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Abstract. In this paper, we consider mortar-type Crouzeix-Raviart element discretiza-
tions for second order elliptic problems with discontinuous coefficients. A preconditioner
for the FETI-DP method is proposed. We prove that the condition number of the precon-
ditioned operator is bounded by (1 + log(H/h))2, where H and h are mesh sizes. Finally,
numerical tests are presented to verify the theoretical results.
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1. Introduction

Models with discontinuous coefficients play an important role in scientific com-

puting, for instance, in the simulation of fluid flow in porous media, where the

permeability of the media may have large jumps across subdomain interfaces. Large

jumps in the coefficients may result in bad convergence for the iterative methods.

Nonconforming discretizations are important formulti-physics simulations, contact-

impact problems, generations of grids and partitions aligned with jumps in diffusion

coefficients, hp-adaptive methods and special discretizations in the neighborhood of

singularities. In order to make sure that the overall discretization makes sense, an
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No. 12KJB110013), the Doctoral Fund of Ministry of Education of China (Grant
No. 20123207120001), and the Project of Graduate Education Innovation of Jiangsu
Province (CXZZ13 0387).
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optimal coupling between the grids is required. Of the many methods for coupling

different discretization schemes, we consider the mortar method, which was first

introduced by Bernardi, Maday, and Patera in [1]. In the standard mortar method,

we need to know the function on the interface. For P1 conforming elements, it is

enough to know the node values along the interface. However, when it comes to

Crouzeix-Raviart elements, the function on the interface depends on the node values

corresponding to interface nodes and some subdomain interior nodes lying closest

to the interface. In this paper, we adopt the nonstandard mortar condition for

Crouzeix-Raviart element discretizations introduced by Xu Xuejun et al. [18], which

is only associated with the node values on the interface in the calculation of the

mortar condition.

The domain decomposition methods and especially FETI-DP methods form a class

of fast and efficient iterative solvers for algebraic systems of equations arising from

the finite element discretizations of PDEs, cf. [4], [5], [7], [8], [9], [17]. Recently,

FETI-DP methods have been applied to mortar-type finite element methods, cf. [10],

[13]. There has been also some work about FETI-DP methods for Crouzeix-Raviart

element discretizations, cf. [16].

To our best knowledge, there is no work in the literature on the preconditioners

for FETI-DP methods for solving systems of equations discretized by mortar-type

Crouzeix-Raviart elements of second order problems with discontinuous coefficients.

In this paper, we are interested in the application of the nonstandard mortar con-

dition on nonmatching grids, where in each subgrid, Crouzeix-Raviart elements are

used for the discretization. We extend the results of Kim and Lee [6] to mortar-type

Crouzeix-Raviart element discretizations.

The paper is organized as follows: We describe mortar-type Crouzeix-Raviart ele-

ment discretizations for second order elliptic problems with discontinuous coefficients

in Section 2. In Section 3, the FETI-DP operator is introduced, then a parallel pre-

conditioner for the FETI-DP operator is proposed in Section 4. Sections 5–6 are

devoted to establishing the condition number bounds of the preconditioned prob-

lem. In Section 7, we compare the proposed preconditioner with that of Dryja and

Widlund [3] and numerical tests are in accord with our theory.

2. Discrete problem

We consider a polygonal domain Ω in the plane, partitioned into a set of nonover-

lapping polygonal subdomains {Ωk}k=1,...,N , such that Ω =
N⋃

k=1

Ωk and Ωk ∩Ωl = ∅,

k 6= l, and {Ωk}k=1,...,N form a coarse triangulation of Ω, which is shape regular.

The second order elliptic problem is considered as follows: Find u∗ ∈ H1
0 (Ω) such
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that

(2.1) a(u∗, v) = f(v) ∀ v ∈ H1
0 (Ω),

where

(2.2) a(u, v) =

N∑

k=1

∫

Ωk

̺k∇u∇v dx

with ̺k(k = 1, . . . , N) being positive constant coefficients.

Let Th(Ωk) = {τ} be a quasi-uniform triangulation consisting of triangles τ in each

subdomain Ωk. Let hk = max
τ∈Th(Ωk)

diam(τ) be the mesh size. Let Γkl = ∂Ωk ∩ ∂Ωl

denote the interface between two neighboring subdomains Ωk and Ωl, and Γ =
N⋃

k=1

∂Ωk \ ∂Ω be the interface skeleton. We call the midpoints of all edges of an

element in the triangulation Crouzeix-Raviart nodes or CR nodes. Denote the sets

of CR nodes and P1 conforming nodes that are contained in Ω, ∂Ω, Ωk, ∂Ωk, and Γkl

by ΩCR
h , ∂ΩCR

h , ΩCR
k,h , ∂Ω

CR
k,h , Γ

CR
kl,h, and Ωh, ∂Ωh, Ωk,h, ∂Ωk,h, Γkl,h, respectively.

