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Abstract. The paper deals with a class of discrete fractional boundary value problems.
We construct the corresponding Green’s function, analyse it in detail and establish several
of its key properties. Then, by using the fixed point index theory, the existence of multiple
positive solutions is obtained, and the uniqueness of the solution is proved by a new theorem
on an ordered metric space established by M. Jleli, et al. (2012).
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1. Introduction

In this paper, we are concerned with the discrete fractional boundary value prob-

lems

(1.1)

{

−∆ν
ν−2y(t) = f(t+ ν − 1, y(t+ ν − 1)), t ∈ N0,b,

∆y(ν − 2) = y(ν + b) = 0,

where ∆ν
ν−2 is a discrete fractional operator, 1 < ν < 2, N0,b := {0, 1, 2, . . . , b},

b ∈ N, b > 3 and f : {ν − 2, ν − 1, . . . , ν + b} × R → R.

Fractional calculus is a generalization of the ordinary differentiation and integra-

tion. It has played a significant role in science, engineering, economy, and other

fields [29], [32], [30]. Today there is a large number of papers dealing with the con-

tinuous fractional calculus. However, the discrete fractional calculus has seen slower
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progress, for it is still a relatively new and emerging area of mathematics. We refer

the reader to [1], [2], [3], [4], [7], [5], [13], [26], [27], [9] and the references therein for

the history and basic theory of the discrete fractional calculus. Of particular interest

is that Atici and Şengül have shown the usefulness of fractional difference equations

in tumor growth modeling in [8]. We can see that they will provide a new tool to

model physical phenomena in the future. Thus, to study the fractional difference

equations is meaningful, necessary and significant.

Recent interests in the discrete fractional calculus are shown by Atici and Eloe [3],

[4]; in [4], they developed the commutativity properties of the fractional sum and

the fractional difference operators, and were the first to study a class of initial value

problems. Then a number of papers appeared investigating the discrete fractional

boundary value problems, such as [1], [6], [12], [16], [17], [18], [19], [20], [23], [21],

[24], [15], [26], [31], [33], [5], [14], [22].

In [6], the authors discussed the two-point boundary value problems for finite

fractional difference equations

−∆ν
ν−2y(t) = f(t+ ν − 1, y(t+ ν − 1)), 1 < ν 6 2,

y(ν − 2) = y(ν + b+ 1) = 0.

They proved the existence of positive solutions by the Krasnosel’skii fixed-point

theorem. In [17], Goodrich considered a class of fractional difference equations with

nonlocal conditions, and proved the existence and uniqueness of solution by using a

variety of tools including the contraction mapping theorem, the Brouwer theorem,

and the Krasnosel’skii theorem.

To our best of knowledge, most of the recent papers are concerning the existence of

solutions by the Krasnosel’skii fixed-point theorem, and there are few papers dealing

with the existence of multiple solutions. Moreover, most of them dealt with the

uniqueness of the solution by the contraction mapping theorem. Motivated by [6],

[16], [17], [28], [11], we investigate problem (1.1). We obtain the multiplicity of

solutions by the fixed-point index theory, and prove the uniqueness of the solution

by a new tool established by M. Jleli et al. in [28]. In Section 3, we will see that

the uniqueness theorem is a result different from those obtained by the contraction

mapping theorem.

The rest of the paper is organized as follows. In Section 2, we introduce some

notation, definitions, and preliminary facts that will be used in the remainder of the

paper. We get Green’s function G(t, s) and discuss its properties in Section 3. Then

in Sections 4 and 5, we obtain the multiplicity and uniqueness of positive solutions

for problem (1.1), and present examples to demonstrate the application of our result.
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2. Preliminaries

Now we present some fundamental facts on the discrete fractional calculus theory

which will be found in the recent literature (cf. [1], [4], [6], [13], [16], [26]). For

convenience, we introduce the following notation which will be used in the sequel:

Na = {a, a+ 1, a+ 2, . . . , }, a ∈ R,

Nc,d = {c, c+ 1, c+ 2, . . . , d}, c, d ∈ R, d− c > 0, c− d ∈ Z.

We also assume that the empty sums are zero.

Definition 2.1 ([26]). Let f : Na → R and ν > 0 be given. Then the νth-order

fractional sum of f is given by

(∆−ν
a f)(t) = ∆−ν

a f(t) :=
1

Γ(ν)

t−ν
∑

s=a

(t− σ(s))ν−1f(s) for t ∈ Na+ν .

Also, we define the trivial sum by ∆0
af(t) := f(t) for t ∈ Na.

R em a r k 2.1 ([26]). The σ-function in Definition 2.1 comes from the general

theory of time scales. It denotes the next point in the time scale after s. In this case,

σ(s) = s+ 1 for all s ∈ Na. The term (t− σ(s))ν−1 in Definition 2.1 is the so-called

generalized falling function, defined by

tµ :=
Γ(t+ 1)

Γ(t+ 1− µ)
,

for any t, µ ∈ R for which the right-hand side is well-defined. We appeal to the

convention that if t+1−µ is a pole of the Gamma function while t+1 is not a pole,

then tµ = 0.

Definition 2.2 ([26]). Let f : Na → R and ν > 0 be given, and let N ∈ N be

chosen such that N − 1 < ν 6 N . Then the νth-order fractional difference of f is

given by

(∆ν
af)(t) = ∆ν

af(t) := ∆N∆−(N−ν)
a f(t) for t ∈ Na+N−ν .

