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COMMUTATORS OF THE FRACTIONAL MAXIMAL FUNCTION

ON VARIABLE EXPONENT LEBESGUE SPACES

Pu Zhang, Jianglong Wu, Mudanjiang

(Received January 19, 2013)

Abstract. Let Mβ be the fractional maximal function. The commutator generated by
Mβ and a suitable function b is defined by [Mβ , b]f =Mβ(bf)−bMβ(f). Denote byP(Rn)
the set of all measurable functions p(·) : Rn

→ [1,∞) such that

1 < p− := ess inf
x∈Rn

p(x) and p+ := ess sup
x∈Rn

p(x) < ∞,

and byB(Rn) the set of all p(·) ∈ P(Rn) such that the Hardy-Littlewood maximal function

M is bounded on Lp(·)(Rn). In this paper, the authors give some characterizations of b for

which [Mβ , b] is bounded from Lp(·)(Rn) into Lq(·)(Rn), when p(·) ∈ P(Rn), 0 < β < n/p+
and 1/q(·) = 1/p(·)− β/n with q(·)(n− β)/n ∈ B(Rn).

Keywords: commutator; BMO; fractional maximal function; variable exponent Lebesgue
space

MSC 2010 : 42B25, 46E30

1. Introduction and main result

Let T be the classical singular integral operator. The commutator [T, b] generated

by T and a suitable function b is defined by

[T, b]f = T (bf)− bT (f).

A classical result of Coifman, Rochberg and Weiss [3] states that if b ∈ BMO(Rn),

then [T, b] is bounded on Lp(Rn) (1 < p < ∞). They also gave a characterization of

Supported by the Scientific Research Fund of Heilongjiang Provincial Education De-
partment (12531720) and the National Natural Science Foundation of China (11271162).
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BMO in virtue of the Lp-boundedness of the above commutator. In 1990, Milman and

Schonbek [11] established a commutator result that applies to the Hardy-Littlewood

maximal function as well as to a large class of nonlinear operators.

As usual, a cube Q ⊂ R
n always means its sides parallel to the coordinate axes.

Denote by |Q| the Lebesgue measure of Q and by χQ the characteristic function of

Q. For a function f ∈ L1
loc(R

n), we write fQ = |Q|−1
∫

Q
f(x) dx.

For f ∈ L1
loc(R

n), the Hardy-Littlewood maximal function M is defined by

Mf(x) = sup
Q∋x

1

|Q|

∫

Q

|f(y)| dy,

the sharp function M ♯f is defined by

M ♯f(x) = sup
Q∋x

1

|Q|

∫

Q

|f(y)− fQ| dy,

and the fractional maximal function Mβ is defined by

Mβf(x) = sup
Q∋x

1

|Q|1−β/n

∫

Q

|f(y)| dy, 0 < β < n,

where the supremum is taken over all cubes Q ⊂ R
n containing x.

Let Q0 be a fixed cube in R
n. The Hardy-Littlewood maximal function and the

fractional maximal function relative to Q0 are given by

MQ0(f)(x) = sup
Q∋x

Q⊂Q0

1

|Q|

∫

Q

|f(y)| dy,

and

Mβ,Q0(f)(x) = sup
Q∋x

Q⊂Q0

1

|Q|1−β/n

∫

Q

|f(y)| dy, 0 < β < n,

where the supremum is taken over all cubes Q ⊂ Q0 and x ∈ Q.

For a function b defined on R
n, we denote

b−(x) =

{

0, if b(x) > 0,

|b(x)|, if b(x) < 0,

and b+(x) = |b(x)| − b−(x). Obviously, b+(x)− b−(x) = b(x).

The commutator generated byMβ and a suitable function b is formally defined by

[Mβ, b]f = Mβ(bf)− bMβ(f),
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and the commutators of M and M ♯ are defined by

[M, b]f = M(bf)− bM(f) and [M ♯, b]f = M ♯(bf)− bM ♯(f).

In 2000, Bastero, Milman and Ruiz [1] studied the necessary and sufficient con-

dition for the boundedness of [M, b] and [M ♯, b] on Lp spaces. In 2009, the authors

[15] considered the same problem for [Mβ, b].

In this paper, we will extend the results of Zhang and Wu [15] to the variable

exponent Lebesgue spaces. To state our result, we first recall some notation.

