
Czechoslovak Mathematical Journal

Vagif Sabir Guliyev; Turhan Karaman; Rza Chingiz Mustafayev; Ayhan Şerbetçi
Commutators of sublinear operators generated by Calderón-Zygmund operator on
generalized weighted Morrey spaces

Czechoslovak Mathematical Journal, Vol. 64 (2014), No. 2, 365–385

Persistent URL: http://dml.cz/dmlcz/144004

Terms of use:
© Institute of Mathematics AS CR, 2014

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/144004
http://dml.cz


Czechoslovak Mathematical Journal, 64 (139) (2014), 365–385

COMMUTATORS OF SUBLINEAR OPERATORS GENERATED BY

CALDERÓN-ZYGMUND OPERATOR ON GENERALIZED

WEIGHTED MORREY SPACES

Vagif Sabir Guliyev, Turhan Karaman, Kırşehir,
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Abstract. In this paper, the boundedness of a large class of sublinear commutator opera-
tors Tb generated by a Calderón-Zygmund type operator on a generalized weighted Morrey
spacesMp,ϕ(w) with the weight function w belonging to Muckenhoupt’s class Ap is studied.
When 1 < p < ∞ and b ∈ BMO, sufficient conditions on the pair (ϕ1, ϕ2) which ensure the
boundedness of the operator Tb fromMp,ϕ1(w) toMp,ϕ2(w) are found. In all cases the con-
ditions for the boundedness of Tb are given in terms of Zygmund-type integral inequalities
on (ϕ1, ϕ2), which do not require any assumption on monotonicity of ϕ1(x, r), ϕ2(x, r) in r.
Then these results are applied to several particular operators such as the pseudo-differential
operators, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator.

Keywords: generalized weighted Morrey space; sublinear operator; commutator; BMO
space; maximal operator; Calderón-Zygmund operator
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1. Introduction

The classical Morrey spaces Mp,λ were originally introduced by Morrey [29] to
study the local behavior of solutions to second order elliptic partial differential equa-
tions. For the properties and applications of classical Morrey spaces, the readers are
referred to [29], [30], [31], [32].
Let R⋉ be the n-dimensional Euclidean space of points x = (x1, . . . , xn) with the

norm |x| =
( n
∑

i=1

x2i

)1/2

. For x ∈ R
⋉ and r > 0, denote by B(x, r) the open ball

The research of V. S.Guliyev was supported by the grant of Ahi Evran University Scien-
tific Research Projects (PYO.FEN.4001.12.18).
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centered at x of radius r. Let ∁B(x, r) be the complement of the ball B(x, r), and
|B(x, r)| the Lebesgue measure of B(x, r).

A weight function is a locally integrable function on R
⋉ which takes values in

(0,∞) almost everywhere. For a weight w and a measurable set E, we define w(E) =
∫

E w(x) dx, the Lebesgue measure of E by |E|, and the characteristic function of E
by χE . Given a weight w, we say that w satisfies the doubling condition if there is
a constant D > 0 such that w(2B) 6 Dw(B) for any ball B. When w satisfies the
doubling condition, we write w ∈ ∆2, for short.

If w is a weight function, then we denote the weighted Lebesgue space by Lp(w) ≡
Lp(R

⋉ , w) with the norm

‖f‖Lp,w
=

(
∫

R⋉

|f(x)|pw(x) dx

)1/p

<∞ when 1 6 p <∞

and ‖f‖L∞,w
= ess sup

x∈R⋉

|f(x)|w(x) when p = ∞.

We recall that a weight function w is in Muckenhoupt’s class Ap, 1 < p <∞, if

[w]Ap
:= sup

B
[w]Ap(B)

= sup
B

(

1

|B|

∫

B

w(x) dx

)(

1

|B|

∫

B

w(x)1−p
′

dx

)p−1

<∞,

where the sup is taken with respect to all balls B and 1/p+ 1/p′ = 1. Note that for
all balls B we have

(1.1) [w]
1/p
Ap(B) = |B|−1‖w‖

1/p
L1(B)‖w

−1/p‖Lp′(B) > 1

by Hölder’s inequality. For p = 1, the class A1 is defined by the condition Mw(x) 6

Cw(x) with [w]A1
= sup

x∈R⋉

Mw(x)/w(x), and for p = ∞ we define A∞ =
⋃

16p<∞

Ap.

For f ∈ Lloc
1 (R⋉ ), the Hardy-Littlewood maximal operator M and the sublinear

commutator of the maximal operator are defined by

Mf(x) = sup
t>0

|B(x, t)|−1

∫

B(x,t)

|f(y)| dy,

Mb(f)(x) = sup
t>0

|B(x, t)|−1

∫

B(x,t)

|b(x)− b(y)| |f(y)| dy,

respectively. Let K be a Calderón-Zygmund singular integral operator, briefly
a Calderón-Zygmund operator, i.e., a linear operator bounded from L2(R

⋉ ) to
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L2(R
⋉ ) for all bounded measurable functions f with a compact support, represented

by

Kf(x) =

∫

R⋉

k(x, y)f(y) dy, x /∈ supp f.