R em a r k 2.2. In [26], Holm proved that

∆ν
af(t) =











1

Γ(−ν)

t+ν
∑

s=a

(t− σ(s))−ν−1f(s), N − 1 < ν < N,

∆Nf(t), ν = N.
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Lemma 2.1 ([26]).

(1) Let a ∈ R and µ > 0 be given. Then

∆(t− a)µ = µ(t− a)µ−1,

∆(a− t)µ = − µ(a− t− 1)µ−1

for any t for which both sides are well defined.

(2) Let f : Na → R be given. For any k ∈ N0 and µ > 0 with M − 1 < µ 6 M we

have

∆k∆−µ
a f(t) = ∆k−µ

a f(t) for t ∈ Na+µ.

(3) Let f : Nµ−M → R and µ > 0 with M − 1 < µ 6 M be given. Then for

t ∈ Nµ−M ,

∆−µ
0 ∆µ

µ−Mf(t) = f(t)−

M−1
∑

j=0

Cjt
µ−M+j , Cj ∈ R (j = 0, 1, . . . ,M − 1).

The following well-known theorem is very important in our arguments, see [10],

[25] for more details about the fixed-point index.

Theorem 2.1 ([11], [10], [25]). Let X be a Banach space, K ⊆ X a cone in X .

For q > 0, define Kq = {x ∈ K ; |x| 6 q}. Assume that Q : Kq → K is a compact

map such that Qx 6= x for x ∈ ∂Kq = {x ∈ K ; |x| = q}.

(i) If |x| 6 |Qx| for x ∈ ∂Kq, then

i(Q,Kq,K) = 0.

(ii) If |x| > |Qx| for x ∈ ∂Kq, then

i(Q,Kq,K) = 1.

Next, let us present the fixed-point theorem on ordered metric spaces established

in [28]. First, we collect some definitions and notation that are used in the new

theorem. These can be found in [28]. Let (X, d,�) be a partially ordered metric

space.

Let Φ denote the set of all functions ϕ : [0,∞) → [0,∞) satisfying

(a) ϕ is continuous nondecreasing;

(b) ϕ−1({0}) = {0}.

676



Let Ψ denote the set of all functions ψ : [0,∞) → [0,∞) satisfying

(c) lim
t→r+

ψ(t) > 0 (and finite) for all r > 0;

(d) lim
t→0+

ψ(t) = 0.

Let Θ denote the set of all functions θ : [0,∞)4 → [0,∞) satisfying

(e) θ is continuous;

(f) θ(s1, s2, s3, s4) = 0 if and only if s1s2s3s4 = 0.

Examples of typical function θ are given in [28].

Definition 2.3 ([28]). We say that a mapping F : X ×X → X is mixed mono-

tone if

x, y, u, v ∈ X, x � u, y � v =⇒ F (x, y) � F (u, v).

Definition 2.4 ([28]). Let (X,�) be a partially ordered set endowed with a

metric d. We say that (X, d,�) is ↑↓-regular if X has the property that

(i) if a nondecreasing sequence {xn} ⊂ X converges to x, then xn � x for all n;

(ii) if a nonincreasing sequence {xn} ⊂ X converges to x, then xn � x for all n.

Let F : X×X → X be a given mapping. We consider the mappings A : X×X →

[0,∞) and B : X ×X ×X ×X → [0,∞) defined by

A(x, y) =
d(x, F (x, y)) + d(y, F (y, x))

2
, (x, y) ∈ X ×X,

B(x, y, u, v) =
d(x, F (u, v)) + d(y, F (v, u))

2
, (x, y, u, v) ∈ X ×X ×X ×X.

Theorem 2.2 ([28]). Let (X, d,�) be a partially ordered complete metric space

and F : X×X → X a mixed monotone mapping for which there exist ϕ ∈ Φ, ψ ∈ Ψ,

and θ ∈ Θ such that for all x, y, u, v ∈ X with x � u, y � v,

(2.1) ϕ
(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

2

)

6 ϕ
(d(x, u) + d(y, v)

2

)

− ψ
(d(x, u) + d(y, v)

2

)

+ θ(A(x, y), A(u, v), B(x, y, u, v), B(u, v, x, y)).

Suppose also that (X, d,�) is ↑↓-regular and there exist x0, y0 ∈ X such that

(2.2) x0 � F (x0, y0), y0 � F (y0, x0)

or

(2.3) x0 � F (x0, y0), y0 � F (y0, x0).
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Then F admits a coupled fixed point; that is, there exists (a, b) ∈ X ×X such that

a = F (a, b), b = F (b, a). Further, suppose that every pair of elements in X ×X has

either a lower bound or an upper bound. Then F has a unique coupled fixed point.

Moreover, if x0 � y0, then a = b, that is, F (a, a) = a.

Let us conclude this section by the definition of the solution to problem (1.1).

Define the Banach space

X = {x ; x : Nν−2,ν+b → R}

endowed with the norm ‖x‖ = max
t∈Nν−2,ν+b

|x(t)|.

Definition 2.5. Any y ∈ X is called a solution of problem (1.1) if y ∈ X and y

satisfies the boundary conditions.

3. Green’s function and its properties

In this section, we derive the definite expression of the corresponding Green’s func-

tion G(t, s) associated with problem (1.1) and prove some of its important properties.

