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BOUNDEDNESS OF HARDY-LITTLEWOOD MAXIMAL OPERATOR

ON BLOCK SPACES WITH VARIABLE EXPONENT

Ka Luen Cheung, Kwok-Pun Ho, Hong Kong

(Received December 28, 2012)

Abstract. The family of block spaces with variable exponents is introduced. We obtain
some fundamental properties of the family of block spaces with variable exponents. They are
Banach lattices and they are generalizations of the Lebesgue spaces with variable exponents.
Moreover, the block space with variable exponents is a pre-dual of the corresponding Morrey
space with variable exponents.
The main result of this paper is on the boundedness of the Hardy-Littlewood maximal

operator on the block space with variable exponents. We find that the Hardy-Littlewood
maximal operator is bounded on the block space with variable exponents whenever the
Hardy-Littlewood maximal operator is bounded on the corresponding Lebesgue space with
variable exponents.
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1. Introduction

In this paper, we present and study the block space with variable exponents

Bω,Lp(x) . Recently, there are a number of researches on the Lebesgue space with

variable exponents Lp(x) and the Morrey space with variable exponents Mω,Lp(x).

As in the classical case, the block space is a pre-dual of the Morrey space [2]. Thus,

the family of block spaces is an important variety of Lebesgue spaces and Morrey

spaces. Therefore, in this paper, we extend the study of variable exponent analysis

to block spaces.

The classical block space is introduced and studied in [2]. A well-known result on

the block space is that it is a pre-dual of the Morrey space. One of the main result

The authors are partially supported by HKIEd Internal Research Grant RG 61/2010-
2011.
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of this paper is an extension of this duality to the variable exponent setting. We find

that the block space with variable exponents is a pre-dual of the Morrey space with

variable exponents.

The other main result of this paper is related to the boundedness of the Hardy-

Littlewood maximal operator. We find that if p(x) is an exponent function such that

the Hardy-Littlewood maximal operator is bounded on Lp(x), then it is also bounded

on Bω,Lp(x) .

We define the block spaces with variable exponents in Section 2. We also show

that they are pre-duals of Morrey spaces with variable exponents in that section.

The boundedness of the Hardy-Littlewood maximal operator on block spaces with

variable exponents is established in Section 3.

2. Block spaces with variable exponent

The main theme of this section is the duality between block spaces with variable

exponents and Morrey spaces with variable exponents. We begin with some notions

and notation from variable exponent analysis.

Let M(Rn) denote the class of Lebesgue measurable functions on R
n. For any

Lebesgue measurable set E, the characteristic function of E is denoted by χE . For

any x ∈ R
n and r > 0, write B(x, r) = {y ∈ R

n : |x− y| < r} and B = {B(x, r) : x ∈

R
n, r > 0}.

We recall the definition of Lebesgue spaces with variable exponents from [19].

Definition 2.1. Let p(x) : R
n → (1,∞) be a Lebesgue measurable function.

The variable Lebesgue space Lp(x) consists of all Lebesgue measurable functions

f : R
n → C such that

‖f‖Lp(x) = inf{λ > 0: ̺(f(x)/λ) 6 1} < ∞

where

̺(f(x)) =

∫

Rn

|f(x)|p(x) dx.

We call p(x) the exponent function of Lp(x).

Theorem 2.1. If p(x) : R
n → (1,∞) is a Lebesgue measurable function with

ess sup p(x) < ∞, then the dual space of Lp(x) is Lp′(x)(Rn) where p′ satisfies 1/p(x)+

1/p′(x) = 1.

We call p′(x) the conjugate function of p(x). The reader is referred to [19, Theo-

rem 2.6] for the proof of the above theorem.
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Definition 2.2. Let p(x) : R
n → (1,∞) and ω(x, r) : R

n × (0,∞) → (0,∞) be

Lebesgue measurable functions. A b ∈ M(Rn) is an (ω,Lp(x))-block if it is supported

in a ball B(x0, r), x0 ∈ R
n, r > 0, and

(2.1) ‖b‖Lp(x) 6
1

ω(x0, r)
.

Define Bω,Lp(x) by

(2.2) Bω,Lp(x) =

{ ∞
∑

k=1

λkbk :

∞
∑

k=1

|λk| < ∞ and bk is an (ω,Lp(x))-block

}

.