Here, k(x, y) is a continuous function away from the diagonal which satisfies the
standard estimates: there exist c1 > 0 and 0 < ε 6 1 such that

|k(x, y)| 6 c1|x− y|−n

for all x, y ∈ R
⋉ , x 6= y, and

|k(x, y)− k(x′, y)|+ |k(y, x)− k(y, x′)| 6 c1

(

|x− x′|

|x− y|

)ε

|x− y|−n,

whenever 2|x− x′| 6 |x− y|. Such operators were introduced in [6].
It is well known that the maximal operator and the Calderón-Zygmund operators

play an important role in harmonic analysis (see [10]–[42]).
Let T represent a linear or a sublinear operator which satisfies that for any f ∈

L1(R
⋉ ) with compact support and x /∈ supp f

(1.2) |Tf(x)| 6 c0

∫

R⋉

|f(y)|

|x− y|n
dy,

where c0 is independent of f and x.
For a function b, let Tb represent a linear or a sublinear operator which satisfies

that for any f ∈ L1(R
⋉ ) with compact support and x /∈ supp f

(1.3) |Tbf(x)| 6 c0

∫

R⋉

|b(x)− b(y)| |x− y|−n|f(y)| dy,

where c0 is independent of f and x.
We point out that the condition (1.2) was first introduced by Soria and Weiss

in [37]. The condition (1.2) is satisfied by many interesting operators in harmonic
analysis, such as the Calderón-Zygmund operators, Carleson type maximal op-
erators, Hardy-Littlewood maximal operators, C. Fefferman’s singular multipliers,
R. Fefferman’s singular integrals, Ricci-Stein’s oscillatory singular integrals, and the
Bochner-Riesz means (see [37], [36], [26] for details).

Definition 1.1. BMO(R⋉ ) is the Banach space modulo constants with the norm
‖·‖∗ defined by

‖b‖∗ = sup
x∈R⋉ ,r>0

1

|B(x, r)|

∫

B(x,r)

|b(y)− bB(x,r)| dy <∞,
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where b ∈ Lloc
1 (R⋉ ) and

bB(x,r) =
1

|B(x, r)|

∫

B(x,r)

b(y) dy.

Let K be a Calderón-Zygmund singular integral operator and b ∈ BMO(R⋉ ).
A well known result of Coifman, Rochberg and Weiss [7] states that if b ∈ BMO(R⋉ )

and K is a Calderón-Zygmund operator, then the commutator operator [b,K]f =

K(bf)−bKf is bounded on Lp(R⋉ ) for 1 < p <∞. The commutators of a Calderón-
Zygmund operator play an important role in studying the regularity of solutions of
elliptic, parabolic and ultraparabolic partial differential equations of second order
(see [4], [5], [8], [33]).
We define the weighted Morrey and generalized weighted Morrey spaces as follows.

Definition 1.2. Let 1 6 p < ∞, 0 < κ < 1 and let w be a weight function. We
denote by Lp,κ(w) ≡ Lp,κ(R

⋉ , w) the weighted Morrey space of all classes of locally
integrable functions f with the norm

‖f‖Lp,κ(w) = sup
x∈R⋉ ,r>0

w(B(x, r))−κ/p‖f‖Lp,w(B(x,r)) <∞.

Furthermore, byWLp,κ(w) ≡WLp,κ(R
⋉ , w) we denote the weak weighted Morrey

space of all classes of locally integrable functions f with the norm

‖f‖WLp,κ(w) = sup
x∈R⋉ ,r>0

w(B(x, r))−κ/p‖f‖WLp,w(B(x,r)) <∞.

Definition 1.3. Let 1 6 p < ∞, let ϕ(x, r) be a positive measurable function
on R

⋉ × (0,∞) and w non-negative measurable function on R
⋉ . We denote by

Mp,ϕ(w) ≡ Mp,ϕ(R
⋉ , w) the generalized weighted Morrey space, the space of all

classes of functions f ∈ Lloc
p,w(R

⋉ ) with finite norm

‖f‖Mp,ϕ(w) = sup
x∈R⋉ ,r>0

ϕ(x, r)−1w(B(x, r))−1/p‖f‖Lp,w(B(x,r)).

Furthermore, by WMp,ϕ(w) ≡ WMp,ϕ(R
⋉ , w) we denote the weak generalized

weighted Morrey space of all classes of functions f ∈WLloc
p,w(R

⋉ ) for which

‖f‖WMp,ϕ(w) = sup
x∈R⋉ ,r>0

ϕ(x, r)−1w(B(x, r))−1/p‖f‖WLp,w(B(x,r)) <∞.

In [12], [13], [14], [16], [20], [28] and [31], sufficient conditions on ϕ1 and ϕ2 for
the boundedness of the maximal operator M and a Calderón-Zygmund operator K
from the generalized Morrey spaces Mp,ϕ1

to Mp,ϕ2
for 1 < p < ∞ and from M1,ϕ1
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to WM1,ϕ2
were obtained (see also [34], [2], [1]). In [9], the following condition was

imposed on ϕ(x, r):

(1.4) c−1ϕ(x, r) 6 ϕ(x, t) 6 cϕ(x, r)

whenever r 6 t 6 2r, where c(> 1) does not depend on t, r and x ∈ R
⋉ , jointly with

the condition

(1.5)
∫ ∞

r

ϕ(x, t)p
dt

t
6 Cϕ(x, r)p,

for the sublinear operator T , satisfying condition (1.2), where C(> 0) does not
depend on r and x ∈ R

⋉ .
The following statement was proved in [18].