Definition 1.1. Let p(·) : R
n → [1,∞) be a measurable function. The variable

exponent Lebesgue space, Lp(·)(Rn), is defined by

Lp(·)(Rn) =

{

f measurable :

∫

Rn

( |f(x)|

η

)p(x)

dx < ∞ for some constant η > 0

}

.

It is well known that the set Lp(·)(Rn) becomes a Banach space with respect to

the norm

‖f‖Lp(·)(Rn) = inf

{

η > 0:

∫

Rn

( |f(x)|

η

)p(x)

dx 6 1

}

.

Denote byP(Rn) the set of all measurable functions p(·) : R
n → [1,∞) such that

1 < p− := ess inf
x∈Rn

p(x) and p+ : = ess sup
x∈Rn

p(x) < ∞,

and by B(Rn) the set of all p(·) ∈ P(Rn) such that M is bounded on Lp(·)(Rn).

Remark 1.1. If p(·) ∈ B(Rn) and λ > 1, then by Jensen’s inequality, λp(·) ∈

B(Rn) (see Remark 2.13 in [4]).

We say an ordered pair of variable exponents (p(·), q(·)) belongs to Pβ
p,q(R

n), if

p(·) ∈ P(Rn), 0 < β < n/p+ and 1/q(·) = 1/p(·)−β/n with q(·)(n−β)/n ∈ B(Rn).

Our main result can be stated as follows.

Theorem 1.1. Let b(x) ∈ L1
loc(R

n), then the following assertions are equivalent:

(1) b ∈ BMO(Rn) and b− ∈ L∞(Rn).

(2) [Mβ, b] is bounded from Lp(·)(Rn) to Lq(·)(Rn) for all (p(·), q(·)) ∈ Pβ
p,q(R

n).

(3) [Mβ, b] is bounded from Lp(·)(Rn) to Lq(·)(Rn) for some (p(·), q(·)) ∈ Pβ
p,q(R

n).

(4) There exists (p(·), q(·)) ∈ Pβ
p,q(R

n), such that

sup
Q

‖(b−MQ(b))χQ‖Lq(·)(Rn)

‖χQ‖Lq(·)(Rn)

< ∞.
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(5) For all (p(·), q(·)) ∈ Pβ
p,q(R

n), we have

sup
Q

‖(b−MQ(b))χQ‖Lq(·)(Rn)

‖χQ‖Lq(·)(Rn)

< ∞.

Remark 1.2. By Remark 2.13 in [4], we know that q(·)(n − β)/n ∈ B(Rn)

is equivalent to saying that there exists s with n/(n − β) < s < ∞ such that

q(·)/s ∈ B(Rn). Moreover, it follows from Remark 1.1 that q(·)(n − β)/n ∈ B(Rn)

implies q(·) ∈ B(Rn).

One of the most interesting problems on spaces with variable exponents is to give

conditions guaranteing the boundedness of the Hardy-Littlewood maximal function.

Important sufficient conditions called log-Hölder have been obtained by Cruz-Uribe,

Fiorenza and Neugebauer [5].

Let p(·) ∈ P(Rn), we say that p(·) satisfies the local log-Hölder condition if there

exists a constant C > 0 such that for any x, y ∈ R
n,

(1.1) |p(x)− p(y)| 6
−C

log |x− y|
, if |x− y| 6 1/2.

We say that p(·) satisfies the log-Hölder decay condition if there exists a constant

C > 0 such that for any x, y ∈ R
n,

(1.2) |p(x)− p(y)| 6
C

log(e + |x|)
, if |y| > |x|.

If both the conditions (1.1) and (1.2) are satisfied, we say that p(·) satisfies the

log-Hölder condition, abbreviated to p(·) ∈ P log(Rn).

Remark 1.3. By Theorem 1.5 in [5], if p(·) ∈ P log(Rn) then p(·) ∈ B(Rn).

Furthermore, for p(·) ∈ P log(Rn), 0 < β < n/p+ and 1/q(·) = 1/p(·) − β/n, it is

easy to check that q(·) ∈ P log(Rn) and q(·)(n − β)/n ∈ P log(Rn), which implies

(p(·), q(·)) ∈ Pβ
p,q(R

n).

This along with Theorem 1.1 gives the following result, a special case of Theo-

rem 1.1.

Corollary 1.1. Let p(·) ∈ P
log(Rn), 0 < β < n/p+ and 1/q(·) = 1/p(·) − β/n.