The space Bω,Lp(x) is endowed with the norm

(2.3) ‖f‖B
ω,Lp(x)

= inf

{ ∞
∑

k=1

|λk| such that f =

∞
∑

k=1

λkbk

}

.

We call Bω,Lp(x) the block space with variable exponent.

The family of block spaces for the Lebesgue spaces is introduced and studied in [2].

Whenever p(x) is a constant function, then Bω,Lp(x) coincides with the classical

block space introduced in [2].

Furthermore, according to (2.3), for any (ω,Lp(x))-block b, we have

(2.4) ‖b‖B
ω,Lp(x)

6 1.

This observation is applied frequently in the proofs of the subsequent results for

Bω,Lp(x) .

Notice that in [22], [26], the term “block space” was used to represent another

family of function spaces.

We now establish a fundamental result for Bω,Lp(x) .

Proposition 2.1. If p(x) : R
n → (1,∞) is a Lebesgue measurable function, then

Bω,Lp(x) is a Banach lattice.

P r o o f. Obviously, ‖·‖B
ω,Lp(x)

satisfies the triangle inequality. Let fi ∈ Bω,Lp(x) ,

i ∈ N satisfy
∞
∑

i=1

‖fi‖B
ω,Lp(x)

< ∞.

According to the definition of Bω,Lp(x) , for any ε > 0 we have

fi =
∞
∑

k=1

λk,ibk,i
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where bk,i, i, k ∈ N are (ω,Lp(x))-blocks and

∞
∑

k=1

|λk,i| 6 (1 + ε)‖fi‖B
ω,Lp(x)

.

Therefore,
∞
∑

i=1

fi =

∞
∑

i=1

∞
∑

k=1

λk,ibk,i

and λk,i, i, k ∈ N satisfy

∞
∑

i=1

∞
∑

k=1

|λk,i| 6 (1 + ε)

∞
∑

i=1

‖fi‖B
ω,Lp(x)

< ∞.

That is,
∞
∑

i=1

fi converges in Bω,Lp(x) . Moreover, as ε > 0 is arbitrary, we also have

∥

∥

∥

∥

∞
∑

i=1

fi

∥

∥

∥

∥

B
ω,Lp(x)

6

∞
∑

i=1

‖fi‖B
ω,Lp(x)

.

Hence, Bω,Lp(x) is a Banach space.

Next, assume that |g| 6 |f | where f ∈ Bω,Lp(x) and f, g ∈ M. Since f ∈ Bω,Lp(x) ,

for any ε > 0, we have a family of (ω,Lp(x))-blocks {bi}
∞
i=1 and a family of scalars

{λi}
∞
i=1 such that

f =

∞
∑

i=1

λibi

and
∞
∑

i=1

|λi| 6 (1 + ε)‖f‖B
ω,Lp(x)

. Therefore

g =

∞
∑

i=1

λici

where

ci(x) =







g(x)

f(x)
bi(x), f(x) 6= 0,

0, f(x) = 0.

It is easy to see that {ci}
∞
i=1 are (ω,L

p(x))-blocks because |g| 6 |f |. Thus, g ∈

Bω,Lp(x) . Moreover, as ε is arbitrary, we also have ‖g‖B
ω,Lp(x)

6 ‖f‖B
ω,Lp(x)

. �

The subsequent results show that the family of block spaces with variable expo-

nents is an extension of Lp(x).
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Proposition 2.2. Let p(x) : R
n → (1,∞) and ω(x, r) ≡ 1. If ess sup p(x) < ∞

then we have Bω,Lp(x) = Lp(x).

P r o o f. Let f ∈ Bω,Lp(x) . For any ε > 0 we have f =
∞
∑

k=1

λkbk where {bk}
∞
k=1

are (ω,Lp(x))-blocks and
∞
∑

k=1

|λk| 6 (1 + ε)‖f‖B
ω,Lp(x)

. We find that

(2.5) ‖f‖Lp(x) 6

∞
∑

k=1

|λk|‖bk‖Lp(x) 6

∞
∑

k=1

|λk| 6 (1 + ε)‖f‖B
ω,Lp(x)

.

As ε > 0 is arbitrary, we find that ‖f‖Lp(x) 6 ‖f‖B
ω,Lp(x)

. That is,Bω,Lp(x) →֒ Lp(x).