Theorem 1.1. Let 1 6 p <∞, w ∈ Ap and let (ϕ1, ϕ2) satisfy the condition

(1.6)
∫ ∞

r

ess inf
t<s<∞

ϕ1(x, s)w(B(x, s))1/p

w(B(x, t))1/p
dt

t
6 Cϕ2(x, r),

where C does not depend on x and r. Let T be a sublinear operator satisfying the

condition (1.2) bounded on Lp(w) for p > 1, and bounded from L1(w) to WL1(w).

Then the operator T is bounded from Mp,ϕ1
(w) to Mp,ϕ2

(w) for p > 1 and from

M1,ϕ1
(w) to WM1,ϕ2

(w).

Remark 1.1. Note that Theorem 1.1 was proved in the case w ≡ 1 in [15] and
in the case w ≡ 1 and ϕ(x, r) = ϕ1(x, r) = ϕ2(x, r) satisfying conditions (1.4) and
(1.5) in [9].

In this paper, we prove the boundedness of the sublinear commutator operators
Tb satisfying condition (1.3) from one generalized weighted Morrey space Mp,ϕ1

(w)

to another Mp,ϕ2
(w) for 1 < p < ∞ and b ∈ BMO(R⋉ ). We apply this result to

several particular operators such as the pseudo-differential operators, Littlewood-
Paley operator, Marcinkiewicz operator and Bochner-Riesz operator.
By A . B we mean that A 6 CB with a positive constant C independent of the

appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and
B are equivalent.

2. Main results

In the following, main results are given. First, we present some estimates which
are the main tools for proving our theorems, for the boundedness of the operator Tb
on the generalized weighted Morrey spaces.
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Theorem 2.1. Let 1 < p <∞, w ∈ Ap, b ∈ BMO(R⋉ ), and let Tb be a sublinear

operator satisfying the condition (1.3). Let also Tb be bounded on Lp(w). Then

‖Tbf‖Lp,w(B) 6 Cw(B)1/p
∫ ∞

2r

ln
(

e +
t

r

)

‖f‖Lp,w(B(x0,t))w(B(x0, t))
−1/p dt

t

for all f ∈ Lloc
p,w(R

⋉ ), where C does not depend on f , x0 ∈ R
⋉ and r > 0.

Now we give a theorem about the boundedness of the operator Tb on the general-
ized weighted Morrey spaces.

Theorem 2.2. Let 1 < p < ∞, w ∈ Ap, b ∈ BMO(R⋉ ) and let (ϕ1, ϕ2) satisfy

the condition

(2.1)
∫ ∞

r

ln
(

e +
t

r

) ess inf
t<s<∞

ϕ1(x, s)w(B(x, s))1/p

w(B(x, t))1/p
dt

t
6 Cϕ2(x, r),

where C does not depend on x and r. Let Tb be a sublinear operator satisfying

the condition (1.3) and bounded on Lp(w). Then the operator Tb is bounded from

Mp,ϕ1
(w) to Mp,ϕ2

(w). Moreover,

‖Tbf‖Mp,ϕ2
(w) . ‖f‖Mp,ϕ1

(w).

Note that for the sublinear commutator of the maximal operator Mb and for the
linear commutator of the Calderón-Zygmund operator [b,K], from Theorem 2.2 we
get a new result. When ϕ1(x, r) = ϕ2(x, r) ≡ w(B(x, r))(κ−1)/p, from Theorem 2.2
we also get the following new result.

Corollary 2.1. Let 1 < p < ∞, 0 < κ < 1, w ∈ Ap, b ∈ BMO(R⋉ ) and let Tb
be a sublinear operator satisfying the condition (1.3). Let also Tb be bounded on

Lp(w). Then the operator Tb is bounded on Lp,κ(w).

P r o o f. Let 1 < p < ∞, w ∈ Ap, 0 < κ < 1 and b ∈ BMO(R⋉ ). Then the pair
(w(B(x, r))(κ−1)/p, w(B(x, r))(κ−1)/p) satisfies the condition (2.1). Indeed,

∫ ∞

r

ln
(

e +
t

r

) ess inf
t<s<∞

w(B(x, s))κ/p

w(B(x, t))1/p
dt

t
=

∫ ∞

r

ln
(

e +
t

r

)

w(B(x, t))(κ−1)/p dt

t

6 Cw(B(x, r))(κ−1)/p,

where the last inequality follows from Lemma 13 in [3]. �

Note that from Corollary 2.1, for the operator [b,K] we get results which are
proved in [19].
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3. Some lemmas

Lemma 3.1 ([11]).

(1) If w ∈ Ap for some 1 6 p <∞, then w ∈ ∆2. Moreover, for all λ > 1 we have

w(λB) 6 λnp[w]Ap
w(B).

(2) If w ∈ A∞, then w ∈ ∆2. Moreover, for all λ > 1 we have

w(λB) 6 2λ
n

[w]λ
n

A∞
w(B).

(3) If w ∈ Ap for some 1 6 p 6 ∞, then there exist C > 0 and δ > 0 such that for

any ball B and a measurable set S ⊂ B,

w(S)

w(B)
6 C

(

|S|

|B|

)δ

.

We need the following statement on the boundedness of the Hardy type operator:

(H1g)(t) :=
1

t

∫ t

0

ln
(

e +
t

r

)

g(r) dµ(r), 0 < t <∞,

where µ is a non-negative Borel measure on (0,∞).