If b(x) ∈ L1
loc(R

n), then the following assertions are equivalent:

(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn).

(ii) [Mβ, b] is bounded from Lp(·)(Rn) to Lq(·)(Rn).
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(iii)

sup
Q

‖(b−MQ(b))χQ‖Lq(·)(Rn)

‖χQ‖Lq(·)(Rn)

< ∞.

When p(·), q(·) are constant exponents, Corollary 1.1 was proved by the authors

in [15].

The remainder of this paper is organized as follows. In Section 2, we recall some

known results in the context of variable Lebesgue spaces. In Section 3, we will give

some auxiliary results which are of independent interest and will be used in the proof

of the main result. In the last section, we will prove Theorem 1.1.

2. Preliminaries

In this section, we recall some known results in the context of variable Lebesgue

spaces. In what follows, we denote by p′(·) the conjugate index of p(·), that is

1/p(·) + 1/p′(·) = 1. It is easy to check that if p(·) ∈ P(Rn) then p′(·) ∈ P(Rn).

The first lemma is known as the generalized Hölder’s inequality on variable expo-

nent Lebesgue spaces and the proof can be found in [10] and [8].

Lemma 2.1. (i) Suppose that p(·) ∈ P(Rn), then for any f ∈ Lp(·)(Rn) and any

g ∈ Lp′(·)(Rn),

∫

Rn

|f(x)g(x)| dx 6 Cp‖f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn),

where Cp = 1 + 1/p− − 1/p+.

(ii) Assume that p(·), p1(·), p2(·) ∈ P(Rn) and 1/p(x) = 1/p1(x) + 1/p2(x), then

for any f ∈ Lp1(·)(Rn) and any g ∈ Lp2(·)(Rn),

‖fg‖Lp(·)(Rn) 6 Cp,p1‖f‖Lp1(·)(Rn)‖g‖Lp2(·)(Rn),

where Cp,p1 = (1 + 1/(p1)− − 1/(p1)+)
1/p− .

Lemma 2.2 ([6]). Let p(·) ∈ P(Rn). Then the following conditions are equiva-

lent:

(a) p(·) ∈ B(Rn),

(b) p′(·) ∈ B(Rn),

(c) p(·)/r ∈ B(Rn) for some 1 < r < p−,

(d) (p(·)/r)′ ∈ B(Rn) for some 1 < r < p−.
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Lemma 2.3 ([9]). Let q(·) ∈ B(Rn), then there exists a constant C > 0 such

that
1

|Q|
‖χQ‖Lq(·)(Rn)‖χQ‖Lq′(·)(Rn) 6 C

for all cubes Q in R
n.

The next result follows from Corollary 2.12 and Remark 2.13 of [4].

Lemma 2.4 ([4]). Let p(·), q(·) ∈ P(Rn), 0 < β < n/p+ and 1/q(x) = 1/p(x)−

β/n. If q(·)(n− β)/n ∈ B(Rn), then Mβ is bounded from Lp(·)(Rn) to Lq(·)(Rn).

It is easy to check that if p(·) ∈ P(Rn), 0 < β < n/p+ and 1/q(x) = 1/p(x) −

β/n, then q(·) ∈ P(Rn). So, under the assumptions of Lemma 2.4, q(·) ∈ P(Rn)

automatically follows from p(·) ∈ P(Rn).

In 2007, Capone, Cruz-Uribe and Fiorenza [2] proved that if p(·) ∈ P log(Rn),

0 < β < n/p+ and 1/q(x) = 1/p(x) − β/n, then Mβ is bounded from Lp(·)(Rn)

to Lq(·)(Rn). Remark 1.3 shows that Lemma 2.4 extends the corresponding result

in [2].

To state the extrapolation theorems, we recall the Muckenhoupt weights.

A locally integrable function ω : R
n → (0,∞) is called a weight. We say that

ω ∈ Ap, 1 < p < ∞, if there is a constant C > 0 such that for any cube Q ⊂ R
n,

(

1

|Q|

∫

Q

ω(x) dx

)(

1

|Q|

∫

Q

ω(x)1−p′

dx

)p−1

6 C,

where 1/p + 1/p′ = 1. We say that ω ∈ A1 if there is a constant C > 0 such that

Mω(x) 6 Cω(x) almost everywhere.

