for every A ∈ V .

(2) Every finite subalgebra of a subdirectly irreducible algebra of V with more than

one element is subdirectly irreducible.

(3) If T is a finite subalgebra of a subdirectly irreducible algebra of V with more

than one element, then the ordered set M(ConT ) has a least element.

(4) For every embedding f : A → B of algebras in V with A finite, the mapping

Conc f preserves meets.

P r o o f. (2)⇔(3) is well known.

(1)⇒(3) Let T 6 S ∈ SI(V), T finite. Since ConT is finite, it suffices to show

that for all β1, β2 ∈ M(ConT ) there exists β ∈ M(ConT ) such that β ⊆ β1 ∩ β2.

Let A := F (ℵ0) denote the free algebra in V with ℵ0 as a free generating set.

Choose a surjective homomorphism h0 : 〈X0〉 → T , where X0 ⊆ ℵ0 is finite and

large enough. Since A is free, h0 can be extended to a homomorphism h : A → T .

Further, we consider the natural homomorphisms g1 : T → T/β1, g2 : T → T/β2.

Then ker(gih0) ∈M(Con〈X0〉).

〈X0〉

h0

��

T
g1

vv♥♥
♥♥
♥♥
♥♥
♥

g2

((P
PP

PP
PP

PP

T/β1 T/β2

Since Con〈X0〉 is finite and distributive, there is a smallest element γi in the

set {α ∈ Con〈X0〉; α � ker(gih0)}. Let αi ∈ ConA be the congruence generated

by γi. Then αi ↾ 〈X0〉 ⊇ γi. The inverse inclusion follows from the fact that the

projection 〈X0〉 → 〈X0〉/γi can be extended to a homomorphism l : A → 〈X0〉/γi,

thus αi ⊆ ker(l) and αi ↾ 〈X0〉 ⊆ ker(l ↾ 〈X0〉) = γi. So, αi ↾ 〈X0〉 = γi.

Congruences α1, α2 are compact, so by our assumption α1∩α2 is compact, too. It

means that there exists a finite set Y ⊆ ℵ0, X0 ⊆ Y such that α1 ∩ α2 is generated

by α1 ∩ α2 ↾ 〈Y 〉.

〈X0〉

b0↾〈X0〉

��

h↾〈X0〉
// T

k

yyrr
rr
rr
rr
rr
rr
rr

W
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Let f : A → S be a surjective homomorphism such that f↾〈Y 〉 = h↾〈Y 〉, then

ker(f↾〈X0〉) = ker(h↾〈X0〉) ⊆ ker(gih0). Thus γi � ker(f↾〈X0〉) and hence αi �

ker(f). Since ker(f) ∈M(ConA), we have α1 ∩ α2 � ker(f) and thus

α1 ∩ α2↾〈Y 〉 � ker(f↾〈Y 〉) = ker(h↾〈Y 〉).

Therefore there exists δ ∈ M(Con〈Y 〉) such that

δ > ker(h↾〈Y 〉), δ � α1 ∩ α2↾〈Y 〉.

Let b0 : 〈Y 〉 → 〈Y 〉|δ := W be the natural map; it can be extended to a homo-

morphism b : A → W . Moreover, for all y ∈ Y there exists x0 ∈ X0 such that

(y, x0) ∈ ker(h). Therefore (y, x0) ∈ ker(b0), so b0(y) = b0(x0). This shows that

b0(〈X0〉) = b(〈Y 〉) =W .

Since ker(b0↾〈X0〉) = δ↾〈X0〉 ⊇ ker(h↾〈X0〉), there exists a homomorphism k : T →

W such that kh↾〈X0〉 = b0↾〈X0〉. Further, since b0(〈X0〉) = W ∈ SI (V), we have

ker(k) ∈ M(ConT ). Further, α1 ∩ α2↾〈Y 〉 * ker(b0) implies that α1 ∩ α2 * ker(b)

and thus α1, α2 * ker(b).