Let Wh(Ωk) be the CR element space defined on the triangulation Th(Ωk), con-

sisting of functions that are piecewise linear in each triangle τ ∈ Th(Ωk), continuous

in ΩCR
k,h , and equal to zero in ∂Ω

CR
h ∩∂ΩCR

k,h . The local subspace is equipped with the

local broken H1-seminorm and -norm: |u|2
H1

h(Ωk)
=

∑
τ∈Th(Ωk)

|u|2H1(τ), ‖u‖
2
H1

h(Ωk)
=

|u|2L2(Ωk)
+ |u|2

H1
h(Ωk)

. Let

Wh(Ω) =
N∏

k=1

Wh(Ωk)

be the global space defined on the domain Ω and equipped with the broken H1-

seminorm and norm: |u|2
H1

H(Ω)
=

N∑
k=1

|u|2
H1

h(Ωk)
, ‖u‖2

H1
H(Ω)

=
N∑

k=1

‖u‖2
H1

h(Ωk)
.

As we triangulate each subdomain independently of its neighboring subdomains,

we note that each interface Γkl = ∂Ωk∩∂Ωl inherits two independent triangulations.

One of the sides of Γkl is defined as a mortar (master) side, denoted by γkl, and

the other as a nonmortar (slave) side, denoted by δlk. We always choose the mortar

side to be the side whose subdomain has larger ̺ value. Let γkl be the mortar side

associated with Ωk and δlk be the nonmortar side associated with Ωl, obviously then

̺l � ̺k. We further assume in this case that hk � hl. We have two sets of CR

nodes belonging to Γkl, the midpoints of elements belonging to Th(γkl) = T k
h (Γkl),

the hk-triangulation of Γkl inherited from Th(Ωk), and to Th(δlk) = T l
h(Γkl), the hl-

triangulation of Γkl inherited from Th(Ωl), denoted by γ
CR
kl,h and δ

CR
lk,h, respectively.

Since the triangulations on Ωk and Ωl do not match on their common interface Γkl,
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the functions inWh(Ω) are discontinuous on the set γCR
kl,h or δ

CR
lk,h. Here, we adopt the

nonstandard mortar condition introduced by Xu Xuejun et al. in [18], i.e., a function

u = {uk}Nk=1 ∈Wh(Ω) satisfies

(2.3) QmJmuk = Qmul,

where Jm is an interpolation operator defined below (see Figure 1) and Qm :

L2(Γkl) → V h(δlk) is a L
2-orthogonal projection operator defined as

(2.4) (Qmu, ψ)L2(δlk) = (u, ψ)L2(δlk) ∀ψ ∈ V h(δlk),

where V h(δlk) ⊂ L2(Γkl) is the test space of functions that are piecewise constant

on elements of the nonmortar triangulation of Γkl. Let

V h =
∏

δlk⊂Γ

V h(δlk)

be the auxiliary interface space, which will be used as the Lagrange multipliers space

further.

Let e denote a triangle edge. Let Zh(γkl) =
∏

e∈Th(γkl)

P1(e) be the space of piecewise

linear functions defined on the triangulation Th(γkl), and let Th/2(γkl) be the trian-

gulation obtained by dividing the edges of Th(γkl) into equal segments. Let Yh/2(γkl)

be the conforming space of piecewise linear continuous functions on the triangula-

tion Th/2(γkl). The midpoint, left and right endpoint of each edge e ∈ Th(γkl) are

denoted by xem, x
e
l , and x

e
r , respectively. The length of e is denoted by |e|.

Definition 2.1. For u ∈Wh(γkl) =Wh(Ω)|γkl, Imu ∈ Yh/2(γkl) is defined as

Imu(x) =





u(x), x ∈ γCR
kl,h,

|er|

|el|+ |er|
u(xelm) +

|el|

|el|+ |er|
u(xerm ), x ∈ γkl,h,

u(xeem) +
|ee|

|ee|+ |e′e|
(u(xeem)− u(x

e′e
m)), x ∈ ∂γkl,h,

where el and er are the left and right neighboring edge of x ∈ γkl,h, respectively,

ee represents a triangle edge of Th(γkl) touching ∂γkl, and e
′
e is the corresponding

neighboring edge.

Definition 2.2. For u ∈ Wh(γkl), Jmu ∈ Zh(γkl) is a piecewise linear function

on the edges {e} of γkl, defined by its values at the two endpoints x
e
l , x

e
r ∈ γkl,h of

each edge e. If e is an interior edge of γkl, then

Jmu(x) =

{
u(xem) + 1

2{Imu(x
e
l )− Imu(x

e
r)}, x = xel ,

u(xem) + 1
2{Imu(x

e
r)− Imu(x

e
l )}, x = xer.
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Figure 1. Here u ∈ Wh(γkl) is a piecewise linear function corresponding to solid lines in
the lower figure. The dashed lines in both upper and lower figures correspond to
Imu. The solid lines in the upper figure correspond to Jmu.

It is easy to see that if e is a boundary edge of γkl, then Jmu(x) = Imu(x) for

x = xel , x
e
r.

Let W̃h(Ω) = {u ∈Wh(Ω):
∫
δlk

(uk −ul) dx = 0 for all δlk ⊂ Γ} and let Ŵh(Ω) ⊂

W̃h(Ω) be the subspace of functions which satisfy the nonstandard mortar condition

(2.3) for all δlk ⊂ Γ.