The extrapolation theorems (Lemma 2.5 and Lemma 2.6 below) are originally due

to Cruz-Uribe, Fiorenza, Martell and Pérez [4]. Here we use the form in [7], see

Theorem 7.2.1 and Theorem 7.2.3 in [7].

Lemma 2.5 ([7]). Given a family F of ordered pairs of measurable functions,

suppose that for some fixed 0 < p0 < ∞, every (f, g) ∈ F and every ω ∈ A1,

∫

Rn

|f(x)|p0ω(x) dx 6 C0

∫

Rn

|g(x)|p0ω(x) dx.

Let p(·) ∈ P(Rn) with p0 6 p−. If (p(·)/p0)
′ ∈ B(Rn), then there exists a constant

C > 0 such that for all (f, g) ∈ F ,

‖f‖Lp(·)(Rn) 6 C‖g‖Lp(·)(Rn).

188



Lemma 2.6 ([7]). Given a family F of ordered pairs of measurable functions,

suppose that for some fixed 0 < p0 < q0 < ∞, every (f, g) ∈ F and every ω ∈ A1,

(
∫

Rn

|f(x)|q0ω(x) dx

)1/q0

6 C0

(
∫

Rn

|g(x)|p0ω(x)p0/q0 dx

)1/p0

.

Let p(·) ∈ P(Rn) with p0 6 p− and 1/p0 − 1/q0 < 1/p+, and define q(x) by

1

q(x)
−

1

p(x)
=

1

q0
−

1

p0
.

If (q(·)/q0)
′ ∈ B(Rn), then there exists a constant C > 0 such that for all (f, g) ∈ F ,

‖f‖Lq(·)(Rn) 6 C‖g‖Lp(·)(Rn).

3. Some auxiliary results

In this section we will give some auxiliary results which are of independent interest

and will be used in the proof of the main result.

For b ∈ BMO(Rn) and 0 < β < n, define

Mb(f)(x) = sup
Q∋x

1

|Q|

∫

Q

|b(x)− b(y)||f(y)| dy

and

Mβ,b(f)(x) = sup
Q∋x

1

|Q|1−β/n

∫

Q

|b(x) − b(y)||f(y)| dy,

where the supremum is taken over all cubes Q ⊂ R
n containing x.

The next result follows from Theorem 3 of Segovia and Torrea [12].

Lemma 3.1. Let 1 < p < ∞ and b ∈ BMO(Rn). Then for any ω ∈ Ap, we have

∫

Rn

[Mb(f)(x)]
pω(x) dx 6 C

∫

Rn

|f(x)|pω(x) dx.

Let v be a weight function. We say v ∈ A(p, q) (1 < p, q < ∞), if there exists

a constant C such that for any cube Q ⊂ R
n, we have

(

1

|Q|

∫

Q

v(x)
−p′

dx

)1/p′
(

1

|Q|

∫

Q

v(x)
q
dx

)1/q

6 C.

By Theorem 3.2 of Segovia and Torrea [13], it is easy to get the following result.
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Lemma 3.2. Let 0 < β < n, 1 < p < n/β and 1/q = 1/p−β/n. If b ∈ BMO(Rn),

then for any v ∈ A(p, q),

(
∫

Rn

[Mβ,b(f)(x)v(x)]
q dx

)1/q

6 C

(
∫

Rn

|f(x)v(x)|p dx

)1/p

.

Theorem 3.1. Let b(x) ∈ L1
loc(R

n) and p(·) ∈ B(Rn). ThenMb is bounded from

Lp(·)(Rn) to itself if and only if b(x) ∈ BMO(Rn).

P r o o f. (i) We prove the “if” part first. Since p(·) ∈ B(Rn), it follows from

Lemma 2.2 that there exists p0 with 1 < p0 < p− such that (p(·)/p0)
′ ∈ B(Rn). For

this p0 and every ω ∈ A1 ⊂ Ap0 , by Lemma 3.1 we have

∫

Rn

[Mb(f)(x)]
p0ω(x) dx 6 C0

∫

Rn

|f(x)|p0ω(x) dx.

Therefore, the “if” part follows from Lemma 2.5 applied to the pair (Mb(f), f).

(ii) Now, let us prove the “only if” part. For any cube Q ⊂ R
n and any y ∈ Q, by

the definition of Mb, we have

1

|Q|

∫

Q

|b(y)− b(x)|χQ(x) dx 6 sup
Q′∋y

1

|Q′|

∫

Q′

|b(y)− b(x)|χQ(x) dx

= Mb(χQ)(y).