Theorem 3.1. The inequality

ess sup
t>0

w(t)H1g(t) 6 c ess sup
t>0

v(t)g(t)

holds for all non-negative and non-increasing g on (0,∞) if and only if

A1 := sup
t>0

w(t)

t

∫ t

0

ln
(

e +
t

r

) dµ(r)

ess sup
0<s<r

v(s)
<∞,

and c ≈ A1.

Note that Theorem 3.1 is proved analogously to Theorem 4.3 in [15].
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Lemma 3.2 ([30], Theorem 5, page 236). Let w ∈ A∞. Then the norm of

BMO(R⋉ ) is equivalent to the norm of BMO(w), where

BMO(w) =

{

b : ‖b‖∗,w = sup
x∈R⋉ ,r>0

1

w(B(x, r))

∫

B(x,r)

|b(y)−bB(x,r),w|w(y) dy <∞

}

and

bB(x,r),w =
1

w(B(x, r))

∫

B(x,r)

b(y)w(y) dy.

Remark 3.1.

(1) The John-Nirenberg inequality: there are constants C1, C2 > 0 such that for all
b ∈ BMO(R⋉ ) and β > 0

|{x ∈ B : |b(x) − bB| > β}| 6 C1|B|e−C2β/‖b‖∗ , ∀B ⊂ R
⋉ .

(2) For 1 < p <∞ the John-Nirenberg inequality implies that

(3.1) ‖b‖∗ ≈ sup
B

(

1

|B|

∫

B

|b(y)− bB|
p dy

)1/p

and for 1 6 p <∞ and w ∈ A∞

(3.2) ‖b‖∗ ≈ sup
B

(

1

w(B)

∫

B

|b(y)− bB|
pw(y) dy

)1/p

.

Indeed, from the John-Nirenberg inequality and using Lemma 3.1 (3), we get

w({x ∈ B : |b(x)− bB| > β}) 6 Cw(B)e−C2βδ/‖b‖∗

for some δ > 0. Hence, this inequality implies that

∫

B

|b(y)− bB|
pw(y) dy = p

∫ ∞

0

βp−1w({x ∈ B : |b(x)− bB| > β}) dβ

6 Cw(B)

∫ ∞

0

βp−1e−C2βδ/‖b‖∗ dβ

= Cw(B)‖b‖p∗.

To prove the required equivalence we also need to have the right hand inequality,
which is easily obtained using the Hölder inequality, and then we get (3.2). Note
that (3.1) follows from (3.2) in the case w ≡ 1.
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The following lemma was proved in [21].

Lemma 3.3. Let b be a function in BMO(R⋉ ). Let also 1 6 p < ∞, x ∈ R
⋉ ,

and r1, r2 > 0. Then

(

1

|B(x, r1)|

∫

B(x,r1)

|b(y)− bB(x,r2)|
p dy

)1/p

6 C
(

1 +
∣

∣

∣
ln
r1
r2

∣

∣

∣

)

‖b‖∗,

where C > 0 is independent of f , x, r1 and r2.

The following lemma is valid.

Lemma 3.4.

(i) Let w ∈ A∞ and let b be a function in BMO(R⋉ ). Let also 1 6 p <∞, x ∈ R
⋉ ,

and r1, r2 > 0. Then

(

1

w(B(x, r1))

∫

B(x,r1)

|b(y)− bB(x,r2),w|
pw(y) dy

)1/p

6 C
(

1 +
∣

∣

∣
ln
r1
r2

∣

∣

∣

)

‖b‖∗,

where C > 0 is independent of f , x, r1 and r2.

(ii) Let w ∈ Ap and let b be a function in BMO(R⋉ ). Let also 1 < p <∞, x ∈ R
⋉ ,

and r1, r2 > 0. Then

(

1

w1−p′(B(x, r1))

∫

B(x,r1)

|b(y)− bB(x,r2),w|
p′w(y)1−p

′

dy

)1/p′

6 C
(

1 +
∣

∣

∣
ln
r1
r2

∣

∣

∣

)

‖b‖∗,

where C > 0 is independent of f , x, r1 and r2.

P r o o f. We only consider the case 0 < r1 6 r2. Actually, the similar procedure
works for the other case 0 < r2 < r1.

For 0 < r1 6 r2, there are k1, k2 ∈ Z such that 2k1−1 < r1 6 2k1 and 2k2−1 < r2 6

2k2 . Then k1 6 k2 and (k2 − k1 − 1) ln 2 < ln(r2/r1) < (k2 − k1 + 1) ln 2.
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(i) From (3.2), Lemmas 3.1 (2) and 3.2 we have

(

1

w(B(x, r1))

∫

B(x,r1)

|b(y)− bB(x,r2),w|
pw(y) dy

)1/p

6

(

1

w(B(x, r1))

∫

B(x,r1)

|b(y)− bB(x,2k1)|
pw(y) dy

)1/p

+ |bB(x,2k1),w − bB(x,r2),w|+ |bB(x,2k1) − bB(x,2k1),w|

6

(

1

w(B(x, r1))

∫

B(x,r1)

|b(y)− bB(x,2k1)|
pw(y) dy

)1/p

+ |bB(x,r2),w − bB(x,2k2),w|+

k2−1
∑

j=k1

|bB(x,2j+1),w − bB(x,2j),w|

+ |bB(x,2k1) − bB(x,2k1),w|

6

(

1

w(B(x, r1))

∫

B(x,r1)

|b(y)− bB(x,2k1)|
pw(y) dy

)1/p

+
1

w(B(x, r2))

∫

B(x,r2)

|b(y)− bB(x,2k2),w|w(y) dy

+

k2−1
∑

j=k1

1

w(B(x, 2j))

∫

B(x,2j)

|b(y)− bB(x,2j+1),w|w(y) dy

+
1

w(B(x, 2k1 ))

∫

B(x,2k1 )

|b(y)− bB(x,2k1)|w(y) dy

.