For the reverse embedding, notice that for any f ∈ Lp(x) and R > r > 0,

1

‖fχB(0,R)\B(0,r)‖Lp(x)

fχB(0,R)\B(0,r)

is an (ω,Lp(x))-block. Thus, by (2.4), we have

(2.6) ‖fχB(0,R)\B(0,r)‖B
ω,Lp(x)

6 ‖fχB(0,R)\B(0,r)‖Lp(x) .

Next, we show that the sequence {fχB(0,2j)}j∈N is a Cauchy sequence in L
p(x). As

‖f‖Lp(x) < ∞, |f(x)/c|p(x) is an integrable function for some c > 0. For any ε > 0

there exists a J ∈ N such that
∫

|x|>2j
|f(x)/c|p(x) dx < ε, for all j > J .

In view of [19, (2.28)], we have ̺(fj) → 0 if and only if ‖fj‖Lp(x) → 0 when

ess sup p(x) < ∞ where fj = fχRn\B(0,2j), j ∈ N.

Since Lp(x) is a Banach function space [10, Theorem 3.2.13], {fχB(0,2j)}j∈N is

a Cauchy sequence in Lp(x). So, (2.6) ensures that it is also a Cauchy sequence in

Bω,Lp(x) . Inequalities (2.5) guarantee that the limit functions of {fχB(0,2j)}j∈N in

Lp(x) and in Bω,Lp(x) are f .

Similarly to the above argument, for any R > 0,

F =
1

‖fχB(0,R)‖Lp(x)

fχB(0,R)

is an (ω,Lp(x))-block. Therefore, (2.4) yields ‖F‖B
ω,Lp(x)

6 1. That is,

(2.7) ‖fχB(0,R)‖B
ω,Lp(x)

6 ‖fχB(0,R)‖Lp(x) .

Since {fχB(0,2j)}j∈N converges to f both in Lp(x) and in Bω,Lp(x) when j → ∞, by

taking limit on both sides of the above inequality, we obtain ‖f‖B
ω,Lp(x)

6 ‖f‖Lp(x).

Thus, Lp(x) →֒ Bω,Lp(x) . �
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Next, we establish the duality relation between the block spaces and the Morrey

spaces in the variable exponent setting.

We state the definition for the Morrey space with variable exponents.

Definition 2.3. Let p(x) : R
n → (1,∞) and ω(x, r) : R

n × (0,∞) → (0,∞) be

Lebesgue measurable functions. The Morrey space with variable exponent Mω,Lp(x)

consists of the Lebesgue measurable functions f satisfying

‖f‖M
ω,Lp(x)

= sup
x0∈Rn,r>0

1

ω(x0, r)
‖fχB(x0,r)‖Lp(x) < ∞.

The following theorem is the main result of this section. It asserts that the dual

space of Bω,Lp(x) is Mω,Lp′(x) . We denote the dual space of Bω,Lp(x) by B∗
ω,Lp(x) .

Theorem 2.2. Let p(x) : R
n → (1,∞) and ω(x, r) : R

n × (0,∞) → (0,∞) be

Lebesgue measurable functions. If ess sup p(x) < ∞, then we have

B
∗
ω,Lp(x) = Mω,Lp′(x) .

P r o o f. Let b be an (ω,Lp(x))-block supported in B(x0, r). For any f ∈

Mω,Lp′(x) , the Hölder inequality for Lp(x) [19, Theorem 2.1] ensures that

∣

∣

∣

∣

∫

Rn

f(x)b(x) dx

∣

∣

∣

∣

6 C‖χB(x0,r)f‖Lp′(x)‖χB(x0,r)b‖Lp(x)

6 C
1

ω(x0, r)
‖χB(x0,r)f‖Lp′(x)

for some C > 0.

Consequently, for any g =
∑

k∈N

λkbk ∈ Bω,Lp(x) we obtain

∣

∣

∣

∣

∫

Rn

f(x)g(x) dx

∣

∣

∣

∣

6
∑

k∈N

|λk|

∣

∣

∣

∣

∫

Rn

f(x)bk(x) dx

∣

∣

∣

∣

6 C‖g‖B
ω,Lp(x)

‖f‖M
ω,Lp′(x)

for some C > 0. Thus, Mω,Lp′(x) →֒ B
∗
ω,Lp(x) .

Next, we prove the reverse embedding.

