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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 4 , PAGES 6 3 2 – 6 4 2

SWITCHED MODIFIED FUNCTION PROJECTIVE
SYNCHRONIZATION BETWEEN TWO COMPLEX
NONLINEAR HYPERCHAOTIC SYSTEMS BASED
ON ADAPTIVE CONTROL AND PARAMETER
IDENTIFICATION

Xiaobing Zhou, Murong Jiang and Yaqun Huang

This paper investigates adaptive switched modified function projective synchronization be-
tween two complex nonlinear hyperchaotic systems with unknown parameters. Based on adap-
tive control and parameter identification, corresponding adaptive controllers with appropriate
parameter update laws are constructed to achieve switched modified function projective syn-
chronization between two different complex nonlinear hyperchaotic systems and to estimate the
unknown system parameters. A numerical simulation is presented to demonstrate the validity
and feasibility of the proposed controllers and update laws.

Keywords: modified function projective synchronization, switched state, hyperchaotic sys-
tem, complex variable, adaptive control

Classification: 34C28, 34D06, 34H10

1. INTRODUCTION

Since Fowler etc. [9] introduced a complex Lorenz model to generalize the real Lorenz
model in 1982, complex chaotic and hyperchaotic systems have attracted increasing
attention due to the fact that the systems with complex variables can be used to describe
the physics of a detuned laser, rotating fluids, disk dynamos, electronic circuits, and
particle beam dynamics in high energy accelerators [17]. When applying the complex
systems in communications, the complex variables will double the number of variables
and can increase the content and security of the transmitted information. Many more
complex chaotic and hyperchaotic systems have been proposed after the complex Lorenz
model. In ref. [18], the authors studied chaotic unstable limit cycles of complex Van
der Pol oscillators. The rich dynamical behaviors of the complex Chen and complex Lü
systems were investigated in [19]. By adding state feedback controllers to their complex
chaotic systems, complex hyperchaotic Chen, Lorenz, Lü systems were introduced and
studied in [20] – [22], respectively. The authors [23] constructed a complex nonlinear
hyperchaotic system by adding a cross-product nonlinear term to the complex Lorenz
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system. A complex modified hyperchaotic Lü system [24] were proposed by introducing
complex variables to its real counterpart.

In 1990 [27], Pecora and Carroll introduced the concept of synchronizing two identi-
cal chaotic systems starting from different initial conditions. Over the last two decades,
synchronization in chaotic systems has been extensively investigated. A wide variety of
synchronization phenomena have been proposed, which include complete synchroniza-
tion [15], lag synchronization [1], generalized synchronization [10], phase synchronization
[15], anti-synchronization [14], partial synchronization [30], practical synchronization
[16], projective synchronization [8], etc. Among the above-mentioned synchronization
phenomena, projective synchronization has been investigated with increasing interest in
recent years due to the fact that it can obtain faster communication with its proportional
feature [7, 8, 31, 33]. The concept of projective synchronization was first introduced by
Mainieri and Rehacek in 1999 [26], in which the drive and response systems could be
synchronized up to a constant scaling factor. Later on, Li [12] proposed a new synchro-
nization scheme called modified projective synchronization (MPS), in which the drive
and response dynamical states synchronize up to a constant scaling matrix. Afterwards,
Chen et al. [2] extended the modified projective synchronization and proposed function
projective synchronization (FPS), in which the drive and response dynamical states syn-
chronize up to a scaling function matrix, but not a constant one. Recently, Du et al. [6]
discussed a new type of synchronization phenomenon, modified function projective syn-
chronization (MFPS), in which the drive and response systems could be synchronized
up to a desired scaling function matrix. In [13], the authors discussed the MFPS of
general complex nonlinear chaotic systems.