Since αi are generated by γi for i = 1, 2, we have γi * ker(b) and thus

γi * ker(b0↾〈X0〉).

By the definition of γi it means ker(b0↾〈X0〉) ⊆ ker(gih0). For every (x, y) ∈ ker(k)

we have x′, y′ ∈ 〈X0〉 such that h(x
′) = x, h(y′) = y. Thus (x′, y′) ∈ ker(b0↾〈X0〉), so

(x′, y′) ∈ ker(gih0). It means that gi(h0(x
′)) = gi(h0(y

′)), hence gi(x) = gi(y). We

have proved that ker(k) 6 ker(gi) = βi for i = 1, 2.

(3)⇒(1) Let A ∈ V and suppose that α1, α2 ∈ ConA are compact, but α1 ∩ α2 is

not compact. There exists a finite subalgebra Y 6 A such that αi↾Y generates αi
(i = 1, 2). Denote γi := αi↾Y . Since ConY is a finite distributive lattice, there exist

∨-irreducible δ1, δ2, . . . , δn, ε1, ε2, . . . , εm ∈ ConY such that γ1 =
n
∨

j=1

δj , γ2 =
m
∨

k=1

εk.

Let δ̄j ∈ ConA be generated by δj , similarly ε̄j . Since δj ⊆ γ1 ⊆ α1 ∈ ConA, we

have δ̄j ⊆ α1. Moreover,
n
∨

j=1

δ̄j ⊇
n
∨

j=1

δj = γ1 = α1 ↾ Y , thus α1 =
n
∨

j=1

δ̄j , and

similarly α2 =
m
∨

k=1

ε̄k. By distributivity, α1 ∩ α2 =
∨

j,k

(δ̄j ∩ ε̄k). Since α1 ∩ α2 is not

compact, δ̄j ∩ ε̄k is not compact for some j, k.

Let β ∈ ConA be generated by δ̄j ∩ ε̄k↾Y , thus β ( δ̄j ∩ ε̄k, so there exists

a surjective homomorphism h : A→ S ∈ SI(V) such that β ⊆ ker(h), δ̄j∩ε̄k * ker(h).

Let T := h(Y ) ⊆ S, then ConT is isomorphic to L := {α ∈ ConY ; ker(h↾Y ) ⊆ α}.
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Since δj, εk are ∨-irreducible in ConY , there exist

η1 = max{α ∈ ConY ; δj � α},

η2 = max{α ∈ ConY ; εk � α}.

Clearly η1, η2 ∈M(ConY ). If δj ⊆ ker(h↾Y ), then δ̄j ⊆ ker(h), which contradicts our

definition of the homomorphism h and thus δj * ker(h↾Y ). Hence ker(h↾Y ) ⊆ η1,

thus η1 ∈ L and similarly η2 ∈ L. Since η1, η2 ∈ M(ConY ), we have η1, η2 ∈ M(L).

For every ̺ ∈ M(L) we have

̺ ⊇ ker(h↾Y ) ⊇ β↾Y ⊇ δ̄j ∩ ε̄k↾Y ⊇ δj ∩ εk.

Either ̺ ⊇ δj or ̺ ⊇ εk, by the ∧-irreducibility of ̺. In the case ̺ ⊇ δj we have

̺ * η1, and from ̺ ⊇ εk we deduce ̺ * η2. Hence, η1 and η2 do not have a common

lower bound in L, so L cannot have a least element

(4)⇒(3) Let A 6 B ∈ SI(V), A finite. Suppose that M(ConA) does not have

a least element. Let α1, α2, . . . , αn be the minimal elements of M(ConA), n > 2.

Denote by f : A→ B the inclusion. Then

Conc f(α1 ∧ α2 ∧ . . . αn) = Conc f(∆) = ∆.