(

1

w(B(x, 2k1 ))

∫

B(x,2k1)

|b(y)− bB(x,2k1)|
pw(y) dy

)1/p

+
1

w(B(x, 2k2 ))

∫

B(x,2k2 )

|b(y)− bB(x,2k2),w|w(y) dy

+

k2−1
∑

j=k1

1

w(B(x, 2j+1))

∫

B(x,2j+1)

|b(y)− bB(x,2j+1),w|w(y) dy

+
1

w(B(x, 2k1 ))

∫

B(x,2k1 )

|b(y)− bB(x,2k1)|w(y) dy

. (1 + k2 − k1)‖b‖∗ .
(

1 + ln
r2
r1

)

‖b‖∗.

This completes the proof of the first part of the lemma.
(ii) We have

(

1

w1−p′(B(x, r1))

∫

B(x,r1)

|b(y)− bB(x,r2),w|
p′w(y)1−p

′

dy

)1/p′
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6

(

1

w1−p′ (B(x, r1))

∫

B(x,r1)

{|b(y)− bB(x,2k1),w1−p′ |

+ |bB(x,2k1),w1−p′ − bB(x,r2),w|}
p′w(y)1−p

′

dy

)1/p′

6

(

1

w1−p′ (B(x, r1))

∫

B(x,r1)

|b(y)− bB(x,2k1),w1−p′ |p
′

w(y)1−p
′

dy

)1/p′

+ |bB(x,2k1),w1−p′ − bB(x,r2),w| = J1 + J2.

It is known that, if w ∈ Ap for 1 6 p < ∞, then w1−p′ ∈ Ap′ ⊂ A∞ and from
Lemma 3.1 (1) and Lemma 3.4 we get

J1 .

(

1

w1−p′(B(x, 2k1 ))

∫

B(x,2k1 )

|b(y)− bB(x,2k1),w1−p′ |p
′

w(y)1−p
′

dy

)1/p′

. ‖b‖∗.

Now we estimate J2:

J2 = |bB(x,2k1),w1−p′ − bB(x,r2),w|

6 |bB(x,2k1),w1−p′ − bB(x,2k1)|+ |bB(x,2k1) − bB(x,r2)|+ |bB(x,r2) − bB(x,r2),w|

= J21 + J22 + J23.

From (3.2) we have

J21 = |bB(x,2k1),w1−p′ − bB(x,2k1 )|

6
1

w1−p′(B(x, 2k1 ))

∫

B(x,2k1 )

|b(y)− bB(x,2k1)|w(y)
1−p′ dy . ‖b‖∗.

From Lemma 3.3 we get

J22 = |bB(x,2k1) − bB(x,r2)| 6
1

|B(x, 2k1)|

∫

B(x,2k1 )

|b(y)− bB(x,r2)| dy

.
(

1 +
∣

∣

∣
ln

2k1

r2

∣

∣

∣

)

‖b‖∗ .
(

1 +
∣

∣

∣
ln
r1
r2

∣

∣

∣

)

‖b‖∗.

From (3.2) we have

J23 = |bB(x,r2) − bB(x,r2),w|

6
1

w(B(x, r2))

∫

B(x,r2)

|b(y)− bB(x,r2)|w(y) dy . ‖b‖∗.

Then
J1 + J2 .

(

1 + ln
r2
r1

)

‖b‖∗.

This completes the proof of the second part of the lemma. �
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4. Proof of the theorems

P r o o f of Theorem 2.1. Let p ∈ (1,∞). For arbitrary x0 ∈ R
⋉ and r > 0, set

B = B(x0, r). Write f = f1 + f2 with f1 = fχ2B and f2 = fχ∁(2B). Hence

‖Tbf‖Lp,w(B) 6 ‖Tbf1‖Lp,w(B) + ‖Tbf2‖Lp,w(B).

From the boundedness of Tb in Lp(w) it follows that:

‖Tbf1‖Lp,w(B) 6 ‖Tbf1‖Lp,w
. ‖f1‖Lp,w

= ‖f‖Lp,w(2B).

For x ∈ B we have

|Tbf2(x)| .

∫

R⋉

|b(y)− b(x)|

|x− y|n
|f2(y)| dy ≈

∫

∁(2B)

|b(y)− b(x)|

|x0 − y|n
|f(y)| dy.

Then

‖Tbf2‖Lp,w(B) .

(
∫

B

(
∫

∁(2B)

|b(y)− b(x)|

|x0 − y|n
|f(y)| dy

)p

w(x) dx

)1/p

.