Lately, Sudheer and Sabir [29] reported switched modified function projective syn-
chronization (SMFPS) of a hyperchaotic system using adaptive control method, in which
a state variable of the drive system synchronize with a different state variable of the
response system up to a desired scaling function matrix. In [32], the authors achieved
SMFPS of a five-term three-dimensional autonomous chaotic system. The unpredictabil-
ity of the switched states and scaling function matrix in SMFPS can provide additional
security in securess communication. In the following, we investigate the SMFPS between
two complex nonlinear hyperchaotic systems.

This paper is organized as follows. Section 2 introduces the switched modified func-
tion projective synchronization scheme and two complex nonlinear hyperchaotic systems.
In Section 3, we propose appropriate adaptive controllers and parameter update laws
for the adaptive switched modified function projective synchronization of two different
complex nonlinear hyperchaotic systems. Section 4 presents a numerical example to
illustrate the effectiveness of the proposed method. Finally, conclusions are given in
Section 5.

2. A BRIEF DESCRIPTION OF SMFPS DEFINITION AND TWO COMPLEX
NONLINEAR HYPERCHAOTIC SYSTEMS

Consider the following two nonlinear dynamical systems:

Ẋ = F (X), (1)

Ẏ = G(Y ) + U(X, Y, t) (2)
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where system (1) is the drive system and system (2) is the response system. X =
(x1, x2, . . . , xn)T , Y = (Y1, Y2, . . . , Yn)T are state vectors of the systems (1) and (2),
respectively. F,G : Rn → Rn are two continuous vector functions. U(X, Y, t) is the
controller vector to be designed.

If we define the error state as

ei = yi − φi(t)xj , (i, j = 1, 2, . . . , n, i 6= j) (3)

where Φ(t) = diag(φ1(t), φ2(t), . . . , φn(t)) is an n-order diagonal matrix, and φi(t) is a
continuously differentiable function, φi(t) 6= 0 for all t.

Definition 2.1. The drive system (1) and the response system(2) are said to be switched
modified function projective synchronization (SMFPS) if there exists a scaling function
matrix Φ(t) such that

lim
t→∞

‖ei‖ = lim
t→∞

‖yi − φi(t)xj‖ = 0, (i, j = 1, 2, . . . , n, i 6= j). (4)

Remark 1. In the definition of SMFPS, if let i = j, then the SMFPS is simplified to
the MFPS [6].

Recently, the authors [23] constructed a new complex nonlinear hyperchaotic system
by adding a cross-product nonlinear term to the first equation of the complex Lorenz
system [9]. This new system takes the following form

ẋ = a(y − x) + yz,

ẏ = cx− y − xz,

ż = −bz +
1
2
(x̄y + xȳ),

(5)

where a, b and c are positive parameters, x and y are complex variables, and z is a
real variable and the overbar denotes a complex conjugate variable. Compared with
the complex Lorenz system [9], this system possesses certain distinctive characteristics,
such as having two circles of equilibria and large parameter intervals of hyperchaotic
and chaotic behavior [23].

Lately, a novel hyperchaotic complex system [25] which generates 2-, 3- and 4-scroll
attractors is introduced and described by

ẋ = y − ax + byz,

ẏ = cy − xz + z,

ż =
d

2
(x̄y + xȳ)− hz,

(6)

where a, b, c, d, and h are positive parameters, x and y are complex variables, and z is
a real variable and the overbar denotes a complex conjugate variable. This system’s
hyperchaotic attractors exist for large ranges of system parameters.

For more details about the dynamical behaviors of these two complex nonlinear hy-
perchaotic systems (5) and (6) , please refer to [23] and [25]. Since the real counterparts
of these two systems only exhibit chaotic behaviors while these two systems with com-
plex variables exhibit hyperchaotic behaviors, it’s very important to investigate their
applications. In the following, we’d like to investigate SMPFS between them.
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3. ADAPTIVE SMPFS BETWEEN TWO COMPLEX NONLINEAR
HYPERCHAOTIC SYSTEMS WITH UNKNOWN PARAMETERS

In this section, we investigate the adaptive switched modified function projective syn-
chronization between the two complex nonlinear hyperchaotic systems (5) and (6) with
unknown parameters.