Applying Lemma 2.1 (i), the boundedness of Mb on L
p(·)(Rn) and Lemma 2.3, we

have

1

|Q|

∫

Q

|b(y)− bQ| dy =
1

|Q|

∫

Q

∣

∣

∣

∣

1

|Q|

∫

Q

(b(y)− b(x)) dx

∣

∣

∣

∣

dy

6
1

|Q|

∫

Q

(

1

|Q|

∫

Q

|b(y)− b(x)|χQ(x) dx

)

dy

6
1

|Q|

∫

Q

Mb(χQ)(y) dy

=
1

|Q|

∫

Rn

Mb(χQ)(y) · χQ(y) dy

6
C

|Q|
‖Mb(χQ)‖Lp(·)(Rn)‖χQ‖Lp′(·)(Rn)

6
C

|Q|
‖χQ‖Lp(·)(Rn)‖χQ‖Lp′(·)(Rn)

6 C,

which implies b(x) ∈ BMO(Rn). �
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In 2007, Xu [14] proved that if p(·) ∈ P log(Rn) and b(x) ∈ BMO(Rn) then Mb is

bounded from Lp(·)(Rn) to itself (see Theorem 1.3 in [14]). Obviously, p(·) ∈ B(Rn)

is weaker than p(·) ∈ P log(Rn). So, Theorem 3.1 extends Xu’s result in [14].

Theorem 3.2. Let b(x) ∈ L1
loc(R

n) and (p(·), q(·)) ∈ Pβ
p,q(R

n). Then Mβ,b is

bounded from Lp(·)(Rn) to Lq(·)(Rn) if and only if b(x) ∈ BMO(Rn).

P r o o f. (i) We first prove the “if” part. Since p(·) ∈ P(Rn) and

1

q(x)
=

1

p(x)
−

β

n
6

1

p−
−

β

n
,

we have
n

n− β
<

np−
n− βp−

6 q(x).

Noting that q(·)(n−β)/n ∈ B(Rn), by Remark 1.2 there exists s with n/(n−β) <

s < ∞ such that q(·)/s ∈ B(Rn). If s 6 np−/(n − βp−), then we take r = 1. If

s > np−/(n − βp−), then we take r = s(n− βp−)/np− > 1. Setting q0 = s/r, we

have
n

n− β
< q0 6

np−
n− βp−

6 q(x).

Since r > 1 and q(·)/s ∈ B(Rn), we have q(·)/q0 = rq(·)/s ∈ B(Rn) from

Remark 1.1. By Lemma 2.2, we have (q(·)/q0)
′ ∈ B(Rn).

Define p0 by 1/q0 = 1/p0 − β/n, then 1 < p0 < n/β and

1

p(x)
−

1

q(x)
=

1

p0
−

1

q0
=

β

n
.

This together with q0 6 q(x) gives p0 6 p−.

For any ω ∈ A1 we have ω ∈ A1+q0/p′

0
. Set v(x)q0 = ω(x), then vq0 ∈ A1+q0/p′

0
,

which implies v ∈ A(p0, q0). By Lemma 3.2,

(
∫

Rn

[Mβ,b(f)(x)]
q0ω(x) dx

)1/q0

6 C

(
∫

Rn

|f(x)|p0ω(x)p0/q0 dx

)1/p0

.

Applying Lemma 2.6 to the pair (Mβ,b(f), f), we have

‖Mβ,b(f)‖Lq(·)(Rn) 6 C‖f‖Lp(·)(Rn).

So, the proof of the “if” part is completed.
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(ii) Now, we prove the “only if” part. For any cube Q ⊂ R
n, by the definition of

Mβ,b and applying Lemma 2.1 (i) and the boundedness of Mβ,b, we have

1

|Q|

∫

Q

|b(y)− bQ| dy =
1

|Q|

∫

Q

∣

∣

∣

∣

1

|Q|

∫

Q

(b(y)− b(x)) dx

∣

∣

∣

∣

dy

6
1

|Q|1+β/n

∫

Q

(

1

|Q|1−β/n

∫

Q

|b(y)− b(x)|χQ(x) dx

)

dy

6
1

|Q|1+β/n

∫

Q

Mβ,b(χQ)(y) dy

=
1

|Q|1+β/n

∫

Rn

Mβ,b(χQ)(y) · χQ(y) dy

6
C

|Q|1+β/n
‖Mβ,b(χQ)‖Lq(·)(Rn)‖χQ‖Lq′(·)(Rn)

6
C

|Q|1+β/n
‖χQ‖Lp(·)(Rn)‖χQ‖Lq′(·)(Rn).