On the other hand,

Conc f(α1) ∧ Conc f(α2) ∧ Conc f(αn) 6= ∆,

since the intersection of nonzero congruences in a subdirectly irreducible algebra

cannot be ∆.

(2)⇒(4) Suppose that Conc f : ConcA → ConcB does not preserve meets. We

can assume that f : A → B is a set inclusion. Then Conc f(α ∧ β) < Conc f(α) ∧

Conc f(β) for some α, β ∈ ConcA = ConA. Hence, there is γ ∈M(ConB) such that

γ > Conc f(α ∧ β),

γ � Conc f(α) ∧ Conc f(β).

Hence,

γ � Conc f(α), γ � Conc f(β).

Now A/γ is a finite subalgebra of the subdirectly irreducible algebra B/γ, whose

congruence lattice is isomorphic to L = {θ ∈ ConA; γ↾A ⊆ θ}. To prove that A/γ

is not subdirectly irreducible it suffices to find α∗, β∗ ∈ ConA with α∗ ∧ β∗ = γ↾A

and α∗, β∗ 6= γ↾A.
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We set α∗ = α ∨ γ↾A and β∗ = β ∨ γ↾A. By distributivity,

α∗ ∧ β∗ = (α ∧ β) ∨ γ↾A = γ↾A.

If α∗ = γ↾A, then

Conc f(α) 6 Conc f(α
∗) = Conc f(γ↾A) 6 γ.

Hence α∗ 6= γ↾A and similarly β∗ 6= γ↾A. �

The above result is not completely new. The equivalence of the first two conditions

was proved by W. J.Blok and D.Pigozzi in [3] (and claimed by K.A.Baker on page

139 in [2]), using the concept of equationally definable principal meets. (See also [1].)

We provide a new proof which does not refer to polynomials and, we believe, provides

an insight helpful in describing the congruence lattices of algebras in congruence-

distributive CIP varieties. Our proof follows the lines of reasoning from [9], which

connected CIP to the concept of separable sets in M(ConA) and to topological

properties of M(ConA).

Examples. Let Bω be the variety of bounded distributive lattices with pseudo-

complementation. By [8] (see also [5], page 165), the subvarieties of Bω form a chain

B−1 ⊂ B0 ⊂ B1 ⊂ . . . ⊂ Bn ⊂ . . . ⊂ Bω.

Here B−1 is the trivial variety, B0 is the class of all Boolean algebras and for n > 1

the variety Bn is determined by the identity

(x1 ∧ . . . ∧ xn)
∗ ∨ (x∗1 ∧ . . . ∧ xn)

∗ ∨ . . . ∨ (x1 ∧ . . . ∧ x
∗
n)
∗ = 1.

In particular, B1 is the class of Stone algebras. The variety Bn (n > 0) is generated

by the algebra Bn = 2
n ⊕ 1, that is the power set of an n-element set with a new

top element added.

0 = 1
∗

= e
∗

e

1 = 0
∗

B1:

0 = 1
∗

1 = 0
∗

B0:

Subdirectly irreducible members of Bn are Bn, Bn−1, . . . , B0. (The congruence

lattice of Bn is, as a lattice, dually isomorphic to Bn, that is ConBn = 1⊕ 2
n. It is
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easy to check that all subalgebras of Bn are isomorphic to one of Bn, Bn−1, . . . , B0.

Hence, by Theorem 3.1, every Bn has the Compact Intersection Property.

There is an easy way to construct examples of varieties satisfying CIP. Let A be

a finite algebra generating a congruence distributive variety HSP(A). (For instance,

A can be any finite lattice.) Enrich the type of A by defining every element a ∈ A as

a constant (nullary operation). Denote the resulting algebra as A∗. Every subdirectly

irreducible member of V :=HSP(A∗) belongs to HS(A∗) (by Jónsson’s lemma). Since

A∗ has no proper subalgebras, we have HS(A∗) =H(A∗). And it is easy to see that the

members of H(A∗) do not have proper subalgebras. Hence subdirectly irreducible

algebras in V have no proper subalgebras, so the condition (2) of Theorem 3.1 is

trivially satisfied.