Suppose that system (5) is the drive system whose three variables are denoted by
subscript 1 and system (6) is the response system whose variables are denoted by sub-
script 2. Therefore, the drive and response systems are described, respectively, by the
following equations: 

ẋ1 = a1(y1 − x1) + y1z1,

ẏ1 = c1x1 − y1 − x1z1,

ż1 = −b1z1 +
1
2
(x̄1y1 + x1ȳ1),

(7)

and 
ẋ2 = y2 − a2x2 + b2y2z2 + U1,

ẏ2 = c2y2 − x2z2 + z2 + U2,

ż2 =
d2

2
(x̄2y2 + x2ȳ2)− h2z2 + U3,

(8)

where x1 = v1 + iv2, y1 = v3 + iv4, z1 = v5, and x2 = u1 + iu2, y2 = u3 + iu4, z2 = u5,
vi and ui(i = 1, 2, 3, 4, 5) are real functions, and U1 = µ1 + iµ2, U2 = µ3 + iµ4, U3 = µ5,
µi(i = 1, 2, 3, 4, 5) are real control functions to be determined later.

In order to achieve SMFPS between the drive and response systems, we define error
states between systems (7) and (8) as

e1 + ie2 = x2 − φ1(t)y1,

e3 + ie4 = y2 − φ2(t)x1,

e5 = z2 − φ3(t)z1,

(9)

where φi(t)(i = 1, 2, 3) are scaling functions, such that
lim

t→∞
‖x2 − φ1(t)y1‖ = 0,

lim
t→∞

‖y2 − φ2(t)x1‖ = 0,

lim
t→∞

‖z2 − φ3(t)z1‖ = 0.

(10)

Thus, we have the following error dynamical system
ė1 + iė2 = ẋ2 − φ1(t)ẏ1 − φ̇1(t)y1,

ė3 + iė4 = ẏ2 − φ2(t)ẋ1 − φ̇2(t)x1,

ė5 = ż2 − φ3(t)ż1 − φ̇3(t)z1.

(11)
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Separating the real and imaginary parts of the above equation, yields

ė1 = u3 − a2u1 + b2u3u5 − φ1(t)(c1v1 − v1v5 − v3)− φ̇1(t)v3 + µ1,

ė2 = u4 − a2u2 + b2u4u5 − φ1(t)(c1v2 − v2v5 − v4)− φ̇1(t)v4 + µ2,

ė3 = c2u3 − u1u5 + u5 − φ2(t)(a1(v3 − v1) + v3v5)− φ̇2(t)v1 + µ3,

ė4 = c2u4 − u2u5 − φ2(t)(a1(v4 − v2) + v4v5)− φ̇2(t)v2 + µ4,

ė5 = d2(u1u3 + u2u4)− h2u5 − φ3(t)(−b1v5 + (v1v3 + v2v4))− φ̇3(t)v5 + µ5.

(12)

Our aim is to find appropriate controllers µi(i = 1, 2, 3, 4, 5) to stabilize the error states
of system (12) at the origin. For this purpose, we propose the following controllers

µ̇1 = −u3 + ã2u1 − b̃2u3u5 + φ1(c̃1v1 − v1v5 − v3) + φ̇1v3 − k1e1,

µ̇2 = −u4 + ã2u2 − b̃2u4u5 + φ1(c̃1v2 − v2v5 − v4) + φ̇1v4 − k2e2,

µ̇3 = −c̃2u3 + u1u5 − u5 + φ2(ã1(v3 − v1) + v3v5) + φ̇2v1 − k3e3,

µ̇4 = −c̃2u4 + u2u5 + φ2(ã1(v4 − v2) + v4v5) + φ̇2v2 − k4e4,

µ̇5 = −d̃2(u1u3 + u2u4) + h̃2u5 + φ3(−b̃1v5 + (v1v3 + v2v4)) + φ̇3v5 − k5e5,

(13)

and update laws for the unknown parameters a1, b1, c1, a2, b2, c2, d2 and h2 are given as
follows 