A discrete formulation of the problem (2.1) is then: Find u∗h ∈ Ŵh(Ω) such that

(2.5) ah(u
∗
h, vh) = f(vh) ∀ vh ∈ Ŵh(Ω),

where

ah(u, v) =

N∑

k=1

ak,h(u, v), ak,h(u, v) =
∑

τ∈Th(Ωk)

∫

τ

̺k∇u∇v dx.

The problem (2.5) has a unique solution, cf. [2].

3. FETI-DP method

In this section, we introduce FETI-DP methods for solving problem (2.5) by using

the framework given in [21].

The bilinear form b(·, ·) : W̃h(Ω)× V h → R is defined as

b(u, ψ) =
∑

δlk⊂Γ

∫

δlk

(Jmuk − ul)ψlk ds,
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for u = (uk)
N
k=1 ∈ Wh(Ω) and ψ = (ψlk)δlk⊂Γ ∈ V h with uk ∈ Wh(Ωk) and ψlk ∈

V h(δlk). So we can rewrite the nonstandard mortar condition (2.3) as

(3.1) b(u, ψ) = 0.

This brings us to another equivalent definition of Ŵh(Ω):

Ŵh(Ω) = {u ∈ W̃h(Ω): b(u, ψ) = 0 ∀ψ ∈ V h}.

Note that

Ŵh(Ω) ⊂ W̃h(Ω) ⊂Wh(Ω).

Problem (2.5) can be reformulated as a saddle point problem: Find a pair

(w∗
h, ψ

∗) ∈ W̃h(Ω)× V h such that

(3.2) a(w∗
h, v) + b(v, ψ∗) = f(v) ∀ v ∈ W̃h(Ω),

b(w∗
h, ϕ) = 0 ∀ϕ ∈ V h.

We see that w∗
h is the solution of (2.5), cf. [13]. For simplicity, we use the same

notation to represent a function in a space and its vector representation with respect

to the nodal basis of that space.

We next introduce a local decomposition of any function uk ∈ Wh(Ωk) as uk =

Pkuk +H+
k uk, where Pkuk ∈Wh

0 (Ωk) is defined by

(3.3) ak,h(Pkuk, v) = ak,h(uk, v) ∀ v ∈Wh
0 (Ωk).

Here Wh
0 (Ωk) = {u ∈ Wh(Ωk) : u(m) = 0 for all m ∈ ∂ΩCR

k,h} ⊂ Wh(Ωk) and

H+
k uk ∈ Wh(Ωk) is the discrete harmonic part of uk, i.e., H

+
k uk = uk −Pkuk, which

is defined as the solution of the following problem: Find H+
k uk ∈ Wh(Ωk) such that

(3.4)

{
ak,h(H

+
k uk, v) = 0 ∀ v ∈Wh

0 (Ωk),

H+
k uk(m) = uk(m) ∀m ∈ ∂ΩCR

k,h .

We introduce

(3.5) Wk = H+
k W

h(Ωk)

as the local space of discrete harmonic functions. Consequently, Hu = (H+
k uk)

N
k=1

for u = (uk)
N
k=1 ∈ Wh(Ω).

658



Let the global spaces of discrete harmonic functions corresponding to the spaces

Wh(Ω), W̃h(Ω), and Ŵh(Ω) be defined as follows:

W = HWh(Ω) =

N∏

k=1

Wk,(3.6)

W̃ = HW̃h(Ω) =

{
u ∈W :

∫

δlk

(uk − ul) ds = 0 ∀ δlk ⊂ Γ

}
,(3.7)

Ŵ = HŴh(Ω) = {u ∈ W̃ : b(u, ψ) = 0 ∀ψ ∈ V h}.(3.8)

The solution of problem (2.5) can be decomposed as

u∗h = (u∗h,k)
N
k=1 = u∗I + w∗

h,

where u∗I = (Pku
∗
h,k)

N
k=1 and Pku

∗
h,k (k = 1, . . . , N) can be computed by solving

N independent local subproblems. The discrete harmonic part of u∗h, i.e., w
∗
h =

(H+
k u

∗
h,k)

N
k=1 ∈ Ŵ , is the unique solution of the following problem: Find w∗

h ∈ Ŵ

such that

(3.9) ah(w
∗
h, v) = f(v) ∀ v ∈ Ŵ .

In the FETI-DP method, we denote the basis for V h(δlk) by {ξ
δlk
k }

Nδlk

k=1 , the basis

for Wl(δlk) = Wl|δlk by {ϕ
δlk
k }

Nδlk

k=1 , and the basis for (JmWk)(γkl) = (JmWk)|γkl
by

{ϕγkl

k }
Nγkl

k=1 , where Nγkl
and Nδlk are the number of elements of Th(γkl) and Th(δlk),

respectively. We define matrices Bl
δlk
and Bk

γkl
with entries

(Bl
δlk

)ij =

∫

δlk

ξδlki ϕδlk
j ds, i = 1, . . . , Nδlk , j = 1, . . . , Nδlk ,

(Bk
γkl

)ij = −

∫

δlk

ξδlki ϕγkl

j ds, i = 1, . . . , Nδlk , j = 1, . . . , Nγkl
.

Then we write (3.1) as

Bl
δlkul,δlk +Bk

γkl
uk,γkl

= 0,

where ul,δlk = ul|δlkand uk,γkl
= uk|γkl

.