4. Description of congruence lattices

In this section we investigate a few simple types of congruence distributive vari-

eties V with CIP. We would like to demonstrate how to use Theorem 3.1 to obtain

a description of congruence lattices of algebras in V .

The first case. Let V be a nontrivial locally finite and congruence distributive

variety with CIP such that

(1) Conc F is a two-element chain for every F ∈ SI(V);

(2) no F ∈ SI(V) has a one-element subalgebra.

As an example of such a variety one can consider the variety of all bounded distribu-

tive lattices.

The description of ConA for finite A ∈ V is easy: it follows for instance from 2.5.

(Note that if B is a finite Boolean lattice, then M(B) is the set of all coatoms.)

Lemma 4.1. L ≃ ConA for some finite A ∈ V if and only if L is a finite Boolean

lattice. Moreover, if F ∈ V with ConF ≃ 2 and n > 0, then ConFn ≃ 2
n and the

coatoms of ConFn are exactly the kernels of the projections Fn → F .

Now we prove the description result.

Theorem 4.2. The following conditions are equivalent.

(1) L ≃ ConcA for some A ∈ V .

(2) L is isomorphic to the direct limit of the system ~B = (Bp, ϕp,q; p 6 q in P ),

where each Bp is a finite Boolean lattice and each ϕp,q is a Boolean homomor-

phism.

(3) L is a Boolean lattice.
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P r o o f. (1)⇒(2) Let P be the family of all finite subsets of A ordered by set

inclusion. Let Ap be the subalgebra of A generated by p ∈ P . For every p, q ∈ P ,

p 6 q, we put Bp = ConcAp, ϕp,q = Conc ep,q, where ep,q is the inclusion Ap → Aq.

Then A ≃ lim
−→

Ap, so

L ≃ ConcA ≃ lim−→ConcAp = lim−→Bp.

By 4.1, every Bp is a finite Boolean lattice. By Theorem 3.1, every ϕp,q is a 0-

preserving lattice homomorphism. Suppose that ϕp,q(1) < 1, then ϕp,q(1) 6 c

for some coatom c ∈ M(Bq). Hence ϕ
←
p,q(c) = 1, which means that Ap/ϕ

←
p,q(c) is

a one-element algebra. However, ϕ←p,q(c) is a restriction of c ∈ ConAq to Ap, so

Ap/ϕ
←
p,q(c) 6 Aq/c, which means that the subdirectly irreducible algebra Aq/c has

a one-element subalgebra, contradicting our assumption on V . Therefore, ϕp,q is

a lattice homomorphism which preserves 0 and 1. It is well known that such a homo-

morphism must also preserve the complements, so ϕp,q is a Boolean homomorphism.

(2)⇒(3) L is a direct limit of Boolean lattices and all ϕp,q are Boolean homomor-

phisms, thus L is a Boolean lattice.

(3)⇒(2) Every Boolean lattice is the direct limit of its finite Boolean sublattices

(with inclusions as homomorphisms).

(2)⇒(1) Choose F ∈ SI(V) arbitrarily. So, Conc F = 2. For every p ∈ P let

Ap = Fn, where n = |M(Bp)|. Let p, q ∈ P , p 6 q. Let M(Bp) = {b1, b2, . . . , bn},

M(Bq) = {c1, c2, . . . , cm}. (So, Ap = Fn, Aq = Fm.) Let fp,q be a map Ap → Aq
defined by

fp,q(a1, . . . , an) = (d1, . . . , dm),

where di = aj such that bj = ϕ←p,q(ci). By 2.3, fp,q is well defined and it is easy to

show that fp,q is a homomorphism. Moreover, ~A = (Ap, fp,q) is a directed P -indexed

diagram in V . Let A be the direct limit of this diagram.