˙̃a1 = −φ2(t)((v3 − v1)e3 + (v4 − v2)e4)− k6(ã1 − a1),
˙̃
b1 = φ3(t)v5e5 − k7(b̃1 − b1),
˙̃c1 = −φ1(t)(v1e1 + v2e2)− k8(c̃1 − c1),
˙̃a2 = −u1e1 − u2e2 − k9(ã2 − a2),
˙̃
b2 = u3u5e1 + u4u5e2 − k10(b̃2 − b2),
˙̃c2 = u3e3 + u4e4 − k11(c̃2 − c2),
˙̃
d2 = (u1u3 + u2u4)e5 − k12(d̃2 − d2),
˙̃
h2 = −u5e5 − k13(h̃2 − h2),

(14)

where ã1, b̃1, c̃1, ã2, b̃2, c̃2, d̃2 and h̃2 are the estimate values for these unknown parame-
ters, respectively, and ki > 0 (k = 1, 2, . . . , 13). Then, we arrive at the following result.

Theorem 3.1. For a given continuous differential scaling function matrix Φ(x) =
= diag{φ1, φ2, φ3}, and any initial values, the SMFPS between systems (7) and (8) can
be achieved by the adaptive controllers (13) and the parameter update laws (14), and
satisfying

lim
t→∞

|ã1 − a1| = lim
t→∞

|b̃1 − b1| = lim
t→∞

|c̃1 − c1| = lim
t→∞

|ã2 − a2| = lim
t→∞

|b̃2 − b2|

= lim
t→∞

|c̃2 − c2| = lim
t→∞

|d̃2 − d2| = lim
t→∞

|h̃2 − h2| = 0.
(15)
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P r o o f . Construct the following Lyapunov function

V =
1
2
(e2

1 + e2
2 + e2

3 + e2
4 + e2

5 + e2
a1

+ e2
b1 + e2

c1
+ e2

a2
+ e2

b2 + e2
c2

+ e2
d2

+ e2
h2

) (16)

where ea1 = a1 − ã1, eb1 = b1 − b̃1, ec1 = c1 − c̃1, ea2 = a2 − ã2, eb2 = b2 − b̃2, ec2 =
c2 − c̃2, ed2 = d2 − d̃2, eh2 = h2 − h̃2.

Taking the time derivative of V along the trajectory of the error dynamical system
(12) yields

V̇ =ė1e1 + ė2e2 + ė3e3 + ė4e4 + ė5e5 + ėa1ea1 + ėb1eb1 + ėc1ec1

+ ėa2ea2 + ėb2eb2 + ėc2ec2 + ėd2ed2 + ėh2eh2

=ė1e1 + ė2e2 + ė3e3 + ė4e4 + ė5e5

+ ea1(− ˙̃a1) + eb1(−
˙̃
b1) + ec1(− ˙̃c1) + ea2(− ˙̃a2) + eb2(−

˙̃
b2)

+ ec2(− ˙̃c2) + ed2(−
˙̃
d2) + eh2(−

˙̃
h2).

(17)

Substituting Eqs. (13) and (14) into Eq. (17) yields

V̇ =− k1e
2
1 − k2e

2
2 − k3e

2
3 − k4e

2
4 − k5e

2
5

− k6e
2
a1
− k7e

2
b1 − k8e

2
c1
− k9e

2
a2
− k10e

2
b2 − k11e

2
c2
− k12e

2
d2
− k13e

2
h2

=− eT Ke

(18)

where e = (e1, e2, e3, e4, e5, ea1 , eb1 , ec1 , ea2 , eb2 , ec2 , ed2 , eh2)
T

and K = diag{k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13}.
Since V̇ ≤ 0, we have e1, e2, e3, e4, e5, ea1 , eb1 , ec1 , ea2 , eb2 , ec2 , ed2 , eh2 → 0 as t →∞,

i. e. limt→∞ ‖ e ‖= 0. Therefore, the drive system (7) and response system (8) achieve
SMFPS.