For any r > 0 and L ∈ B
∗
ω,Lp(x) , define X = {gχB(0,r) : g ∈ Lp(x)}. Obviously, X

is a subspace of Lp(x).

Define the linear functional l(h) for h ∈ X by

l(h) = L(χB(0,r)g)

where h = χB(0,r)g and g ∈ Lp(x).
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In view of (2.7) and L ∈ B
∗
ω,Lp(x) , we find that

|l(h)| = |L(gχB(0,r))| 6 C‖gχB(0,r)‖B
ω,Lp(x)

6 A‖gχB(0,r)‖Lp(x) = A‖h‖Lp(x)

for some A > 0. That is, l is bounded onX . According to the Hahn-Banach theorem,

the linear functional l can be extended to be a member of (Lp(x))∗. Therefore,

Theorem 2.1 ensures that there exists a fr ∈ Lp′(x) such that

l(g) =

∫

Rn

fr(x)g(x) dx, ∀g ∈ Lp(x).

Moreover, we can assume that supp fr ⊆ B(0, r).

Let r, s > 0. For any B ∈ B with B ⊆ B(0, r) ∩B(0, s),

∫

B

fr(x) dx = l(χB) =

∫

B

fs(x) dx.

That is, fr = fs almost everywhere on B(0, r)∩B(0, s). Therefore, there is a unique

Lebesgue measurable function f such that f(x) = fr(x) on B(0, r) for all r.

Next, we show that f ∈ Mω,Lp′(x) . For any x0 ∈ R
n and r > 0, let s > 0 be chosen

so that B(x0, r) ⊆ B(0, s). For any h ∈ Lp(x) and B(x0, r) ∈ B,

(2.8) H =
χB(x0,r)h

‖χB(x0,r)h‖Lp(x)ω(x0, r)

is an (ω,Lp(x))-block. Therefore, according to (2.4),

‖H‖B
ω,Lp(x)

6 1.

That is, ‖χB(x0,r)h‖Bω,Lp(x)
6 ‖χB(x0,r)h‖Lp(x)ω(x0, r).

As the function given in (2.8) is an (ω,Lp(x))-block, we have

1

ω(x0, r)
‖χB(x0,r)f‖Lp′(x) =

1

ω(x0, r)
sup

‖h‖
Lp(x)=1

∣

∣

∣

∣

∫

B(x0,r)

f(x)h(x) dx

∣

∣

∣

∣

6 sup
‖h‖

Lp(x)=1

∣

∣

∣

∣

∫

B(0,s)

fs(x)
χB(x0,r)h

ω(x0, r)
dx

∣

∣

∣

∣

6 ‖L‖B∗

ω,Lp(x)
sup

‖h‖
Lp(x)=1

∥

∥

∥

hχB(x0,r)

ω(x0, r)

∥

∥

∥

B
ω,Lp(x)

6 ‖L‖B∗

ω,Lp(x)
.

The functionals Lf (g) =
∫

Rn f(x)g(x) dx and L coincide on the set of (ω,Lp(x))-

blocks and the set of finite linear combinations of (ω,Lp(x))-blocks is dense in

Bω,Lp(x) , therefore Lf = L and B
∗
ω,Lp(x) →֒ Mω,Lp′(x) . �
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The preceding theorem is a generalization of the well known result on the “classi-

cal” Morrey spaces and block spaces, see [2, Theorem 1].

As an application of Theorem 2.2, we obtain the following remarkable property

for Morrey spaces with variable exponents.

Corollary 2.1. Let p(x) : R
n → (1,∞) and ω(x, r) : R

n × (0,∞) → (0,∞) be

Lebesgue measurable functions. The unit ball of the Morrey space with variable

exponent Mω,Lp(x) is weak-star compact.

The above corollary follows from Alaoglu’s theorem and Theorem 2.1.

3. Boundedness of maximal operator

In this section, we present an important boundedness result of the Hardy-

Littlewood maximal operator on Bω,Lp(x) . Recall that for any locally integrable

function f , the Hardy-Littlewood maximal operator M(f) is defined by

M(f) = sup
B∋x

1

|B|

∫

B

|f(x)| dx

where the supremum is taking over all balls B containing x.

We show that whenever the Hardy-Littlewood maximal operator is bounded on

Lp(x), it is also bounded on Bω,Lp(x) .