Denote by αk the k-th projection Ap → F (k = 1, . . . , n) and by βl the l-th

projection Aq → F (l = 1, . . . ,m).

By 4.1 we have ConcAp ≃ Bp and the isomorphism hp : ConcAp → Bp can be

defined by hp(ker(αk)) = bk. Similarly, let hq be the isomorphism ConcAq → Bq
defined by hq(ker(βl)) = cl. Now we claim that the following diagram commutes:

ConcAp
Conc fp,q

//

hp

��

ConcAq

hq

��

Bp
ϕp,q

// Bq

By Lemma 2.2, we can prove equivalently that h←p ϕ
←
p,q = (Conc fp,q)

←h←q .

Since all these maps preserve 1 and ∧, it suffices to show that h←p ϕ
←
p,q(ci) =
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(Conc fp,q)
←h←q (ci) for every coatom ci of Bq. Let ϕ

←
p,q(ci) = bj. Then h

←
p ϕ
←
p,q(ci) =

ker(αj). Further, h
←
q (ci) = ker(βi) and

(x, y) ∈ (Conc fp,q)
←(ker(βi)) iff (fp,q(x), fp,q(y)) ∈ ker(βi)

iff fp,q(x)i = fp,q(y)i iff xj = yj iff (x, y) ∈ ker(αj),

so

(Conc fp,q)
←h←q (ci) = ker(αj) = h←p ϕ

←
p,q(ci),

which proves that our diagram commutes. Using this commutativity and the fact

that the functor Conc preserves direct limits, we have

ConcA ≃ Conc lim−→
~A ≃ lim
−→

Conc ~A ≃ lim−→
~B ≃ L.

�

The second case. Now suppose that V is a nontrivial, locally finite and congru-

ence distributive variety with CIP such that

(1) Conc F is the two-element chain for every F ∈ SI(V);

(2) there exists F ∈ SI(V) such that F has a one-element subalgebra.

As an example of such a variety one can consider the variety of all distributive

lattices.

We prove a result similar to the first case. Recall that a generalized Boolean

lattice B is a distributive lattice with the least element 0 such that for any b ∈ B,

the interval [0, b] is a Boolean lattice.

Instead of Lemma 2.3 we use the following assertion (which is equally easy to

prove).

Lemma 4.3. If ϕ : B1 → B2 is a 0-preserving lattice homomorphism of finite

Boolean lattices, then ϕ←(c) ∈ M(B1) or ϕ
←(c) = 1 for every c ∈ M(B2).

Theorem 4.4. The following conditions are equivalent.

(1) L ≃ ConcA for some A ∈ V .

(2) L is isomorphic to a direct limit of a system ~B = (Bp, ϕp,q; p 6 q in P ),

where each Bp is a finite Boolean lattice and each ϕp,q is a 0-preserving lattice

homomorphism.

(3) L is a generalized Boolean lattice.
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P r o o f. (1)⇒(2) The same as in Theorem 4.2 except that we do not prove

ϕp,q(1) = 1.

(2)⇒(3) It is easy to check that the direct limit of a system of generalized Boolean

lattices and 0-preserving lattice homomorphisms is a generalized Boolean lattice.

(3)⇒(2) Let B be a generalized Boolean lattice. For every finite G ⊆ B let BG
be the Boolean sublattice of the interval 〈0,

∨

G〉 generated by G. It is easy to see

that B is the direct limit of the system of all BG with the inclusions as the system

homomorphisms.

(2)⇒(1) We proceed similarly to Theorem 4.2. Choose F ∈ SI(V) with Conc F = 2

which has a 1-element subalgebra {u}. For every p ∈ P let Ap = Fn, where

n = |M(Bp)|. Let p, q ∈ P , p 6 q. Let M(Bp) = {b1, b2, . . . , bn}, M(Bq) =

{c1, c2, . . . , cm}. Let fp,q be a map Ap → Aq defined by fp,q(a1, . . . , an) =

(d1, . . . , dm), where

di =

{

aj if ϕ←p,q(ci) = bj

u if ϕ←p,q(ci) = 1.