Noting that 1/p(x) = 1/q(x) + β/n and p(·), q(·) ∈ P(Rn), by Lemma 2.1 (ii) we

get

‖χQ‖Lp(·)(Rn) 6 C‖χQ‖Lq(·)(Rn)|Q|β/n.

Applying Lemma 2.3, we obtain

1

|Q|

∫

Q

|b(y)− bQ| dy 6
C

|Q|1+β/n
‖χQ‖Lq(·)(Rn)|Q|β/n‖χQ‖Lq′(·)(Rn) 6 C,

which implies b(x) ∈ BMO(Rn). So, the proof of Theorem 3.2 is completed. �

Theorem 3.3. Let p(·) ∈ B(Rn). If 0 6 b(x) ∈ BMO(Rn), then [M, b] is

bounded from Lp(·)(Rn) to itself.

P r o o f. For a fixed x ∈ R
n such that Mf(x) < ∞, noting that b > 0, we have

(3.1) |[M, b]f(x)| = |M(bf)(x)− b(x)M(f)(x)|

=

∣

∣

∣

∣

sup
Q∋x

1

|Q|

∫

Q

b(y)|f(y)| dy − sup
Q∋x

1

|Q|

∫

Q

b(x)|f(y)| dy

∣

∣

∣

∣

6 sup
Q∋x

1

|Q|

∫

Q

|b(x)− b(y)||f(y)| dy

= Mb(f)(x).

Since Mf(x) < ∞ for a.e. x ∈ R
n when f ∈ Lp(·)(Rn) and p(·) ∈ B(Rn), (3.1)

is valid almost everywhere in R
n. Noting that b ∈ BMO(Rn), it follows from Theo-

rem 3.1 that [M, b] is bounded from Lp(·)(Rn) to itself. �
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Theorem 3.4. Let (p(·), q(·)) ∈ Pβ
p,q(R

n). If 0 6 b(x) ∈ BMO(Rn), then [Mβ , b]

is bounded from Lp(·)(Rn) to Lq(·)(Rn).

P r o o f. For a fixed x ∈ R
n, noting that b > 0, we have

|[Mβ, b]f(x)| = |Mβ(bf)(x)− b(x)Mβ(f)(x)|

6

∣

∣

∣

∣

sup
Q∋x

1

|Q|1−β/n

∫

Q

b(y)|f(y)| dy − sup
Q∋x

1

|Q|1−β/n

∫

Q

b(x)|f(y)| dy

∣

∣

∣

∣

6 sup
Q∋x

1

|Q|1−β/n

∣

∣

∣

∣

∫

Q

[b(y)− b(x)]|f(y)| dy

∣

∣

∣

∣

6 sup
Q∋x

1

|Q|1−β/n

∫

Q

|b(x)− b(y)||f(y)| dy

= Mβ,b(f)(x).

By Theorem 3.2, we see that [Mβ, b] is bounded from Lp(·)(Rn) to Lq(·)(Rn). �

It is easy to see that if p(·) ∈ P log(Rn), then the conclusions of Theorem 3.1 and

Theorem 3.3 also hold. If p(·) ∈ P log(Rn), 0 < β < n/p+ and 1/q(·) = 1/p(·)−β/n,

then the conclusions of Theorem 3.2 and Theorem 3.4 also hold.

4. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. To do this, we give two lemmas first.

Lemma 4.1. Let b(x) ∈ L1
loc(R

n) and (p(·), q(·)) ∈ Pβ
p,q(R

n). If [Mβ, b] is

bounded from Lp(·)(Rn) to Lq(·)(Rn), then b ∈ BMO(Rn) and

(4.1) sup
Q

‖(b− |Q|−β/nMβ,Q(b))χQ‖Lq(·)(Rn)

‖χQ‖Lq(·)(Rn)

< ∞.