Now we define a zero extension operator Eδlk : V
h(δlk) → V h, and a restriction

operator Rl
δlk

: Wl →Wl(δlk), R
l
γlj

: Wl →Wl(γlj). Let

Bl =
∑

δlk⊂∂Ωl

EδlkB
l
δlk
Rl

δlk
+

∑

γlj⊂∂Ωl

EδjlB
j
γlj
Rj

γlj
.
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Then the nonstandard mortar condition (3.1) becomes

N∑

l=1

Blul = 0.

Define

W̃∆(δlk) =

{
wδlk ∈ W̃ (δlk) = W̃ |δlk :

∫

δlk

wδlk ds = 0

}
,

and let

W̃∆ =
∏

δlk⊂Γ

W̃∆(δlk).

For wδlk ∈ W̃∆(δlk), we define w̃δlk ∈ W̃l = W̃ |∂Ωl
to be the zero extension of wδlk

on ∂Ωl. Let w̃l =
∑

δlk⊂∂Ωl

w̃δlk and w̃ = (w̃1, . . . , w̃N ), and we have w̃ ∈ W̃ . Hence,

for w ∈ W̃∆, we define a norm by

(3.10) ‖w‖
W̃∆

= ‖w̃‖
W̃
.

We decompose W̃ into two subspaces W̃∆ and ŴΠ such that

(3.11) W̃ = ŴΠ ⊕ W̃∆,

where ŴΠ is called the primal subspace, and W̃∆ is called the dual subspace.

For any u ∈ W̃ , we regroup its unknowns so that we can write it in its vector repre-

sentation as (cf. (3.11)) u = (uΠ, u∆)
t, where uΠ ∈ ŴΠ and u∆ ∈ W̃∆. Similarly, we

partition the vector wk ∈ W̃k as wk = (wk,Π, wk,∆)
t. Let Lk

∆ represent a matrix such

that Lk
∆w∆ restricts the values of the degrees of freedom of w∆ ∈ W̃∆ to the respec-

tive degrees of freedom of ∂Ωk, i.e., for any w ∈ W̃ , we can write w = (w1, . . . , wN )

with wk = (wk,Π, L
k
∆w∆)t.

Recall that S(k) is the Schur complement matrix obtained from the bilinear

form ak,h(·, ·) and let g
(k) be the Schur complement forcing vector obtained from∫

Ωk
fvk dx. The matrix S

(k) and vector g(k) are ordered in the following way:

S(k) =

(
S
(k)
ΠΠ S

(k)
Π∆

S
(k)
∆Π S

(k)
∆∆

)
, g(k) =

(
g
(k)
Π

g
(k)
∆

)
.

Then the problem (3.2) becomes the following: Find (wΠ, w∆, ψ) ∈ ŴΠ×W̃∆×V h

such that

SΠΠwΠ + SΠ∆w∆ +Bt
Πψ = gΠ,(3.12)

S∆ΠwΠ + S∆∆w∆ +Bt
∆ψ = g∆,(3.13)

BΠwΠ +B∆w∆ = 0,(3.14)
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where

SΠΠ = diagk(S
(k)
ΠΠ),

SΠ∆ =




(S
(1)
Π∆)

tL1
∆

...

(S
(N)
Π∆ )tLN

∆


 ,

S∆Π = St
Π∆,

S∆∆ =
N∑

k=1

(Lk
∆)

tS
(k)
∆∆L

k
∆,

BΠ = (B1,Π, . . . , BN,Π), B∆ =
N∑

k=1

Bk,∆L
k
∆,

gΠ =



g
(1)
Π
...

g
(N)
Π


 , g∆ =

N∑

k=1

(Lk
∆)

tg
(k)
∆ , wΠ =



w1,Π

...

wN,Π


 .

Since SΠΠ is invertible, we solve (3.12) for wΠ to get

wΠ = S−1
ΠΠ(gΠ − SΠ∆w∆ −Bt

Πψ).

After substituting wΠ into (3.13) and (3.14), we obtain

BΠS
−1
ΠΠB

t
Πψ + (BΠS

−1
ΠΠSΠ∆ −B∆)w∆ = BΠS

−1
ΠΠgΠ,

(S∆ΠS
−1
ΠΠB

t
Π −Bt

∆)ψ − (S∆∆ − S∆ΠS
−1
ΠΠSΠ∆)w∆ = −(g∆ − S∆ΠS

−1
ΠΠgΠ).

Let

(3.15) FIΠΠ = BΠS
−1
ΠΠB

t
Π,

FIΠ∆ = BΠS
−1
ΠΠSΠ∆ −B∆,

FI∆Π = S∆ΠS
−1
ΠΠB

t
Π −Bt

∆,

FI∆∆ = S∆∆ − S∆ΠS
−1
ΠΠSΠ∆,

dΠ = BΠS
−1
ΠΠgΠ,

d∆ = g∆ − S∆ΠS
−1
ΠΠgΠ.

Then (ψ,w∆) satisfies

(
FIΠΠ FIΠ∆

FI∆Π −FI∆∆

)(
ψ

w∆

)
=

(
dΠ
−d∆

)
.
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By eliminating w∆ in the above equation, we obtain

(3.16) (FIΠΠ + FIΠ∆F
−1
I∆∆

FI∆Π)ψ = dΠ − FIΠ∆F
−1
I∆∆

d∆.