Lemma 3.1. Let 1 < ν < 2 and h : Nν−1,ν+b−1 → R be given. Then y is a

solution of the discrete fractional boundary value problem

{

−∆ν
ν−2y(t) = h(t+ ν − 1), t ∈ N0,b,

∆y(ν − 2) = y(ν + b) = 0,

if and only if y(t) for t ∈ Nν−2,ν+b, has the form

y(t) =

b
∑

s=0

G(t, s)h(s+ ν − 1),

where

(3.1) G(t, s) =



















































C(ν, b)(ν + b− σ(s))ν−1, t = ν − 2, ν − 1,

C(ν, b)

Γ(ν)
[(2− ν)tν−1 + (ν − 1)tν−2](ν + b− σ(s))ν−1

−
1

Γ(ν)
(t− σ(s))ν−1, 0 6 s 6 t− ν 6 b,

C(ν, b)

Γ(ν)
[(2− ν)tν−1 + (ν − 1)tν−2](ν + b− σ(s))ν−1,

0 6 t− ν < s 6 b,
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and

C(ν, b) =
1

(2− ν)(ν + b)ν−1 + (ν − 1)(ν + b)ν−2

=
1

(ν + b)ν−2[(ν − 1) + (2− ν)(b+ 2)]
.

P r o o f. By virtue of Definition 2.1 and Lemma 2.1, we can deduce the result

via arguments similar to those in the proof of Lemma 3.1 in [6]. Here we omit it. �

Lemma 3.2. Green’s function G(t, s) has the following properties:

1◦. For each t ∈ {ν − 2, ν − 1}, G(t, s) is nonincreasing on s ∈ N0,b.

2◦. For each fixed t ∈ Nν,ν+b, G(t, s) is nondecreasing on s ∈ N0,t−ν+1 and nonin-

creasing on s ∈ Nt−ν+1,b.

3◦. G(ν, 0) < G(ν − 1, 0), and for s 6= 0, G(ν − 1, s) < G(ν, s).

4◦. For each fixed s ∈ N0,b, G(t, s) is nondecreasing on t ∈ Nν,ν+s−1 and nonin-

creasing on t ∈ Nν+s−1,ν+b.

5◦. For all (t, s) ∈ Nν−2,ν+b × N0,b, G(t, s) > 0.

6◦.

(3.2)

b
∑

s=0

G(t, s) =























C(ν, b)

ν
(ν + b)ν = (b+2)(b+1)

ν[1+(2−ν)(b+1)] , t = ν − 2, ν − 1,

C(ν, b)(ν + b)ν

Γ(ν + 1)
[(2 − ν)tν−1 + (ν − 1)tν−2]−

1

Γ(ν + 1)
tν ,

t ∈ Nν,ν+b.

P r o o f. 1◦: For t = ν − 2, ν − 1, by Lemma 2.1 we can derive

∆sG(t, s) = C(ν, b)∆s(ν + b− σ(s))ν−1 = −(ν − 1)C(ν, b)(ν + b− σ(s)− 1)ν−2 < 0,

which implies that 1◦ is true.

2◦: For s ∈ N0,t−ν−1, we have that

(3.3) ∆sG(t, s) =
1

Γ(ν − 1)

[

−C(ν, b)((2− ν)tν−1 + (ν − 1)tν−2)
Γ(ν + b− s− 1)

Γ(b− s+ 1)

+
Γ(t− s− 1)

Γ(t− s− ν + 1)

]

=
1

Γ(ν − 1)

[

−
Γ(t+ 1)

Γ(t− ν + 3)

Γ(b+ 3)

Γ(ν + b+ 1)

Γ(ν + b− s− 1)

Γ(b− s+ 1)

×
(2− ν)(t− ν + 2) + (ν − 1)

(2− ν)(b + 2) + (ν − 1)
+

Γ(t− s− 1)

Γ(t− s− ν + 1)

]

> 0,
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which is immediately obtained from the following two facts:

(b+2−k)(t−k)− (t−ν+2−k)(ν+ b−k) = (2−ν)(t−ν− b) 6 0, for k ∈ N0,s+1,

and

Γ(t+ 1)

Γ(t− ν + 3)

Γ(b+ 3)

Γ(ν + b+ 1)

Γ(ν + b− s− 1)

Γ(b− s+ 1)

(2 − ν)(t− ν + 2) + (ν − 1)

(2 − ν)(b + 2) + (ν − 1)

×
Γ(t− s− ν + 1)

Γ(t− s− 1)
=

(2− ν)(t− ν + 2) + (ν − 1)

(2− ν)(b + 2) + (ν − 1)

s+1
∏

k=0

(b+ 2− k)(t− k)

(t− ν + 2− k)(ν + b− k)
6 1.

For s = t− ν, we have

∆sG(t, s)
∣

∣

s=t−ν
= −

C(ν, b)

Γ(ν − 1)
[(2− ν)tν−1 + (ν − 1)tν−2](ν + b− t+ ν − 2)ν−2 + 1.

Let h1(t) = (2− ν)tν−1 + (ν − 1)tν−2 and k1(t) = (ν + b− t+ ν − 2)ν−2. We have

∆(h1(t)k1(t)) = k1(t+ 1)∆h1(t) + h1(t)∆k1(t)

= (ν + b− t+ ν − 3)ν−2(2− ν)(ν − 1)[tν−2 − tν−3]

+ (2− ν)[(2 − ν)tν−1 + (ν − 1)tν−2](ν + b− t+ ν − 3)ν−3 > 0, for t ∈ Nν,ν+b−1.