By 4.3, fp,q is well defined and it is easy to show that fp,q is a homomorphism.

We consider the same diagram as in 4.2 and prove its commutativity. The only

difference is that now we need to consider the additional case ϕ←p,q(ci) = 1. Then

h←p ϕ
←
p,q(ci) = 1 = (Conc fp,q)

←h←q (ci), because

(x, y) ∈ (Conc fp,q)
←(ker(βi)) iff (fp,q(x), fp,q(y)) ∈ ker(βi)

iff fp,q(x)i = fp,q(y)i iff u = u.

�

The third case. In this case we suppose that V is a locally finite and congruence

distributive variety with CIP such that

(1) Conc F is a three-element chain or a two-element chain for every F ∈ SI(V);

(2) there exists F ∈ SI(V) such that Conc F is a three-element chain;

(3) if A,B ∈ SI(V), A 6 B, then ConcA ≃ ConcB;

(4) no A ∈ SI(V) has a one-element subalgebra.

As an example of such a variety one can consider the variety of all principal Stone

algebras. It is the variety generated by the algebra ({0, e, 1},∨,∧, ∗, 0, e, 1), where

0 < e < 1 and ∗ denotes the pseudocomplementation.

For the study of this case we need to recall some basic facts about dual Stone

lattices. A bounded lattice is called dually pseudocomplemented if for every x ∈ L

there exists its dual pseudocomplement x+ = min{y ∈ L; x ∨ y = 1}. The elements

satisfying x+ = 1 are called codense and form an ideal of L denoted by D(L).
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A dual Stone lattice is a distributive dually pseudocomplemented lattice satisfying

the identity x+ ∧ x++ = 0. In a dual Stone lattice L, the set S(L) = {x+; x ∈ L} is

a Boolean subalgebra and is called the skeleton of L.

It is easy to see that every finite distributive lattice is dually pseudocomplemented

and its largest codense element is the meet of all maximal ∧-irreducible elements

(i.e. coatoms). Denote by M1(L) the set of all coatoms of L.

The following assertion is well known in the special case of Boolean algebras.

Lemma 4.5. Let B1, B2 be dual Stone lattices with largest codense elements d1
and d2, respectively. Let ϕ be a 0, 1-preserving lattice homomorphism with ϕ(d1) =

d2. Then ϕ preserves dual pseudocomplements.

P r o o f. Every x ∈ B1 satisfies the equality x = x++ ∨ (x ∧ d1). Hence,

ϕ(x)+ = (ϕ(x++) ∨ (ϕ(x) ∧ d2))
+ = ϕ(x++)+ ∧ (ϕ(x)+ ∨ 1) = ϕ(x++)+.

Since the restriction of ϕ to S(B1) is a homomorphism of Boolean algebras and

x++ is a complement of x+, we obtain that ϕ(x++) is a complement of ϕ(x+), so

ϕ(x++)+ = ϕ(x+). �

Lemma 4.6. Let ϕ : B1 → B2 be a 0, 1-preserving lattice homomorphism of finite

dual Stone lattices. The following conditions are equivalent.

(1) For every c ∈M(B2), ϕ
←(c) ∈M1(B1) if and only if c ∈M1(B2).

(2) ϕ preserves the largest codense element.

P r o o f. Denote di =
∧

M1(Bi), the largest codense element of Bi (i = 1, 2).

Clearly, d1 6 b ∈ M(B1) if and only if b ∈M1(B1).

(1)⇒(2) Since in B2 every element is a meet of ∧-irreducible elements, we have

ϕ(d1) =
∧

{c ∈ M(B2); ϕ(d1) 6 c}.