This completes the proof. �

4. A NUMERICAL SIMULATION

In this section, we perform a numerical simulation to demonstrate the effectiveness of
the previous theoretical analysis. In the following numerical simulation, the fourth-
order Runge–Kutta method [11] is used to solve the systems with time step size 0.01.
The true values of the “unknown” parameters of systems (7) and (8) are chosen as
a1 = 30, b1 = 11, c1 = 90, a2 = 3.5, b2 = 0.599, c2 = 3, d2 = 2 and h2 = 9,
so that the two systems exhibit hyperchaotic behavior, respectively. The initial val-
ues for the drive and response systems are (x1(0), y1(0), z1(0)) = (2 + 4i, 1 + 3i, 2)
and (x2(0), y2(0), z2(0)) = (5 + 2i,−1 + i,−4), thus (v1(0), v2(0), v3(0), v4(0), v5(0)) =
(2, 4, 1, 3, 2) and (u1(0), u2(0), u3(0), u4(0), u5(0)) = (5, 2,−1, 1,−4), respectively. The
initial values of the parameter estimation update laws are ã1(0) = b̃1(0) = c̃1(0) =
ã2(0) = b̃2(0) = c̃2(0) = d̃2(0) = h̃2(0) = 0.1. The function factors are given as
φ1(t) = 0.1 sin(−0.2πt)+ 0.3, φ2(t) = 0.2 sin(0.3πt)− 0.1, φ3(t) = −0.2 sin(0.4πt)+ 0.2,
the control gains are chosen as ki = 1 (i = 1, 2, . . . , 13). The simulation results are
shown in Figures 1 – 3. Figure 1 demonstrates the SMFPS errors between the drive
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system (7) and response system (8). From this figure, it can be seen that the SMFPS
errors converge to zero, i. e., these two systems achieve SMFPS. And Figures 2 – 3 show
that the unknown system parameters approach the true values.
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Fig. 1. The time evolution of SMFPS errors for the drive system (7)

and response system (8) with controllers (13) and parameter update

laws (14), where e1 = u1 − (0.1 sin(−0.2πt) + 0.3)v3, e2 =

u2 − (0.1 sin(−0.2πt) + 0.3)v4, e3 = u3 − (0.2 sin(0.3πt)− 0.1)v1, e4 =

u4 − (0.2 sin(0.3πt)− 0.1)v2, e5 = u5 − (−0.2 sin(0.4πt) + 0.2)v5.

5. CONCLUSIONS

In this paper, we have investigated switched modified function projective synchroniza-
tion between two different complex nonlinear hyperchaotic systems with fully unknown
parameters, in which a state variable of the drive system synchronizes with a different
state variable of the response system up to a scaling function matrix. Based on adaptive
control and parameter identification, the appropriate adaptive controllers with param-
eter update laws are proposed to achieve SMFPS between the two different complex
nonlinear hyperchaotic systems and to estimate the unknown system parameters. A nu-
merical simulation is conducted to illustrate the validity and feasibility of the proposed
adaptive controllers and parameter update laws. Recently, many researchers have begun
to give their attention to the multiscroll chaotic systems [28] and the networked chaotic
systems [3] – [5]. Consequently, we will investigate the SMFPS of these systems in our
future work.
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Fig. 2. The time evolution of the estimated unknown parameters of
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Fig. 3. The time evolution of the estimated unknown parameters of
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system. Nonlinear Dyn. 58 (2009), 725–738.

[23] G. M. Mahmoud, M. A. Al-Kashif, and A. A. Farghaly: Chaotic and hyperchaotic attrac-
tors of a complex nonlinear system. J. Phys. A: Math. Theor. 41 (2008), 055104.

[24] G. M. Mahmoud, M. E. Ahmed, and N. Sabor: On autonomous and nonautonomous
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