By the inequalities

(ν − 1)b+ 2(ν − 1) < b+ ν

and

(ν − 1) + (2− ν)(b + 1) < (ν − 1) + (2− ν)(b + 2),

we get (s 6 b − 1)

(3.4) ∆sG(t, s)
∣

∣

s=t−ν
= −

C(ν, b)

Γ(ν − 1)
h1(t)k1(t) + 1

> −
C(ν, b)

Γ(ν − 1)
h1(ν + b− 1)k1(ν + b− 1) + 1

= −
(ν − 1)b+ 2(ν − 1)

b+ ν

(ν − 1) + (2 − ν)(b + 1)

(ν − 1) + (2 − ν)(b + 2)
+ 1 > 0.

For s ∈ Nt−ν+1,b−1, we have

(3.5) ∆sG(t, s) = −(ν−1)
C(ν, b)

Γ(ν)
[(2−ν)tν−1+(ν−1)tν−2](ν+b−σ(s)−1)ν−2 < 0.

Therefore, by (3.3), (3.4), and (3.5), we see that 2◦ holds.
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3◦: We have

G(ν, 0)−G(ν − 1, 0) =
C(ν, b)

Γ(ν)
[(2− ν)νν−1 + (ν − 1)νν−2](ν + b− 1)ν−1

−
1

Γ(ν)
(ν − 1)ν−1 − C(ν, b)(ν + b− 1)ν−1

= C(ν, b)
[

(2− ν)ν +
(ν − 1)ν

2

]

(ν + b− 1)ν−1 − 1− C(ν, b)(ν + b − 1)ν−1

= C(ν, b)(ν + b− 1)ν−1 (ν − 1)(2− ν)

2
− 1

=
(b+ 1)

(ν + b)

(ν − 1)(b+ 2)(2− ν)

2[(ν − 1) + (2− ν)(b + 2)]
− 1 < 0,

which follows from the facts that

(ν − 1)(b+ 2)(2− ν) < 2[(ν − 1) + (2 − ν)(b + 2)] and (b + 1) < (ν + b).

So, G(ν, 0) < G(ν − 1, 0). Then, for s 6= 0,

G(ν, s)−G(ν − 1, s) = C(ν, b)(ν + b− s− 1)ν−1 (ν − 1)(2− ν)

2
> 0.

4◦: For t ∈ Nν,ν+s−2,

(3.6) ∆tG(t, s) =
C(ν, b)

Γ(ν)
(2 − ν)(ν − 1)[tν−2 − tν−3](ν + b− σ(s))ν−1 > 0.

For t = ν + s− 1, we have

(3.7) ∆tG(t, s)
∣

∣

t=ν+s−1

=
C(ν, b)

Γ(ν)
(2 − ν)(ν − 1)[tν−2 − tν−3]

∣

∣

t=ν+s−1
(ν + b− σ(s))ν−1 − 1

=
(2− ν)(b + 2)

Γ(ν − 1)[(ν − 1) + (2 − ν)(b + 2)]

s+ 1

s+ 2

Γ(ν + s)

Γ(s+ 2)

s
∏

k=0

b+ 1− k

ν + b− k
− 1 < 0.

For t ∈ Nν+s,ν+b−1, we obtain

(3.8) ∆tG(t, s) =
1

Γ(ν − 1)

[ (2− ν)(t − ν + 2)

[(ν − 1) + (2− ν)(b + 2)]

×
(ν + b− σ(s))ν−1

(ν + b)ν−2

Γ(t+ 1)

Γ(t− ν + 4)
− (t− s− 1)ν−2

]

< 0.
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In fact, for k ∈ N0,s,

(t− k)(b+ 1− k)− (ν + b− k)(t− ν + 2− k) = (ν − 1)(ν + b− t)− (ν + b− k)

< (ν − 2)(ν + b− k) < 0,

so

(2− ν)(t − ν + 2)

[(ν − 1) + (2− ν)(b + 2)]

(ν + b− σ(s))ν−1

(ν + b)ν−2

Γ(t+ 1)

Γ(t− ν + 4)

1

(t− s− 1)ν−2

=
(2− ν)(b + 2)

[(ν − 1) + (2 − ν)(b + 2)]

t− ν + 2

t− ν + 3

s
∏

k=0

(t− k)(b + 1− k)

(ν + b− k)(t− ν + 2− k)
< 1.

Combining (3.6), (3.7), and (3.8), we conclude that 4◦ is satisfied.

5◦: In view of G(t, s), in order to prove G(t, s) > 0, we only need to check that

G(t, s) > 0 when 0 6 s 6 t− ν 6 b.

By 2◦, for 0 6 s 6 t− ν,

G(t, s) > G(t, 0) =
1

Γ(ν)

(2− ν)tν−1 + (ν − 1)tν−2

(ν − 1) + (2− ν)(b + 2)

(ν + b− 1)ν−1

(ν + b)ν−2 −
(t− 1)ν−1

Γ(ν)

=
1

Γ(ν)

Γ(t+ 1)

Γ(t− ν + 3)
k2(t) > 0,

where

k2(t) =
(ν − 1) + (2 − ν)(t− ν + 2)

(ν − 1) + (2 − ν)(b + 2)

(b + 2)(b+ 1)

ν + b
−

(t− ν + 2)(t− ν + 1)

t
.

In fact, we can treat k2(t) as a continuous function of t on the interval [ν, ν+ b], and

by simple calculation, we have that

k′2(t) =
−(ν − 1)[(2− ν)(b + 2) + (ν + b)]

(ν + b)[(ν − 1) + (2− ν)(b + 2)]
−

(2− ν)(ν − 1)

t2
< 0,

which implies that

k2(t) > k2(ν + b) = 0.