P r o o f. Since for any fixed cube Q and all x ∈ Q we have (see (2.4) in [15])

(4.2) Mβ(χQ)(x) = Mβ,Q(χQ)(x) = |Q|β/n and Mβ(bχQ)(x) = Mβ,Q(b)(x),

and since [Mβ, b] is bounded from Lp(·)(Rn) to Lq(·)(Rn), we have

‖(b− |Q|−β/nMβ,Q(b))χQ‖Lq(·)(Rn) = |Q|−β/n‖(b|Q|β/n −Mβ,Q(b))χQ‖Lq(·)(Rn)

6 |Q|−β/n‖bMβ(χQ)−Mβ(bχQ)‖Lq(·)(Rn)

= |Q|−β/n‖[Mβ, b]χQ‖Lq(·)(Rn)

6 C|Q|−β/n‖χQ‖Lp(·)(Rn).
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Noting that 1/p(·) = 1/q(·) + β/n and applying Lemma 2.1 (ii), we have

(4.3) ‖χQ‖Lp(·)(Rn) 6 C‖χQ‖Lq(·)(Rn)|Q|β/n.

Then

‖(b− |Q|−β/nMβ,Q(b))χQ‖Lq(·)(Rn) 6 C‖χQ‖Lq(·)(Rn),

which implies (4.1).

Now, let us prove b ∈ BMO(Rn). For any cube Q, let E = {x ∈ Q : b(x) 6 bQ}

and F = {x ∈ Q : b(x) > bQ}. The following equality is trivially true (see [1],

page 3331):
∫

E

|b(x)− bQ| dx =

∫

F

|b(x) − bQ| dx.

Since b(x) 6 bQ 6 |bQ| 6 |Q|−β/nMβ,Q(b)(x) for any x ∈ E, we obtain

|b(x)− bQ| 6 |b(x)− |Q|−β/nMβ,Q(b)(x)|, x ∈ E.

Therefore,

(4.4)
1

|Q|

∫

Q

|b(x)− bQ| dx =
1

|Q|

∫

E∪F

|b(x)− bQ| dx

=
2

|Q|

∫

E

|b(x)− bQ| dx

6
2

|Q|

∫

E

|b(x)− |Q|−β/nMβ,Q(b)(x)| dx

6
2

|Q|

∫

Q

|b(x)− |Q|−β/nMβ,Q(b)(x)| dx.

On the other hand, by Lemma 2.1 (i), (4.1) and Lemma 2.3 we get

1

|Q|

∫

Q

|b(x)− |Q|−β/nMβ,Q(b)(x)| dx

6
C

|Q|
‖(b− |Q|−β/nMβ,Q(b))χQ‖Lq(·)(Rn)‖χQ‖Lq′(·)(Rn)

6
C

|Q|
‖χQ‖Lq(·)(Rn)‖χQ‖Lq′(·)(Rn)

6 C.

This along with (4.4) gives

1

|Q|

∫

Q

|b(x) − bQ| dx 6 C.

So, by the definition of BMO, we obtain b ∈ BMO(Rn). �
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The following result was proved by Bastero, Milman and Ruiz, see Proposition 4

in [1].

Lemma 4.2 ([1]). Let b(x) ∈ L1
loc(R

n). If

sup
Q

1

|Q|

∫

Q

|b(x)−MQ(b)(x)| dx < ∞,

then b ∈ BMO(Rn) and b− ∈ L∞(Rn).

P r o o f of Theorem 1.1. Since the implications (2) ⇒ (3) and (5) ⇒ (4) follow

readily, we only have to prove (1) ⇒ (2), (3) ⇒ (4) and (4) ⇒ (1) (the implication

(2) ⇒ (5) is similar to (3) ⇒ (4)).

(1) =⇒ (2). Using the definition of [Mβ , b], the triangle’s inequality, and noting

that |b(x)| − b(x) = 2b−(x) and Mβ(bf)(x) = Mβ(|b|f)(x), we obtain

|[Mβ, b]f(x)− [Mβ, |b|]f(x)|

= |Mβ(bf)(x)− b(x)Mβ(f)(x) −Mβ(|b|f)(x) + |b(x)|Mβ(f)(x)|

6 |Mβ(bf)(x)−Mβ(|b|f)(x)|+ |2b−(x)Mβ(f)(x)|

= 2b−(x)Mβ(f)(x).

Hence, we get

|[Mβ, b]f(x)| 6 |[Mβ , b]f(x)− [Mβ , |b|]f(x)|+ |[Mβ, |b|]f(x)|

6 2b−(x)Mβ(f)(x) + |[Mβ , |b|]f(x)|.