Now, ϕ(d1) 6 c is equivalent to d1 6 ϕ←(c) and hence to ϕ←(c) ∈ M1(B1). By (1),

this is equivalent to c ∈ M1(B2), hence

ϕ(d1) =
∧

{c ∈M(B2); c ∈M1(B2)} = d2.

So ϕ preserves the largest codense element.

(2)⇒(1) Let c ∈ M(B2). Then c ∈ M1(B2) if and only if

c > d2 = ϕ(d1) =
∧

{ϕ(b); b ∈ M1(B1)}.

Since c is ∧-irreducible, this is equivalent to c > ϕ(b) for some b ∈ M1(B1), hence to

ϕ←(c) > b, which is only possible if ϕ←(c) = b. �
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Similarly to the previous cases we first describe finite L with L ≃ ConcA for some

A ∈ V .

Denote by P the class of all finite partially ordered sets (P,6) such that for every

x ∈ P , ↑x is a one-element or two-element chain. Hence, P ∈ P is a disjoint union

of two antichains P1 and P2 such that |↑x| = 1 for x ∈ P1, |↑x| = 2 for x ∈ P2. If L

is a lattice such that M(L) ∈ P , then denote Mi(L) = (M(L))i for i = 1, 2.

Lemma 4.7. For every finite distributive lattice L the following conditions are

equivalent.

(1) L ≃ ConcA for some A ∈ V .

(2) M(L) ∈ P .

(3) L is a dual Stone lattice and its codense elements form a Boolean lattice.

P r o o f. (1)⇔(2) This equivalence follows from [4], Theorem 8. We recall the

following details. Let M(L) ∈ P . There exist F ∈ V such that Conc F is a three

element chain α0 > α1 > α2. For i = 1, 2 the quotient algebra Fi = F/αi is

subdirectly irreducible and Conc Fi is the (i + 1)-element chain. For every j 6 i we

have a natural homomorphism gi,j : Fi → Fj .

We define the diagram indexed by P = M(L). For every p ∈ P denote by i(p) the

cardinality of the chain ↑ p. If p ∈ M1(L) then set Ap = F1 and if p ∈ M2(L) then

set Ap = F2. For every p, q ∈ P , p 6 q we set fp,q = gi(p),i(q). Let A be the limit of

this diagram. Hence, A is a subalgebra of the direct product Π{Ap; p ∈M(L)}. The

assumptions of 2.5 are satisfied. (See [4].) Thus, L ≃ ConcA, and the isomorphism

h : ConcA→ L satisfies h(ker(αp)) = p for every p ∈M(L).

(2)⇔(3) Equivalence was proved in [7] Theorem 4.5 (in a dual form). �

Lemma 4.8. Let L be a dual Stone lattice and let its codense elements form

a Boolean lattice. For every finite set Y ⊆ L there exists a finite subalgebra LY 6 L

such that Y ⊆ LY and D(LY ) is a Boolean subalgebra of D(L).

P r o o f. By the triple representation of Stone algebras and its simplified version

due to Katriňák [6] we can assume that there exist a Boolean lattice B, a bounded

distributive lattice D and a (0, 1)-preserving lattice homomorphism h : B → D such

that

L = {(b, d) ∈ B ×D; h(b) 6 d},

with the lattice operations defined componentwise and (b, d)+ = (b′, h(b′)), where b′

denotes the complement of b in B. Moreover, S(L) = {(b, h(b)); b ∈ B} is isomorphic

to B and D(L) = {(0, d); d ∈ D} is isomorphic to D, so by our assumption D is
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Boolean. Now let Y be a finite subset of L. Let BY be the Boolean subalgebra of B

generated by

{b ∈ B; (b, d) ∈ X for some d ∈ D}.

Further, let DY be the Boolean subalgebra of D generated by

{d ∈ D; (b, d) ∈ X for some b ∈ B} ∪ {h(b); b ∈ BY }.

Clearly, BY and DY are finite. Denote

LY := {(b, d); b ∈ BY , d ∈ DY }.