Thus, we have proved 5◦.

6◦: By using Lemma 2.4 in [15], we get the result easily. �

R em a r k 3.1. From 1◦ and 2◦ of Lemma 3.2, we have that for each t ∈ {ν − 2,

ν − 1},

max
s∈N0,b

G(t, s) = G(t, 0), min
s∈N0,b

G(t, s) = G(t, b),
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and for each t ∈ Nν,ν+b,

max
s∈N0,b

G(t, s) = G(t, t− ν + 1), min
s∈N0,b

G(t, s) = max{G(t, 0), G(t, b)}.

From 1◦, 3◦ and 4◦ of Lemma 3.2, we get that for each s ∈ N0,b,

max
t∈Nν−2,ν+b

G(t, s) = G(ν + s− 1, s),

min
t∈Nν−2,ν+b

G(t, s) = min{G(ν + b, s), G(ν, s), G(ν − 1, s)} = G(ν + b, s) = 0,

and

min
t∈Nν,ν+b−1

G(t, s) = min{G(ν, s), G(ν + b− 1, s)}.

From 6◦ of Lemma 3.2, we obtain that

M0 := max
t∈Nν−2,ν+b

b
∑

s=0

G(t, s) > 0, m0 := min
t∈Nν−2,ν+b

b
∑

s=0

G(t, s) = 0.

Lemma 3.3. For all t ∈ Nν,ν+b−1 we have

(3.9) G(t, s) > ηG(s+ ν − 1, s),

where η = min{1, η1, η2, η3},

η1 =
(ν − 1)b[(4− ν)b + 6− ν]

2(b+ 2)(b+ 1)
,

η2 =
(2− ν)νν−1 + (ν − 1)νν−2

(2 − ν)(ν + b− 1)ν−1 + (ν − 1)(ν + b− 1)ν−2 ,

and

η3 = min
s∈N0,b−1

[ (2− ν)(ν + b− 1)ν−1 + (ν − 1)(ν + b− 1)ν−2

(2 − ν)(ν + s− 1)ν−1 + (ν − 1)(ν + s− 1)ν−2

−
1

C(ν, b)

b − s

ν + b− s− 1

]

> 0.

P r o o f. By the property 4◦ of Lemma 3.2, we get that

min
t∈Nν,ν+b−1

G(t, s) = min{G(ν, s), G(ν + b− 1, s)}.

For s = 0 we have

G(ν, s)

G(ν + s− 1, s)

∣

∣

∣

s=0
=

G(ν, 0)

G(ν − 1, 0)
=

(ν − 1)b[(4− ν)b + 6− ν]

2(b+ 2)(b + 1)
= η1 > 0.
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Let k3(s) = (2 − ν)(ν + s− 1)ν−1 + (ν − 1)(ν + s− 1)ν−2. Then, for s ∈ N0,b−1,

we have

∆sk3(s) = (ν − 1)(2− ν)[(ν + s− 1)ν−2 − (ν + s− 1)ν−3] > 0.

Thus, for s 6= 0,

G(ν, s)

G(ν + s− 1, s)
=

(2− ν)νν−1 + (ν − 1)νν−2

(2− ν)(ν + s− 1)ν−1 + (ν − 1)(ν + s− 1)ν−2

>
(2− ν)νν−1 + (ν − 1)νν−2

(2− ν)(ν + b− 1)ν−1 + (ν − 1)(ν + b − 1)ν−2 = η2 > 0.

For s = b, we have
G(ν + b− 1, s)

G(ν + s− 1, s)

∣

∣

∣

s=b
= 1.

By Remark 3.1, we have that

max
t∈Nν−2,ν+b

G(t, s) = G(ν + s− 1, s).

Thus,

G(ν + s− 1, s) > G(ν + b− 1, s).

For s 6= b, by 2◦ of Lemma 3.2, we have G(ν + b− 1, s) > G(ν + b− 1, 0). By (3.8)

of Lemma 3.2 (the proof of 4◦), we have G(ν + b− 1, 0) > G(ν + b, 0) = 0.

Then, we have that

(3.10)
G(ν + b− 1, s)

G(ν + s− 1, s)
> 0.

By direct computation, we obtain

G(ν + b− 1, s)

G(ν + s− 1, s)

=
(2− ν)(ν + b− 1)ν−1 + (ν − 1)(ν + b − 1)ν−2

(2− ν)(ν + s− 1)ν−1 + (ν − 1)(ν + s− 1)ν−2 −
1

C(ν, b)

b− s

ν + b− s− 1
.

In Lemma 3.3, we have defined η3 as follows:

η3 = min
s∈N0,b−1

[

(2− ν)(ν + b− 1)ν−1 + (ν − 1)(ν + b− 1)ν−2

(2− ν)(ν + s− 1)ν−1 + (ν − 1)(ν + s− 1)ν−2

−
1

C(ν, b)

b− s

ν + b− s− 1

]

.
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In view of (3.10), we have that η3 > 0. Therefore,

G(ν + b− 1, s)

G(ν + s− 1, s)
> η3.

Thus, we conclude that

G(t, s)

G(ν + s− 1, s)
> η for all t ∈ Nν,ν+b−1.

�

4. Multiplicity

In Section 1, we have defined the Banach space X . Now let us define a cone K

in X by

K = {x ∈ X ; x(t) > 0, t ∈ Nν−2,ν+b and min
t∈Nν,ν+b−1

x(t) > η‖x‖}.