(
∫

B

(
∫

∁(2B)

|b(y)− bB,w|

|x0 − y|n
|f(y)| dy

)p

w(x) dx

)1/p

+

(
∫

B

(
∫

∁(2B)

|b(x)− bB,w|

|x0 − y|n
|f(y)| dy

)p

w(x) dx

)1/p

= I1 + I2.

Let us estimate I1:

I1 = w(B)1/p
∫

∁(2B)

|b(y)− bB,w|

|x0 − y|n
|f(y)| dy

≈ w(B)1/p
∫

∁(2B)

|b(y)− bB,w| |f(y)|

∫ ∞

|x0−y|

dt

tn+1
dy

≈ w(B)1/p
∫ ∞

2r

∫

2r6|x0−y|6t

|b(y)− bB,w| |f(y)| dy
dt

tn+1

. w(B)1/p
∫ ∞

2r

∫

B(x0,t)

|b(y)− bB,w| |f(y)| dy
dt

tn+1
.

Applying Hölder’s inequality and by Lemma 3.4, we get

I1 . w(B)1/p
∫ ∞

2r

(
∫

B(x0,t)

|b(y)− bB(x0,r),w|
p′w(y)1−p

′

dy

)1/p′

‖f‖Lp,w(B(x0,t))
dt

tn+1

. [w]
1/p
Ap

‖b‖∗w(B)1/p
∫ ∞

2r

(

1 + ln
t

r

)

‖w−1/p‖Lp′(B(x0,t))‖f‖Lp,w(B(x0,t))
dt

tn+1

. [w]
1/p
Ap

‖b‖∗w(B)1/p
∫ ∞

2r

ln
(

e +
t

r

)

‖f‖Lp,w(B(x0,t))w(B(x0, t))
−1/p dt

t
.
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In order to estimate I2 note that

I2 =

(
∫

B

|b(x)− bB,w|
pw(x) dx

)1/p ∫

∁(2B)

|f(y)|

|x0 − y|n
dy.

By Lemma 3.4, we get

I2 . w(B)1/p
∫

∁(2B)

|f(y)|

|x0 − y|n
dy.

Applying Hölder’s inequality, we get

∫

∁(2B)

|f(y)|

|x0 − y|n
dy .

∫ ∞

2r

‖f‖Lp,w(B(x0,t))‖w
−1/p‖Lp′(B(x0,t))

dt

tn+1
(4.1)

6 [w]
1/p
Ap

∫ ∞

2r

‖f‖Lp,w(B(x0,t))w(B(x0, t))
−1/p dt

t
.

Thus, by (4.1)

I2 . w(B)1/p
∫ ∞

2r

‖f‖Lp,w(B(x0,t))w(B(x0, t))
−1/p dt

t
.

Summing up I1 and I2, for all p ∈ [1,∞) we get

(4.2) ‖Tbf2‖Lp,w(B) . w(B)1/p
∫ ∞

2r

ln
(

e +
t

r

)

‖f‖Lp,w(B(x0,t))w(B(x0, t))
−1/p dt

t
.

On the other hand,

‖f‖Lp,w(2B) ≈ |B|‖f‖Lp,w(2B)

∫ ∞

2r

dt

tn+1
. |B|

∫ ∞

2r

‖f‖Lp,w(B(x0,t))
dt

tn+1
(4.3)

6 w(B)1/p‖w−1/p‖Lp′(B)

∫ ∞

2r

‖f‖Lp,w(B(x0,t))
dt

tn+1

6 w(B)1/p
∫ ∞

2r

‖f‖Lp,w(B(x0,t))‖w
−1/p‖Lp′(B(x0,t))

dt

tn+1

6 [w]
1/p
Ap
w(B)1/p

∫ ∞

2r

‖f‖Lp,w(B(x0,t))w(B(x0, t))
−1/p dt

t
.

Finally,

‖Tbf‖Lp,w(B) . ‖f‖Lp,w(2B)

+ w(B)1/p
∫ ∞

2r

ln
(

e +
t

r

)

‖f‖Lp,w(B(x0,t))w(B(x0, t))
−1/p dt

t
,

and the statement of Theorem 2.1 follows by (4.3). �
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P r o o f of Theorem 2.2. By Theorem 2.1 and Theorem 3.1 we have for p > 1

‖Tbf‖Mp,ϕ2
(w)

. sup
x∈R⋉ , r>0

ϕ2(x, r)
−1

∫ ∞

r

ln
(

e +
t

r

)

‖f‖Lp,w(B(x,t))w(B(x, t))−1/p dt

t

= sup
x∈R⋉ , r>0

ϕ2(x, r)
−1

∫ r−1

0

ln
(

e +
1

tr

)

‖f‖Lp,w(B(x,t−1))w(B(x, t−1))−1/p dt

t

= sup
x∈R⋉ , r>0

ϕ2(x, r
−1)−1r

1

r

∫ r

0

ln
(

e +
r

t

)

‖f‖Lp,w(B(x,t−1))w(B(x, t−1))−1/p dt

t

. sup
x∈R⋉ , r>0

ϕ1(x, r
−1)−1w(B(x, r−1))−1/p‖f‖Lp,w(B(x,r−1))

= sup
x∈R⋉ , r>0

ϕ1(x, r)
−1w(B(x, r))−1/p‖f‖Lp,w(B(x,r)) = ‖f‖Mp,ϕ1

(w).