Let B denote the set of all p(x) such that the Hardy-Littlewood maximal operator

M is bounded on Lp(x). Some important subsets of B are given in [4], [6], [9], [21],

[20], [24], [23], [25].

For the boundedness of the Hardy-Littlewood maximal operator on a Morrey space

with variable exponents, the reader is referred to [11]. In addition, the extension of

the boundedness of the maximal operator on a vector-valued Morrey space with

variable exponents is obtained in [17], [12].

Proposition 3.1. If p(·) ∈ B, then we have constants C1, C0 > 0 such that for

any B ∈ B,

(3.1) |B| 6 C0‖χB‖Lp(x)‖χB‖Lp′(x) 6 C1|B|.

P r o o f. We only need to prove the second inequality because the first inequality

follows from a general result for Banach function spaces, see [1, Chapter 1, Defini-

tions 2.1 and 2.3].
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For any B = B(x0, r), x0 ∈ R
n and r > 0, we define the projection operator PB(g)

by

(PBg)(y) =

(

1

|B|

∫

B

g(x) dx

)

χB(y).

The projection operator PB is uniformly dominated by the maximal operator M.

More precisely, there exists a constant C > 0 such that for any B = B(x0, r),

|PB(f)| 6 CM(f). Consequently, sup
B

‖PB‖Lp(x)→Lp(x) < C‖M‖Lp(x)→Lp(x) where

‖ · ‖Lp(x)→Lp(x) is the operator norm of a mapping on Lp(x).

The uniform boundedness of PB and [1, Chapter 1, Lemma 2.8] yield

‖χB‖Lp(x)‖χB‖Lp′(x) = sup

{∣

∣

∣

∣

∫

B

g(x) dx

∣

∣

∣

∣

‖χB‖Lp(x) : ‖g‖Lp(x) 6 1

}

6 C|B|.

�

The above result can be extended to some other families of function spaces. For

instance, (3.1) is valid for rearrangement-invariant quasi-Banach function spaces,

the reader is referred to [14, Lemma 5]. For the general Banach function space, the

reader may consult [17].

We are now ready to obtain the boundedness of the Hardy-Littlewood maximal

operator on Bω,Lp(x) .

Theorem 3.1. Let p(x) ∈ B and let ω : R
n × (0,∞) → (0,∞) be a Lebesgue

measurable function. If the Hardy-Littlewood maximal operator is bounded on Lp(x)

and there exists a constant C > 0 such that for any x ∈ R
n and r > 0, ω fulfils

(3.2)
∞
∑

j=0

‖χB(x,r)‖Lp′(x)

‖χB(x,2j+1r)‖Lp′(x)

ω(x, 2j+1r) < Cω(x, r),

then the Hardy-Littlewood maximal operator is bounded on Bω,Lp(x) .

P r o o f. Let x0 ∈ R
n, r > 0. Suppose that b is an (ω,Lp(x))-block with support

B(x0, r). For any k ∈ N, let Bk = B(x0, 2
kr). Writemk = χBk+1\Bk

M(b), k ∈ N\{0}

and m0 = χB0M(b). We have suppmk ⊆ Bk+1 \Bk and M(b) =
∞
∑

k=0

mk.

In view of p(·) ∈ B, we have

‖m0‖Lp(x) 6 C‖M(b)‖Lp(x) 6
C

ω(x0, r)

for a constant C > 0 independent of x0 and r. Consequently, m0 is a constant-

multiple of an (ω,Lp(x))-block.
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The definition of the Hardy-Littlewood maximal operator and the Hölder inequal-

ity for Lp(x) (see [19, Theroem 2.1]) assert that

mk = χBk+1\Bk
|M(b)| 6

χBk+1\Bk

2knrn

∫

B(x0,r)

|b(x)| dx

6 CχBk+1\Bk

1

2knrn
‖b‖Lp(x)‖χB(x0,r)‖Lp′(x)

for a C > 0 independent of k.

Proposition 3.1 ensures that

‖mk‖Lp(x) 6
‖χBk+1\Bk

‖Lp(x)

2knrn
‖b‖Lp(x)‖χB(x0,r)‖Lp′(x)

6 C
‖χB(x0,r)‖Lp′(x)

‖χBk+1
‖Lp′(x)

ω(x0, 2
k+1r)

ω(x0, r)

1

ω(x0, 2k+1r)
.