Define an operator T : X → X as

(Tx)(t) =

b
∑

s=0

G(t, s)f(s+ ν − 1, x(s+ ν − 1)).

Then, by Lemma 3.1, problem (1.1) can be written as

x = Tx, x ∈ X.

Next, we give multiplicity results for the problem (1.1). To be precise, we introduce

the conditions on f(t, x):

(F) f : Nν−2,ν+b × R → [0,+∞) is continuous.

(H1) There exists a γ1 > 0 such that 0 6 x 6 γ1 and t ∈ Nν−2,ν+b implies f(t, x) 6

γ1/Λ1, where Λ1 =
b
∑

s=0

G(ν + s− 1, s).

(H2)

lim
x→0+

min
t∈Nν−2,ν+b

f(t, x)

x
= ∞, and lim

x→+∞

min
t∈Nν−2,ν+b

f(t, x)

x
= ∞.

(H3) There exists a γ2 > 0 such that ηγ2 6 x 6 γ2 and t ∈ Nν−2,ν+b implies

f(t, x) > γ2Λ2, where Λ
−1
2 = η

b
∑

s=1
G(ν + 1, s).

(H4)

lim
x→0+

max
t∈Nν−2,ν+b

f(t, x)

x
= 0 and lim

x→+∞

max
t∈Nν−2,ν+b

f(t, x)

x
= 0.
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Lemma 4.1. T is completely continuous and T (K) ⊂ K.

P r o o f. It is obvious that T is completely continuous under the condition (F).

Now we prove T (K) ⊂ K.

From Lemma 3.3, for x ∈ K we have

min
t∈Nν,ν+b−1

(Tx)(t) = min
t∈Nν,ν+b−1

b
∑

s=0

G(t, s)f(s+ ν − 1, x(s+ ν − 1))

> η

b
∑

s=0

G(ν + s− 1, s)f(s+ ν − 1, x(s+ ν − 1))

> η max
t∈Nν−2,ν+b

b
∑

s=0

G(t, s)f(s+ ν − 1, x(s+ ν − 1))

= η‖Tx‖,

i.e. Tx ∈ K. Thus we complete the proof. �

Now, we present the main results of the section.

Theorem 4.1. Assume that f(t, x) satisfies (F), (H1), and (H2). Then problem

(1.1) has at least two positive solutions y1 and y2 such that 0 < ‖y1‖ < γ1 < ‖y2‖.

P r o o f. Choose a positive number ξ > 0 such that

ξη

b
∑

s=1

G(ν + 1, s) > 1.

By (H2) there exists 0 < r1 < γ1 such that f(t, x) > ξx for all 0 6 x 6 r1. Then,

for x ∈ ∂Kr1 , we have that

(Tx)(ν + 1) =

b
∑

s=0

G(ν + 1, s)f(s+ ν − 1, x(ν + s− 1))

> ξ

b
∑

s=1

G(ν + 1, s)|x(s+ ν − 1)|

> ξη

b
∑

s=1

G(ν + 1, s)‖x‖ > ‖x‖,

which implies that ‖Tx‖ > ‖x‖ for x ∈ ∂Kr1 . Hence, by Theorem 2.1, we obtain

that

(4.1) i(T,Kr1,K) = 0.
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(H2) also implies that there is an R3 > 0 such that f(t, x) > ξx for all x > R3.

Choose R1 = max{γ1, R3/η}. Then for x ∈ ∂KR1
we have

min
t∈Nν,ν+b−1

x(t) > η‖x‖ > R3,

and

(Tx)(ν + 1) =

b
∑

s=0

G(ν + 1, s)f(s+ ν − 1, x(s+ ν − 1))

> ξ

b
∑

s=1

G(ν + 1, s)|x(s+ ν − 1)|

> ξη

b
∑

s=1

G(ν + 1, s)‖x‖ > ‖x‖,

which implies that ‖Tx‖ > ‖x‖ for x ∈ ∂KR1
and

(4.2) i(T,KR1
,K) = 0.

On the other hand, by (H1) for x ∈ ∂Kγ1
we obtain

‖Tx‖ = max
t∈Nν−2,ν+b

b
∑

s=0

G(t, s)f(s+ ν − 1, x(s+ ν − 1))

<

b
∑

s=0

G(ν + s− 1, s)f(s+ ν − 1, x(s+ ν − 1))

6
γ1
Λ1

b
∑

s=0

G(ν + s− 1, s)

6 γ1 = ‖x‖.

Hence, ‖Tx‖ < ‖x‖ for x ∈ ∂Kγ1
. Obviously, Tx 6= x for x ∈ ∂Kγ1

. Then

(4.3) i(T,KR1
,K) = 1.

Now, combining (4.1), (4.2), and (4.3), we get

i(T,KR1
\ K̊γ1

,K) = −1 and i(T,Kγ1
\ K̊r1 ,K) = 1.

Consequently, T has two fixed points y1 and y2 in KR1
\ K̊γ1

and Kγ1
\ K̊r1 , respec-

tively. Both of them are positive solutions of problem (1.1). Thus we complete the

proof. �
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E x am p l e 4.1. Assume that

f(t, x) =
x2 + 1

t2 + c1
, t ∈ Nν−2,ν+b, x ∈ R,

where c1 is a positive constant satisfying

( c1
Λ1

)2

− 4 > 0.