�

5. Some applications

In this section we will apply Theorem 2.2 to several particular operators such as
the pseudo-differential operators, Littlewood-Paley operator, Marcinkiewicz operator
and Bochner-Riesz operator.

5.1. Pseudo-differential operators. Pseudo-differential operators are general-
izations of differential operators and singular integrals. Let m be a real number,
0 6 δ < 1 and 0 6 ̺ < 1. Following [17], [41], the symbol Sm̺,δ stands for the set of
smooth functions σ(x, ξ) defined on R⋉ ×R

⋉ such that for all multi-indices α and β
the following estimate holds:

|Dα
xD

β
ξ σ(x, ξ)| 6 Cαβ(1 + |ξ|)m−̺|β|+δ|α|,

where Cαβ > 0 is independent of x and ξ. The symbol S−∞
̺,δ stands for the set of

functions which satisfy the above estimates for each real number m.
The operator A given by

Af(x) =

∫

R⋉

σ(x, ξ)e2πix·ξf̂(ξ) dξ

is called a pseudo-differential operator with σ(x, ξ) ∈ Sm̺,δ, where f is a Schwartz
function and f̂ denotes the Fourier transform of f . As usual, Lm̺,δ will denote the
class of pseudo-differential operators with symbols in Sm̺,δ.
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Miller [27] showed the boundedness of L0
1,0 pseudo-differential operators on

weighted Lp (1 < p < ∞) spaces whenever the weight function belongs to Muck-
enhoupt’s class Ap. In [6] it is shown that pseudo-differential operators in L0

1,0 are
Calderón-Zygmund operators. From Theorem 2.2, we get the following corollary.

Corollary 5.1. Let 1 < p < ∞, w ∈ Ap. Suppose that (ϕ1, ϕ2) satisfies the

condition (2.1) and b ∈ BMO(R⋉ ). If A is a pseudo-differential operator of the Hör-

mander class L0
1,0, then the operator [b, A] is bounded from Mp,ϕ1

(w) to Mp,ϕ2
(w).

From Corollary 2.1 we get

Corollary 5.2. Let 1 < p < ∞, 0 < κ < 1, w ∈ Ap and b ∈ BMO(R⋉ ). If A is

a pseudo-differential operator of the Hörmander class L0
1,0, then the operator [b, A]

is bounded on Lp,κ(w).

5.2. Littlewood-Paley operator. The Littlewood-Paley functions play an im-
portant role in classical harmonic analysis, for example in the study of non-tangential
convergence of Fatou type and boundedness of Riesz transforms and multipliers [40],
[38], [42], [39]. The Littlewood-Paley operator (see [42], [22]) is defined as follows.

Definition 5.1. Suppose that ψ ∈ L1(R
⋉ ) satisfies

(5.1)
∫

R⋉

ψ(x) dx = 0.

Then the generalized Littlewood-Paley g function gψ is defined by

gψ(f)(x) =

(
∫ ∞

0

|Ft(f)(x)|
2 dt

t

)1/2

,

where ψt(x) = t−nψ(x/t) for t > 0 and Ft(f) = ψt ∗ f .

The sublinear commutator of the operator gψ is defined by

[b, gψ](f)(x) =

(
∫ ∞

0

|F bt (f)(x)|
2 dt

t

)1/2

,

where
F bt (f)(x) =

∫

R⋉

[b(x)− b(y)]ψt(x− y)f(y) dy.

The following theorem is valid (see [25], Theorem 5.2.2).
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Theorem 5.1. Suppose that ψ ∈ L1(R
⋉ ) satisfies (5.1) and the following condi-

tions:

|ψ(x)| 6
C

(1 + |x|)n+1
,(5.2)

|∇ψ(x)| 6
C

(1 + |x|)n+2
(5.3)

where C > 0 is independent of x. Then gψ is bounded on Lp(w) for 1 < p <∞ and

w ∈ Ap.

Let H be the space H =
{

h : ‖h‖ =
( ∫∞

0
|h(t)|2 dt/t

)1/2
< ∞

}

, then, for each
fixed x ∈ R

⋉ , Ft(f)(x) may be viewed as a mapping from [0,∞) to H , and it is clear
that gψ(f)(x) = ‖Ft(f)(x)‖.
In fact, by the Minkowski inequality and the conditions on ψ we get

gψ(f)(x) 6

∫

R⋉

|f(y)|

(
∫ ∞

0

|ψt(x− y)|2
dt

t

)1/2

dy

.

∫

R⋉

|f(y)|

(
∫ ∞

0

t−2n

(1 + |x− y|/t)2(n+1)

dt

t

)1/2

dy

=

∫

R⋉

|f(y)|

|x− y|n
dy.

Thus, we get

Corollary 5.3. Let 1 < p < ∞, w ∈ Ap. Suppose that (ϕ1, ϕ2) satisfies the

condition (2.1), b ∈ BMO(R⋉ ) and ψ ∈ L1(R
⋉ ) satisfies (5.1)–(5.3). Then the

commutator of the Littlewood-Paley operator [b, gψ] is bounded from Mp,ϕ1
(w) to

Mp,ϕ2
(w).

From Corollary 2.1 we get

Corollary 5.4. Let 1 < p <∞, 0 < κ < 1, w ∈ Ap, b ∈ BMO(R⋉ ). Suppose that

ψ ∈ L1(R
⋉ ) satisfies (5.1)–(5.3). Then the operator [b, gψ] is bounded on Lp,κ(w).