Define mk = σkbk where

σk =
‖χB(x0,r)‖Lp′(x)

‖χBk+1
‖Lp′(x)

ω(x0, 2
k+1r)

ω(x0, r)
.

Consequently, bk is a constant-multiple of an (ω,L
p(x))-block and this constant does

not depend on k. Inequality (3.2) yields
∞
∑

k=0

σk < C for some C > 0. Hence,

M(b) ∈ Bω,Lp(x) and there exists a constant C0 > 0 such that for any (ω,Lp(x))-

block b,

‖M(b)‖B
ω,Lp(x)

< C0.

Now, we consider f ∈ Bω,Lp(x) . The definition of the block space ensures that

there exist a family of (ω,Lp(x))-blocks {ck}
∞
k=1 and a sequence Λ = {λk}

∞
k=1 ∈ l1

such that f =
∞
∑

k=1

λkck with ‖Λ‖l1 6 2‖f‖B
ω,Lp(x)

. Finally, we have

‖M(f)‖B
ω,Lp(x)

6

∞
∑

k=1

|λk|‖M(ck)‖B
ω,Lp(x)

6 C0

∞
∑

k=1

|λk|‖ck‖B
ω,Lp(x)

6 2C0‖f‖B
ω,Lp(x)

.

�

Condition similar to (3.2) is introduced in [16, Theorem 5.2] for the investigation of

the boundedness of the maximal operator on a vector-valuedMorrey space associated
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with a rearrangement-invariant Banach function space. It is also used in [13] to show

the Fefferman-Stein vector-valued maximal inequalities for weighted Morrey spaces.

The reader may have a wrong impression that condition (3.2) is too complicated

to apply. In fact, the subsequent result shows that (3.2) is satisfied by a number of

Lebesgue measurable functions ω.

Definition 3.1. For any p(x) ∈ B, let κp(x) denote the supremum of those q > 1

that p(x)/q ∈ B. Let ep(·) be the conjugate of κp′(·).

The above indices can be viewed as a generalization of Boyd’s indices to Lp(x), see

[15].

We have the following proposition from [12]. For completeness, we provide the

proof of the subsequent result from [12].

Proposition 3.2. Let p ∈ B and ess sup p(x) < ∞. For any 1 < q < κp(·) and

1 < s < κp′(·), there exist constants C1, C2 > 0 such that for any x0 ∈ R
n and r > 0

we have

(3.3) C22
jn(1−1/s) 6

‖χB(x0,2jr)‖Lp(x)

‖χB(x0,r)‖Lp(x)

6 C12
jn/q, ∀j ∈ N.

P r o o f. For any B = B(x0, r) ∈ B and j ∈ N we have a constant C > 0 such

that

C2−jn 6 M(χB)(x)

when x ∈ B(x0, 2
jr), j ∈ N. Let q < κp(·). Since αp(·) ∈ B for any α > 1 and

p(·) ∈ B we have p(·)/q ∈ B. Subsequently,

2−jn‖χB(x0,2jr)‖Lp(·)/q 6 C‖M(χB)‖Lp(·)/q 6 C‖χB‖Lp(·)/q .

Since, for any B ∈ B and q > 0, ‖χB‖Lp(·)/q = ‖χB‖
q
Lp(·) , we obtain the second

inequality of (3.3).

According to [7, Theorem 8.1], p′(·) ∈ B. Thus, for any s < κp′(·), we also have

‖χB(x0,2jr)‖Lp′(x)

‖χB(x0,r)‖Lp′(x)

6 C12
jn/s, ∀j ∈ N.

Therefore, Proposition 3.1 yields the first inequality in (3.3). �
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Proposition 3.3. Let p ∈ B with ess sup p(x) < ∞ and 0 6 λ < n/ep′(·). If ω

satisfies

(3.4) ω(x, 2jr) 6 C2jλω(x, r), ∀x ∈ R
n, r > 0 and j ∈ N

for some C > 0, then ω fulfils (3.2).

P r o o f. By using Proposition 3.1 and the inequality on the right-hand side of

(3.3), we find that for any 1 < q < κp(·),

(3.5)
‖χB(x,r)‖Lp′(x)

‖χB(x,2jr)‖Lp′(x)

6 C2−jn(1−1/q).

As ep′(·) is the conjugate of κp(·), (3.4) and (3.5) guarantee that ω satisfies (3.2). �
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