Here FDP = FIΠΠ + FIΠ∆F
−1
I∆∆

FI∆Π is called the FETI-DP operator.

4. Preconditioner

In this section, we propose a preconditioner for the system (3.16); cf. [21]. Let the

matrix S∆ : W̃∆ → W̃∆ be the submatrix of S obtained by restricting the matrix S

to the subspace W̃∆, where S = diagk(S
(k)). We note that S∆ = diagk(S

(k)
∆ ), with

S
(k)
∆ being the restriction of the local Schur complement matrix S(k) to the space

W̃∆(δkl).

We equip w ∈ W̃∆ with the norm

‖w‖2S∆
= 〈S∆w,w〉 = ‖w̃‖2S,

where w̃ ∈ W̃ is the extension of w ∈ W̃∆ by zero onto the trace spaces associated

with mortars.

Then we can define

Bδlk =
∑

δlk⊂Γ

EδlkB
l
δlkR

l
δlk , Bγkl

=
∑

γkl⊂Γ

EδlkB
l
γkl
Rl

γkl
.

The matrices Bδlk,∆ and Bδlk,Π with subscripts ∆ and Π are the submatri-

ces of the matrix Bδlk corresponding to the splitting (3.11). Then we define

B∆ = diagδlk⊂Γ(Bδlk,∆). Note that for any (ψlk, wδlk) ∈ V h(δlk) × W̃∆(δlk), we

have

(4.1) 〈wδlk , (Bδlk,∆)
tψlk〉 = 〈Bδlk,∆wδlk , ψlk〉 =

∫

δlk

ψlkwδlk ds.

Here B∆, B
t
∆ are block diagonal matrices with invertible blocks, cf. [11]. Finally, we

introduce the inverse of the preconditioner as F̂DP = B∆S
−1
∆ Bt

∆, which is nonsingu-

lar, and thus we choose

(4.2) F̂−1
DP = B−t

∆ S∆B
−1
∆

as the preconditioner for problem (3.16).
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5. Technical tools

In this section, we state and prove a few technical lemmas necessary for the proof

of Theorem 6.1 in Section 6.

Let Yh/2(Ωk) be the conforming space of piecewise linear continuous functions

on the triangulation Th/2(Ωk), which is constructed by joining the midpoints of the

edges of the elements of Th(Ωk). For each open edge ε ⊂ ∂Ωk, we define W
h
ε (Ωk) as

a subspace ofWh(Ωk) formed by all functions which are equal to zero in ∂Ω
CR
k,h \ε

CR
h .

Definition 5.1 ([19]). For a given u ∈ Wh
ε (Ωk), we introduce M

ε
ku ∈ Yh/2(Ωk)

by defining the values of M ε
ku at the nodes of the triangulation Th/2(Ωk):

⊲ For p ∈ ΩCR
k,h ∪ ∂ΩCR

k,h , let M
ε
ku(p) = u(p).

⊲ For p ∈ Ωk,h, let M
ε
ku(p) = N(p)−1

∑
τh
j
u|τh

j
(p), where the sum is taken over

all triangles τhj with a common vertex p and N(p) is the number of elements

with p as an vertex.

⊲ For p ∈ ∂Ωk,h \ εh, let M ε
ku(p) = 0.

⊲ For p ∈ εh, letM
ε
ku(p) = |ppr||plpr|

−1
u(pl)+ |plp||plpr|

−1
u(pr), where pl, pr are

the left and right neighboring CR nodes of p, respectively, and |ab| is the length

of the segment with a, b as its ends.

Note thatM ε
ku is piecewise linear between the CR nodes of ε

CR
h , andM

ε
ku is equal

to zero on ∂Ωk \ ε. The mapping M ε
ku has the following properties (cf. [10]):

|u|H1
h(Ωk) ≍ |M ε

ku|H1(Ωk), ‖u‖L2(Ωk) ≍ ‖M ε
ku‖L2(Ωk),

‖M ε
ku− u‖L2(Ωk) � hk|u|H1

h(Ωk), ‖M ε
ku− u‖L2(ε) � h

1/2
k |u|H1

h(Ωk).

We also need a special mortar operator Πδlk : L
2(δlk) → Whl

0 (δlk) defined over

trace spaces, where Whl
0 (δlk) is a set of continuous functions that are equal to zero

at the ends of δlk and are piecewise linear over all segments that have their ends

in δCR
lk,h.

Definition 5.2 ([10]). The operator Πδlk : L
2(δlk) →Whl

0 (δlk) is defined as

(5.1) Πδlku(x) = Qmu(x) ∀x ∈ δCR
lk,h.

We have the stability property of the above operator in the L2 and H
1/2
00 norms,

cf. [10], i.e.,

‖Πδlku‖L2(δlk) � ‖u‖L2(δlk) ∀u ∈ L2(δlk),(5.2)

‖Πδlku‖H1/2
00 (δlk)

� ‖u‖
H

1/2
00 (δlk)

∀u ∈ H
1/2
00 (δlk).(5.3)
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Lemma 5.1 ([12]). Let u ∈ Wl and u = 0 in ∂ΩCR
l,h \ δCR

lk,h for a slave edge

δlk ⊂ ∂Ωl. Then we have

|u|H1
h(Ωl) � ‖M δlk

l u‖
H

1/2
00 (δlk)

.