5.3. Marcinkiewicz operator. Let Sn−1 = {x ∈ R
⋉ : |x| = 1} be the unit

sphere in R
⋉ equipped with the Lebesgue measure dσ. Suppose that Ω satisfies the

following conditions:

(a) Ω is a homogeneous function of degree zero on R
⋉ \ {0}, that is,

Ω(tx) = Ω(x) for any t > 0, x ∈ R
⋉ \ {0}.
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(b) Ω has mean zero on Sn−1, that is,

∫

Sn−1

Ω(x′) dσ(x′) = 0.

(c) Ω ∈ Lipγ(S
n−1), 0 < γ 6 1, that is, there exists a constant C > 0 such that

|Ω(x′)− Ω(y′)| 6 C|x′ − y′|γ for any x′, y′ ∈ Sn−1.

In 1958, Stein [39] defined the Marcinkiewicz integral of higher dimension µΩ as

µΩ(f)(x) =

(
∫ ∞

0

|FΩ,t(f)(x)|
2 dt

t3

)1/2

,

where

FΩ,t(f)(x) =

∫

|x−y|6t

Ω(x − y)

|x− y|n−1
f(y) dy.

The continuity of the Marcinkiewicz operator µΩ has been extensively studied in
[25], [40], [38], [43].
The sublinear commutator of the operator µΩ is defined by

[a, µΩ](f)(x) =

(
∫ ∞

0

|FΩ,t,a(f)(x)|
2 dt

t3

)1/2

,

where

FΩ,t,a(f)(x) =

∫

|x−y|6t

Ω(x − y)

|x− y|n−1
[a(x) − a(y)]f(y) dy.

Let H be the space

H =

{

h : ‖h‖ =

(
∫ ∞

0

|h(t)|2
dt

t3

)1/2

<∞

}

.

Then it is clear that µΩ(f)(x) = ‖FΩ,t(f)(x)‖.
By the Minkowski inequality and the conditions on Ω, we get

µΩ(f)(x) 6

∫

R⋉

|Ω(x− y)|

|x− y|n−1
|f(y)|

(
∫ ∞

|x−y|

dt

t3

)1/2

dy .

∫

R⋉

|f(y)|

|x− y|n
dy.

Thus, µΩ satisfies the condition (1.2). It is known that µΩ is bounded on Lp(w) for
1 < p <∞ and w ∈ Ap (see [43]). From Theorem 2.2 we get
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Corollary 5.5. Let 1 < p < ∞, w ∈ Ap. Suppose that (ϕ1, ϕ2) satisfies the

condition (2.1), b ∈ BMO(R⋉ ) and Ω satisfies the conditions (a)–(c). Then [b, µΩ] is

bounded from Mp,ϕ1
(w) to Mp,ϕ2

(w).

From Corollary 2.1 we get

Corollary 5.6. Let 1 < p < ∞, 0 < κ < 1, w ∈ Ap, b ∈ BMO(R⋉ ). Suppose

that Ω satisfies conditions (a)–(c). Then the operator [b, µΩ] is bounded on Lp,κ(w).

5.4. Bochner-Riesz operator. Let δ > (n− 1)/2, Bδt (f̂)(ξ) = (1− t2|ξ|2)δ+f̂(ξ)

and Bδt (x) = t−nBδ(x/t) for t > 0. The maximal Bochner-Riesz operator is defined
by (see [24], [23])

Bδ,∗(f)(x) = sup
t>0

|Bδt (f)(x)|.

Let H be the space H = {h : ‖h‖ = sup
t>0

|h(t)| < ∞}, then it is clear that

Bδ,∗(f)(x) = ‖Bδt (f)(x)‖.
By the condition on Bδr (see [10]), we have

|Bδr (x− y)| . r−n(1 + |x− y|/r)−(δ+(n+1)/2)

=
( r

r + |x− y|

)δ−(n−1)/2 1

(r + |x− y|)n

. |x− y|−n,

and

Bδ,∗(f)(x) .

∫

R⋉

|f(y)|

|x− y|n
dy.

Thus, Bδ,∗ satisfies the condition (1.2). It is known that Bδ,∗ is bounded on Lp(w)
for 1 < p < ∞ and w ∈ Ap, and bounded from L1(w) to WL1(w) for w ∈ A1 (see
[35], [44]). From Theorem 2.2 we get

Corollary 5.7. Let 1 < p < ∞, w ∈ Ap. Suppose that (ϕ1, ϕ2) satisfies the

condition (2.1), δ > (n − 1)/2 and b ∈ BMO(R⋉ ). Then the operator [b, Bδ,∗] is

bounded from Mp,ϕ1
(w) to Mp,ϕ2

(w).

Remark 5.1. Recall that, under the assumptions that w = 1 and ϕ(x, r) =

ϕ1(x, r) = ϕ2(x, r) satisfy conditions (1.4) and (1.5), Corollary 5.7 was proved in [24].

From Corollary 2.1 we get
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Corollary 5.8. Let 1 < p < ∞, 0 < κ < 1, w ∈ Ap, b ∈ BMO(R⋉ ) and

δ > (n− 1)/2. Then the operator [b, Bδ,∗] is bounded on Lp,κ(w).
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