Noting that |b| ∈ BMO(Rn) when b ∈ BMO(Rn), it follows from Lemma 2.4,

Theorem 3.4 and b− ∈ L∞(Rn) that for all (p(·), q(·)) ∈ Pβ
p,q(R

n),

‖[Mβ, b]f‖Lq(·)(Rn) 6 2‖b−‖L∞(Rn)‖Mβ(f)‖Lq(·)(Rn) + ‖[Mβ, |b|]f‖Lq(·)(Rn)

6 C‖f‖Lp(·)(Rn).

(3) =⇒ (4). For any fixed cubes Q ⊂ R
n and all x ∈ Q, we have (see the proof of

Proposition 4 in [1])

M(χQ)(x) = MQ(χQ)(x) = χQ(x)

and

M(bχQ)(x) = MQ(b)(x),

which combined with (4.2) gives (for details see [15], page 1238)

(4.5) Mβ,Q(b)(x) − |Q|β/nMQ(b)(x) = [Mβ, |b|](χQ)(x) − |Q|β/n[M, |b|](χQ)(x).
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Recall that assertion (3) says that for some (p(·), q(·)) ∈ Pβ
p,q(R

n), [Mβ, b] is

bounded from Lp(·)(Rn) to Lq(·)(Rn). By Lemma 4.1 we have b ∈ BMO(Rn) and

there is a constant C > 0 such that for any cube Q ⊂ R
n,

(4.6) ‖(b− |Q|−β/nMβ,Q(b))χQ‖Lq(·)(Rn) 6 C‖χQ‖Lq(·)(Rn).

Noting that 0 6 |b| ∈ BMO(Rn) when b ∈ BMO(Rn), it follows from (4.5), (4.6),

Theorem 3.3 and Theorem 3.4 that

‖(b−MQ(b))χQ‖Lq(·)(Rn)

= ‖(b− |Q|−β/nMβ,Q(b) + |Q|−β/nMβ,Q(b)−MQ(b))χQ‖Lq(·)(Rn)

6 C‖(b− |Q|−β/nMβ,Q(b))χQ‖Lq(·)(Rn)

+ C‖(|Q|−β/nMβ,Q(b)−MQ(b))χQ‖Lq(·)(Rn)

6 C‖χQ‖Lq(·)(Rn) + C|Q|−β/n‖(Mβ,Q(b)− |Q|β/nMQ(b))χQ‖Lq(·)(Rn)

6 C‖χQ‖Lq(·)(Rn) + C|Q|−β/n‖[Mβ, |b|](χQ)− |Q|β/n[M, |b|](χQ)‖Lq(·)(Rn)

6 C‖χQ‖Lq(·)(Rn) + C|Q|−β/n‖[Mβ, |b|](χQ)‖Lq(·)(Rn) + C‖[M, |b|](χQ)‖Lq(·)(Rn)

6 C‖χQ‖Lq(·)(Rn) + C|Q|−β/n‖χQ‖Lp(·)(Rn) + C‖χQ‖Lq(·)(Rn)

6 C‖χQ‖Lq(·)(Rn),

where in the last step we have used (4.3).

So, the proof of “(3) =⇒ (4)” is complete.

(4) =⇒ (1). Since q(·)(n − β)/n ∈ B(Rn) hence by Remark 1.1 we have q(·) ∈

B(Rn). For any fixed cube Q, by Lemma 2.1 (i), assertion (4) and Lemma 2.3, we

have

1

|Q|

∫

Q

|b(x)−MQ(b)(x)| dx 6
C

|Q|
‖(b−MQ(b))χQ‖Lq(·)(Rn)‖χQ‖Lq′(·)(Rn)

6
C

|Q|
‖χQ‖Lq(·)(Rn)‖χQ‖Lq′(·)(Rn)

6 C.

This along with Lemma 4.2 gives that b ∈ BMO(Rn) and b− ∈ L∞(Rn). �

Remark 4.1. Lemma 4.1 says that if b(x) ∈ L1
loc(R

n), (p(·), q(·)) ∈ Pβ
p,q(R

n)

and [Mβ , b] is bounded from Lp(·)(Rn) to Lq(·)(Rn), then (4.1) holds. From the proof

of Lemma 4.1 we see that (4.1) implies b ∈ BMO(Rn), but we do not know whether

(4.1) implies b− ∈ L∞(Rn). So, it is natural to ask whether (4.1) is equivalent to

any of the assertions in Theorem 1.1.
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