Lemma 5.2 ([14], [21]). For any ψ ∈ V h, we have

〈F̂DPψ, ψ〉
1/2 = sup

w∈W̃∆\{0}

∑

δlk⊂Γ

∫
δlk
wδlkψlk ds

‖w‖S∆

= sup
w∈W̃∆\{0}

b(w̃, ψ)

‖w̃‖S
,

where ψlk ∈ V h(δlk) and wδlk ∈ W̃∆(δlk), cf. (4.1), and w̃ ∈ W̃ is the extension of

w ∈ W̃∆ by zero.

Lemma 5.3 ([20]). For any ψ ∈ V h we have

〈FDPψ, ψ〉
1/2 = sup

w∈W̃\{0}

b(w,ψ)

‖w‖S
.

Lemma 5.4 ([10]). Let a slave side δlk ⊂ ∂Ωl. Then for any u ∈Wl we have

|uδlk |2H1
h(Ωl)

� (1 + log(Hl/h))
2(H−2

l ‖u‖2L2(Ωl)
+ |u|2H1

h(Ωl)
),

where uδlk is a discrete harmonic function taking the same values as u at CR nodes

on δCR
lk,h and is equal to zero at the remaining CR nodes on ∂Ωl, and Hl = diamΩl.

Definition 5.3 ([15]). Given u ∈ Wh(Ωk), we define an operator Ôk : W
h(Ωk) →

Ŵ as follows:

⊲ For p ∈ γCR
kl,h, let Ôku(p) = u(p).

⊲ For p ∈ δCR
lk,h, let Ôku(p) = QmJmu(p).

⊲ For p ∈ δCR
kj,h, for any slave side δkj ⊂ ∂Ωk, or if the edge midpoint p is on ∂Ω

or on any remaining master or slave side, let Ôku(p) = 0.

Definition 5.4 ([15]). Given u ∈ Wh(Ωk), which can be decomposed into u =

H+
k u+ Pku, we define Oku as follows, based on Definition 5.3:

(5.4) Oku = Ôku+ P̃ku.

Here P̃ku = (0, . . . , Pku, . . . , 0), i.e., it is the Pku from (3.3) extended by zero onto

the remaining subdomains.
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We define a projection operator O : W̃ → W̃∆ by

(5.5) (Ou)|δlk = Qm(Jmuk − ul) on δlk,

where uk and ul are the restriction of u ∈ W̃ to the mortar side γkl and to the slave

side δlk of an interface Γkl, respectively.

Lemma 5.5. For all u ∈ W̃ we have

‖Ou‖S∆ � (1 + log(H/h))‖u‖S,

where H = max
k

Hk and h = min
k
hk.

P r o o f. Let Ou = (O1u, · · ·, ONu) ∈ W̃ . Then we have ‖Ou‖2S =
N∑

k=1

‖Oku‖2S(k) .

Next we will estimate the term ‖Oku‖2S(k) .

Note that Oku can be nonzero only over Ωk and a neighboring subdomain Ωl that

shares a common edge Γkl with Ωk, such that the slave side δlk is associated with Ωl.

Let Nk denote the set of indices of such subdomains. Thus

‖Oku‖
2
S(k) = ̺k|Oku|

2
H1

h(Ωk)
+

∑

l∈Nk

̺l|Oku|
2
H1

h(Ωl)
.

When we consider Ωk, we have Oku = u −
∑

δkl⊂∂Ωk

uδkl with uδkl being a discrete

harmonic function which equals to u at the CR nodes of δCR
kl,h and to zero at all

remaining nodes of ∂ΩCR
k,h . Thus, by Lemma 5.4,

|Oku|
2
H1

h(Ωk)
� |u|2H1

h(Ωk)
+

∑

δkl⊂∂Ωk

|uδkl |2H1
h(Ωk)

� (1 + log(Hk/hk))
2(H−2

k ‖u‖2L2(Ωk)
+ |u|2H1

h(Ωk)
).

Next we consider those Ωl with l ∈ Nk. Consequently, the slave side δlk of the edge

Γkl is an edge of Ωl, and the mortar side γkl is an edge of Ωk. Then by Lemma 5.1,

we get

|Oku|H1
h(Ωl) � ‖M ε

l Oku‖H1/2
00 (δlk)

.

From Definitions 5.1, 5.3, and 5.4, we have

(5.6) M ε
l Oku(p) = Oku(p) = QmOku(p) = QmJmu(p) ∀ p ∈ δCR

lk,h.

Thus we get

‖M ε
l Oku‖H1/2

00 (δlk)
6 ‖M ε

l Oku−ΠδlkM
ε
ku

γkl‖
H

1/2
00 (δlk)

+ ‖ΠδlkM
ε
ku

γkl‖
H

1/2
00 (δlk)

.
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The second term above can be estimated by (5.2), the trace theorem and Lemma 5.4

as follows:

‖ΠδlkM
ε
ku

γkl‖2
H

1/2
00 (δlk)

� ‖M ε
ku

γkl‖2
H

1/2
00 (δlk)

� |M ε
ku

γkl |2H1(Ωk)
� |uγkl |2H1

h(Ωk)

� (1 + log(Hk/hk))
2(H−2

k ‖u‖2L2(Ωk)
+ |u|2H1

h(Ωk)
).