It is easy to check that LY is a finite subalgebra of L, Y ⊆ LY and

D(LY ) = {(0, d) ∈ L; d ∈ DY } ≃ DY .

�

Theorem 4.9. The following conditions are equivalent.

(1) L ≃ ConcA for some A ∈ V .

(2) L is isomorphic to the direct limit of a system ~B = (Bp, ϕp,q; p 6 q in P ),

where each Bp is a finite distributive lattice with M(Bp) ∈ P and each ϕp,q is

a dual Stone algebras homomorphism, preserving the largest codense element.

(3) L is a dual Stone lattice and its codense elements form a Boolean lattice.

P r o o f. (1)⇒(2) Similarly to the above let P be the family of all finite subsets

of A ordered by set inclusion. Let Ap be the subalgebra of A generated by p ∈ P ,

let Bp = ConcAp and ϕp,q = Conc ep,q for every p, q ∈ P , p 6 q. By Lemma 4.7,

M(Bp) ∈ P . We know that every ϕp,q is a 0-preserving lattice homomorphism.

We check the assumptions of 4.6. For every c ∈ M(Bq) the algebra Ap/ϕ
←
p,q(c) is

a subalgebra of Aq/c. Our assumptions on V imply that

↑ ϕ←p,q(c)
∼= ConcAp/ϕ

←
p,q(c)

∼= ConcAq/c ∼= ↑c.

By 2.4, ϕp,q preserves 1. Further, c ∈ M(Bq) is a coatom if and only if ϕ
←
p,q(c) is

a coatom. Hence, by 4.6, ϕp,q preserves the largest codense element. By 4.5, ϕ

also preserves the dual pseudocomplements, so it is a homomorphism of dual Stone

algebras.

(2)⇒(3) Since every Bp is a dual Stone lattice, and every ϕp,q is a lattice homo-

morphism which also preserves pseudocomplements, the limit algebra L is also a dual
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Stone lattice. Moreover, restriction of ϕp,q to D(Bp) is a homomorphism of Boolean

lattices, so D(L) is a Boolean lattice (the limit of Boolean lattices D(Bp)).

(2)⇒(1) For every p ∈ P let Ap ∈ V be the algebra with ConcAp ∼= Bp constructed

in 4.7. So, Ap is a subalgebra of the direct product Π{Fb; b ∈M(Bp)}, where Fb =

Fi(b). The isomorphisms hp : ConcAp → Bp are defined in the same way as before.

Let p, q ∈ P , p 6 q. The assumptions on V imply that Fb = Fc whenever

b = ϕ←p,q(c). We define the homomorphism fp,q : Ap → Aq in the same way as in

4.2: f(a1, . . . , an) = (d1, . . . , dm), where di = aj such that bj = ϕ←p,q(ci). However,

now Aq is not equal to the direct product Π{Fb; b ∈ M(Bq)}, so we have to check

that (d1, . . . , dm) ∈ Aq. Let ci 6 ck in M(Bq), we need to show that fci,ck(di) = dk.

Let bj = ϕ←p,q(ci), bl = ϕ←p,q(ck). Then bj 6 bl, so (a1, . . . , an) ∈ Ap implies that

al = fbj ,bl(aj). Since the homomorphisms fci,ck and fbj,bl are the same (see the

proof of 4.7), we obtain dk = al = fbj ,bl(aj) = fci,ck(aj) = fci,ck(di).

So, fp,q is defined correctly and similarly to 4.2 we can argue that ConcA ∼= L,

where A is the limit of the system (Ap, fp,q; p 6 q in P ).

(3)⇒(2) Let P be the family of all finite subsets of L ordered by set inclusion.

Using Lemma 4.8 we can see that L is the direct limit of the system (LY , ϕX,Y ; X ⊆

Y in P ), where ϕX,Y is the set inclusion. As LX is a subalgebra of the dually Stone

lattice LY containing the largest codense element, ϕX,Y has the required properties.

�
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