If we take γ1 > 0 satisfying the inequality

γ21 −
c1
Λ1
γ1 + 1 6 0,

then the conditions (F), (H1) and (H2) hold.

Theorem 4.2. Assume that f(t, x) satisfies (F), (H3), and (H4). Then prob-

lem (1.1) has at least two positive solutions y3 and y4 such that 0 < ‖y3‖ < γ2 < ‖y4‖.

P r o o f. By (H4), for all ε > 0, there exists ζ > 0 such that

f(t, x) 6 ζ + εx for x > 0, t ∈ Nν−2,ν+b.

Choose 0 < ε < Λ−1
1 and R2 > max{ζΛ1/(1 − εΛ1), γ2}. Then we have that for

x ∈ ∂KR2

(Tx)(t) =

b
∑

s=0

G(t, s)f(s+ ν − 1, x(s+ ν − 1))

6

b
∑

s=0

G(s+ ν − 1, s)[ζ + εx(s+ ν − 1)]

6 Λ1[ζ + ε‖x‖] < R2 = ‖x‖.

Therefore, ‖Tx‖ < ‖x‖ for x ∈ ∂KR2
and

(4.4) i(T,KR2
,K) = 1.

Similarly, for some small 0 < r2 < γ2,

(4.5) i(T,Kr2,K) = 1.

On the other hand, for x ∈ ∂Kγ2
we have

min
t∈Nν,ν+b−1

x(t) > η‖x‖ = ηγ2,
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and

(Tx)(ν + 1) =
b

∑

s=0

G(ν + 1, s)f(s+ ν − 1, x(s+ ν − 1))

>

b
∑

s=1

G(ν + 1, s)f(s+ ν − 1, x(s+ ν − 1))

> γ2Λ2

b
∑

s=1

G(ν + 1, s) = γ2 = ‖x‖.

Hence, ‖Tx‖ > ‖x‖ for x ∈ ∂Kγ2
. It is clear that Tx 6= x for x ∈ ∂Kγ2

. Then

(4.6) i(T,Kγ2
,K) = 0.

Then proceeding as in the proof in Theorem 4.1, we prove the theorem. �

E x am p l e 4.2. Assume that

f(t, x) = (t2 + 1)
x2

x2 + c2
, t ∈ Nν−2,ν+b, x ∈ R,

where c2 is a positive constant satisfying

η2 − 4Λ2
2c2 > 0.

If we take γ2 > 0 satisfying the inequality

(Λ2η
2)γ22 − η2γ2 + c2Λ2 6 0,

then the conditions (F), (H3), and (H4) hold.

5. Uniqueness

In this section, we state and prove the uniqueness theorem of our paper.

Let U denote the set of functions ω : [0,+∞) → [0,+∞) satisfying

(i) ω in nondecreasing;

(ii) there exists ψ ∈ Ψ such that for all τ ∈ [0,+∞) we have

ω(τ) =
1

2Λ1

(τ

2
− ψ

(τ

2

))

.
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Theorem 5.1. Assume that f(t, x) = g(t, x, x), where g : Nν−2,ν+b ×R×R → R

is a function. Under the assumptions

(P1) there exists ω ∈ U such that for all x, y, u, v ∈ R, with x > u and y 6 v, for

t ∈ Nν−2,ν+b,

(5.1) 0 6 g(t, x, y)− g(t, u, v) 6 ω(x− u) + ω(v − y);

(P2) there exist α, β ∈ X satisfying

(5.2) α(t) 6
b

∑

s=0

G(t, s)g(s+ ν − 1, α(s+ ν − 1), β(s+ ν − 1)), t ∈ Nν−2,ν+b,

and

(5.3) β(t) >

b
∑

s=0

G(t, s)g(s+ ν − 1, β(s+ ν − 1), α(s+ ν − 1)), t ∈ Nν−2,ν+b;

(P3) α(t) 6 β(t) for all t ∈ Nν−2,ν+b,

problem (1.1) has a unique solution.

P r o o f. It is clear that (X, d,�) is an ordered complete metric space with the

partial order � and metric d:

u, v ∈ X, u � v ⇐⇒ u(t) 6 v(t) for all t ∈ Nν−2,ν+b

and

d(u, v) = ‖u− v‖.

Also, it is easy to show that (X, d,�) is ↑↓-regular and that every pair of elements

in X ×X has either a lower bound or an upper bound.

Introduce the mapping L : X ×X → X by

L(x, y)(t) =

b
∑

s=0

G(t, s)g(s+ν−1, x(s+ν−1), y(s+ν−1)), t ∈ Nν−2,ν+b, x, y ∈ X.
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(P1) implies that L is a mixed monotone mapping. For all t ∈ Nν−2,ν+b and

x, y, u, v ∈ X with x � u and y � v, we have

|L(x, y)(t)− L(u, v)(t)| 6
b

∑

s=0

G(t, s)ω(x(s + ν − 1)− u(s+ ν − 1))

+
b

∑

s=0

G(t, s)ω(v(s+ ν − 1)− y(s+ ν − 1))

6

b
∑

s=0

G(s+ ν − 1, s)[ω(‖x− u‖) + ω(‖v − y‖)]

6 Λ1[ω(‖x− u‖) + ω(‖v − y‖)],

and

|L(y, x)(t)− L(v, u)(t)| 6
b

∑

s=0

G(t, s)ω(v(s + ν − 1)− y(s+ ν − 1))

+
b

∑

s=0

G(t, s)ω(x(s + ν − 1)− u(s+ ν − 1))

6

b
∑

s=0

G(s+ ν − 1, s)[ω(‖v − y‖) + ω(‖x− u‖)]

6 Λ1[ω(‖x− u‖) + ω(‖v − y‖)].