The first term is bounded using an inverse inequality, (5.6) and Definition 5.2 as

follows:

‖M ε
l Oku−ΠδlkM

ε
ku

γkl‖2
H

1/2
00 (δlk)

� h−1
l ‖M ε

l Oku−ΠδlkM
ε
ku

γkl‖2L2(δlk)

�
∑

p∈δCR
lk,h

|M ε
l Oku(p)−ΠδlkM

ε
ku

γkl(p)|2

=
∑

p∈δCR
lk,h

|Qm(Jmu−M ε
ku

γkl)(p)|2

� h−1
l ‖Qm(Jmu−M ε

ku
γkl)‖2L2(δlk)

� h−1
l ‖Jmu−M ε

ku
γkl‖L2(δlk).

The fact that Jmu = Jmu
γkl yields

‖Jmu−M ε
ku

γkl‖L2(δlk) 6 ‖M ε
ku

γkl − uγkl‖L2(δlk) + ‖uγkl − Jmu
γkl‖L2(δlk).

Applying the property of M ε
ku to the first term and Lemma 3.2 from [18] to the

second term and then using the assumption that hk � hl and Lemma 5.4, we get

h−1
l ‖M ε

ku
γkl − Jmu‖

2
L2(δlk)

�
hk
hl

|uγkl |2H1
h(Ωk)

� (1 + log(Hk/hk))
2(H−2

k ‖u‖2L2(Ωk)
+ |u|2H1

h(Ωk)
)

� (1 + log(Hk/hk))
2|u|2H1

h(Ωk)
.

Finally, summing over all edges in ∂Ωk and then over all subdomain ends the proof.

�

6. Condition number estimate

In this section, we give the condition number estimate of the preconditioned op-

erator, which forms the main theorem of this paper.
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Theorem 6.1. For any ψ ∈ V h, it holds that

〈F̂DPψ, ψ〉 � 〈FDPψ, ψ〉 � (1 + log(H/h))2〈F̂DPψ, ψ〉,

where H = maxkHk and h = mink hk.

P r o o f. We use the algebraic arguments from [21] in the proof of this theorem.

Lower bound: For any nonzero w ∈ W̃∆, define w̃ ∈ Ext(W̃∆) ⊂ W̃ as the

extension of w by zero. Then we have ‖w‖S∆ = ‖w̃‖S . Thus by Lemma 5.2 and

Lemma 5.3, we have

〈F̂DPψ, ψ〉
1/2 = sup

w∈W̃∆\{0}

b(w̃, ψ)

‖w‖S∆

= sup
w̃∈Ext(W̃∆)\{0}

b(w̃, ψ)

‖w̃‖S

6 sup
w∈W̃\{0}

b(w,ψ)

‖w‖S
= 〈FDPψ, ψ〉

1/2.

Upper bound: For any w ∈ W̃ , by (5.5), we have

b(w,ψ) =
∑

δlk⊂Γ

∫

δlk

(Jmwk − wl)ψlk ds

=
∑

δlk⊂Γ

∫

δlk

Qm(Jmwk − wl)ψlk ds =
∑

δlk⊂Γ

∫

δlk

(Ow)|δlkψlk ds.

Hence, by Lemmas 5.2, 5.3, and 5.5 we conclude that

〈FDPψ, ψ〉
1/2 = sup

w∈W̃\{0}

b(w,ψ)

‖w‖S

= sup
w∈W̃\{0}

∑

δlk⊂Γ

∫
δlk

(Ow)|δlkψlk ds

‖w‖S

� 〈F̂DPψ, ψ〉
1/2 sup

w∈W̃\{0}

‖Ow‖S
‖w‖S

�
(
1 + log

H

h

)
〈F̂DPψ, ψ〉

1/2.

�
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7. Numerical results

We consider the second order elliptic problem

(7.1) −∇ · (̺(x, y)∇u) = f in Ω,

u = 0 on ∂Ω,

where Ω = [0, 1]× [0, 1] ⊂ R
2.

We compare our preconditioner (4.2), denoted by F̂−1
DP , with the preconditioner

developed by Dryja and Widlund (cf. (3.13) in [3]), denoted by F̂−1
DW , for the cases

where ̺(x, y) = 1 and mesh sizes are comparable, and where ̺(x, y) is highly discon-

tinuous across subdomain interfaces and mesh sizes are not comparable.

First, we compare the above two preconditioners for the same problem with non-

matching grids. We take ̺(x, y) = 1 and the exact solution u(x, y) = y(1− y) sin πx.

The CG iteration continues until the relative residual norm is less than 10−6. The

number of nodes on edges including endpoints and the number of subdomains are

denoted by n and N , respectively. Here, we use the same n for all subdomains and

divide Ω into rectangular subdomains, where each subdomain is denoted by Ωij ,

see Figure 2. For the case of nonmatching grids across subdomain interfaces, the

triangulations in each subdomain are generated as follows: we choose n random

quasi-uniform nodes on each horizontal and vertical edge in each subdomain to gen-

erate nonuniform structured grids with comparable mesh sizes between neighboring

subdomains.