Then we get that

d(L(x, y), L(u, v)) + d(L(y, x), L(v, u))

2
6 Λ1[ω(‖x− u‖) + ω(‖v − y‖)].

Since ω is nondecreasing, we have

Λ1[ω(‖x− u‖) + ω(‖v − y‖)] 6 2Λ1ω(‖x− u‖+ ‖v − y‖)

=
d(x, u) + d(y, v)

2
− ψ

(d(x, u) + d(y, v)

2

)

.

Thus,

d(L(x, y), L(u, v)) + d(L(y, x), L(v, u))

2
6
d(x, u) + d(y, v)

2
− ψ

(d(x, u) + d(y, v)

2

)

.

If we take ϕ(t) = t, then we can see that (2.1) of Theorem 2.2 is satisfied. By

the assumptions (P2) and (P3), we have that α � L(α, β), β � L(β, α) and α � β.

An application of Theorem 2.2 shows that there exists a unique solution y with

L(y, y) = y, which implies that problem (1.1) has a unique solution. The proof is

complete. �
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R em a r k 5.1. Assume that the function g in Theorem 5.1 has a positive lower

and upper bound gm and gM , respectively. If we take

α(t) = gm

b
∑

s=0

G(t, s), β(t) = gM

b
∑

s=0

G(t, s),

then the conditions (P2) and (P3) hold.

E x am p l e 5.1. Assume that

g(t, x, y) =
1

2Λ1

1

t2 + 2

(

1 +
1

1 + e−x
+

1

1 + ey

)

, t ∈ Nν−2,ν+b, (x, y) ∈ R
2,

and let

ψ(τ) =
τ

2
, ω(τ) =

1

2Λ1

(τ

2
− ψ

(τ

2

))

=
1

2Λ1

τ

4
.

Then (P1) is satisfied. Since g is bounded, we can take

α(t) =

b
∑

s=0

G(t, s), β(t) = 3

b
∑

s=0

G(t, s).

Obviously, conditions (P2) and (P3) hold.

E x am p l e 5.2. Assume that

g(t, x, y) = g1(t)(arctanx− y), t ∈ Nν−2,ν+b, (x, y) ∈ R
2,

where

g1(t) =
1

G0

(1

8
+

1

t2 + 8

)

and

G0 >

Ã

max
s∈N0,b

b
∑

τ1=0

b
∑

τ2=0

G(s+ ν − 1, τ1)G(τ1 + ν − 1, τ2).

Let

ψ(τ) =
τ

2
, ω(τ) =

1

G0

(τ

2
− ψ

(τ

2

))

=
τ

4G0
.

Then (P1) is satisfied. Define M∗ as

M∗ := max
s∈N0,b

b
∑

τ1=0

G(s+ ν − 1, τ1) > 0.
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Set

α(t) = −C1

b
∑

s=0

G(t, s), 0 < C1 6
16

15

(

π

8G0
+

π

32G2
0

M∗

)

and

β(t) =
1

4G0

b
∑

s=0

[

G(t, s)

(

π

2
+ C1

b
∑

τ2=0

G(s+ ν − 1, τ2)

)]

.

Then conditions (P2) and (P3) hold. Condition (P2) is obvious. For (P3) we have

that

α(t) = − C1

b
∑

s=0

G(t, s) 6 −
(

π

8G0
+

π

32G2
0

M∗ +
C1

16

)

b
∑

s=0

G(t, s)

= −
1

4G0

{ b
∑

s=0

G(t, s)
(

π

2
+

π

8G0
M∗ +

C1

4G0
G2

0

)

}

6 −
1

4G0

{ b
∑

s=0

G(t, s)

(

π

2
+

π

8G0

b
∑

τ1=0

G(s+ ν − 1, τ1)

+
C1

4G0

b
∑

τ1=0

b
∑

τ2=0

G(s+ ν − 1, τ1)G(τ1 + ν − 1, τ2)

)}

6

b
∑

s=0

G(t, s)g1(s+ ν − 1)

×

(

−
π

2
−

1

4G0

b
∑

τ1=0

[

G(s+ ν − 1, τ1)

(

π

2
+ C1

b
∑

τ2=0

G(τ1 + ν − 1, τ2)

)])

=

b
∑

s=0

G(t, s)g1(s+ ν − 1)
(

−
π

2
− β(s+ ν − 1)

)

6

b
∑

s=0

G(t, s)g1(s+ ν − 1)(arctanα(s+ ν − 1)− β(s+ ν − 1))

=
b

∑

s=0

G(t, s)g(s+ ν − 1, α(s+ ν − 1), β(s+ ν − 1)), t ∈ Nν−2,ν+b,

and

β(t) =
1

4G0

b
∑

s=0

[

G(t, s)

(

π

2
+ C1

b
∑

τ2=0

G(s+ ν − 1, τ2)

)]

>

b
∑

s=0

G(t, s)g1(s+ ν − 1)
(

π

2
− α(s+ ν − 1)

)
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>

b
∑

s=0

G(t, s)g1(s+ ν − 1)(arctanβ(s+ ν − 1)− α(s+ ν − 1))

=
b

∑

s=0

G(t, s)g(s+ ν − 1, β(s+ ν − 1), α(s+ ν − 1)), t ∈ Nν−2,ν+b.
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