Ω33

Ωij

Ω01

Ω00 Ω10

Figure 2. Partition of subdomains with N = 4× 4.

In Table 1, we divide Ω into 4 × 4 subdomains, increase the number of nodal

points n and compute the number of CG iterations and condition numbers for the

above two preconditioners. In Table 2, we fix n − 1 = 4 for the cases N = 8 × 8,

16× 16, and 32× 32, where Ω is divided into subdomains in the same way as in the

case N = 4 × 4. We can see from Tables 1 and 2 that both preconditioners seem

to give the log2-growth of the condition number bound and that the number of CG

iterations of the preconditioner F̂−1
DW is smaller than that of F̂

−1
DP .

668



F̂−1
DP F̂−1

DW
n− 1

Iter Cond Iter Cond

4 15 4.52 7 1.94

8 19 6.68 8 2.68

16 21 9.02 10 3.69

32 22 11.6 10 4.80

64 22 14.8 11 6.14

Table 1. Comparison between F̂−1
DP and F̂−1

DW on nonmatching grids when n increases with
N = 4 × 4: Iter (number of CG iterations), Cond (condition number of the pre-
conditioned FETI-DP operator).

F̂−1
DP F̂−1

DW
N ×N

Iter Cond Iter Cond

4× 4 14 5.36 7 1.94

8× 8 16 5.64 8 2.13

16× 16 16 5.82 8 2.11

32× 32 16 5.96 8 2.10

Table 2. Comparison between F̂−1
DP and F̂

−1
DW on nonmatching grids when N increases with

n− 1 = 4: Iter, Cond.

Next, we consider problem (7.1) for highly discontinuous ̺(x, y) across subdomain

interfaces and noncomparable mesh sizes between neighboring subdomains. The

cases of N = 2× 2, 4× 4, 8× 8 subdomains are considered. For each subdomain Ωij ,

̺(x, y) = ̺ij is chosen as follows:

̺ij =





1 if both i and j are even,

250 if i is odd and j is even,

5000 if i is even and j is odd,

10 if both i and j are odd.

According to the partitions, the exact solution u(x, y) is chosen as follows:

u(x, y) =





p1(x, y) sin(πx) sin(πy)/̺(x, y) for N = 2× 2,

p2(x, y) sin(2πx) sin(2πy)/̺(x, y) for N = 4× 4,

sin(8πx) sin(8πy)/̺(x, y) for N = 8× 8,

where

p1(x, y) = (x − 1
2 )(y −

1
2 ),

p2(x, y) = (x − 1
4 )(x− 3

4 )(y −
1
4 )(y −

3
4 ).
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From [22], a different mesh size in each subdomain is chosen according to the ratios

of coefficients between neighboring subdomains, i.e.,

hij
hkl

≃ 4

√
̺ij
̺kl

,

where hij and Hij are the mesh size and size of subdomain Ωij , respectively. We

divide each subdomain into uniform meshes by the mesh sizes of these ratios. For

the case of N = 2 × 2 and H/h = 16, we obtain the noncomparable triangulations

between neighboring subdomains, see Figure 3. In [22], a good approximation of the

solution is obtained when the slave side is chosen to give a Lagrange multiplier space

of a higher dimension. We can approximate the exact solution more accurately by

choosing the subdomain with smaller ̺ij as the slave side.

Ω01

Ω00 Ω10

Ω11

̺01 = 5000

̺00 = 1 ̺10 = 250

̺11 = 250

Figure 3. Triangulations for the case of N = 2× 2 and H/h = 16.

Table 3 gives the number of CG iterations for preconditioners F̂−1
DP and F̂

−1
DW with

the same stopping criterion 10−6 as before. By increasing H/h, we can see that the

number of CG iterations of F̂−1
DP is much smaller than that of F̂

−1
DW . Thus, the con-

dition number bound of F̂−1
DW depends on the ratio of meshes between neighboring

subdomains and the preconditioner F̂−1
DW is inefficient for problems with noncompa-

rable grids.

From the numerical tests, we conclude that our method gives a correct approx-

imation of the model problem with nonmatching grids. The preconditioner F̂−1
DW

gives a smaller number of iterations than our preconditioner F̂−1
DP for the case of con-

tinuous coefficients and comparable meshes across subdomain interfaces. However,
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N H/h
F̂−1
DP F̂−1

DW

Iter Iter

2× 2

16 5 17

32 6 26

64 7 39

128 8 50

256 8 60

4× 4

16 8 75

32 7 81

64 8 111

128 8 130

8× 8

16 8 113

32 8 136

64 8 168

Table 3. Comparison between F̂−1
DP and F̂−1

DW for the problem of highly discontinuous co-
efficients on noncomparable grids: Iter.

our preconditioner turns out to be much more efficient than F̂−1
DW for problems with

highly discontinuous coefficients on noncomparable grids.

A c k n ow l e d g em e n t. The author of this paper would like to express her grat-

itude to the reviewers for their valuable comments and suggestions.
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