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POINT-DISTINGUISHING CHROMATIC INDEX

OF THE UNION OF PATHS

Xiang’en Chen, Lanzhou

(Received February 6, 2013)

Abstract. Let G be a simple graph. For a general edge coloring of a graph G (i.e.,
not necessarily a proper edge coloring) and a vertex v of G, denote by S(v) the set (not
a multiset) of colors used to color the edges incident to v. For a general edge coloring f of
a graph G, if S(u) 6= S(v) for any two different vertices u and v of G, then we say that f is
a point-distinguishing general edge coloring of G. The minimum number of colors required
for a point-distinguishing general edge coloring of G, denoted by χ0(G), is called the point-
distinguishing chromatic index of G. In this paper, we determine the point-distinguishing
chromatic index of the union of paths and propose a conjecture.

Keywords: general edge coloring; point-distinguishing general edge coloring; point-
distinguishing chromatic index

MSC 2010 : 05C15

1. Introduction

We consider only finite, undirected graphs. We also consider only simple graphs

except for the graph K0
k which is constructed from the complete graph Kk with

V (Kk) = {1, 2, . . . , k} by adding exactly one loop at each vertex, G2 in the definition

of a packing of G1 into G2, and H , H
c described in the proof of Theorem 4.1. These

four exceptional graphs may have loops (each vertex is incident to at most one loop)

but no multiple edges. A non-loop edge of a graph G is called a link of G.

Let G be a graph with vertex set V (G) and edge set E(G). For an edge coloring

(proper or not necessarily proper) of a graph G and a vertex v of G, denote by S(v)

the set (not the multiset) of colors used to color the edges incident to v. The set

S(v) is called the color set of vertex v under the given edge coloring.

The research has been supported by the National Natural Science Foundation of China
(Grant No. 61163037, 61163054)
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A proper edge coloring of a graph G is said to be vertex-distinguishing if distinct

vertices have distinct color sets. In other words, S(u) 6= S(v) whenever u 6= v.

A graph G has a vertex-distinguishing proper edge coloring if and only if it has no

more than one isolated vertex and no isolated edges. Such a graph will be referred to

as a vdec-graph. The minimum number of colors required for a vertex-distinguishing

proper edge coloring of a vdec-graphG will be denoted χ′
s(G). The concept of vertex-

distinguishing proper edge colorings has been considered in several papers [1]–[6],

[9], [11]. For the vertex-distinguishing proper edge coloring, Burris and Schelp had

proposed a conjecture (VDPEC Conjecture) in [5] as follows.

Conjecture 1.1 (VDPEC Conjecture). If G is a vdec-graph and π(G) is the

minimum integer j such that
(

j
i

)

> ni with δ(G) 6 i 6 ∆(G), then π(G) 6 χ′
s(G) 6

π(G) + 1.

A general edge coloring (not a necessarily a proper edge coloring) of a graph

G is said to be point-distinguishing (or vertex-distinguishing) if S(u) 6= S(v) for

any two distinct vertices u, v. The point-distinguishing chromatic index of a vdec-

graph G, denoted by χ0(G), is the minimum number of colors required for a point-

distinguishing general edge coloring of G. This parameter was introduced by Harary

and Plantholt in [7]. Obviously we have χ0(G) 6 χ′
s(G) for any vdec-graph G. In

spite of the fact that the structure of complete bipartite graphs is simple, it seems

that the problem of determining χ0(Km,n) is not easy, especially in the case m = n,

as documented by Horňák and Soták [12], [10], Salvi [13], [14] and Horňák and

Salvi [8].

As usual, we write Kn for a complete graph of order n. Write Pn for a path of

length n − 1 (on n vertices) and P (v1, v2, . . . , vr) for the trail with edges vivi+1,

i = 1, 2, . . . , r− 1 (of length r− 1). We do not require vi to be distinct. For any two

graphs G1 and G2, write G1 ∪G2 for the vertex disjoint union of G1 and G2.

If G1 and G2 are graphs, a packing of G1 into G2 is a map f : V (G1) → V (G2)

such that xy ∈ E(G1) implies f(x)f(y) ∈ E(G2) and the induced map ind(f) on

edges defined by xy 7→ f(x)f(y) is an injection from E(G1) to E(G2). We do not

require f to be injective on vertices, so if G1 contains a cycle or path, its image in

G2 will be a circuit (closed trail) or a nonclosed trail.

In [7], Harary and Plantholt studied the point-distinguishing chromatic index for

paths, cycles, complete graphs, cubes and complete bipartite graphs. In this paper we

will propose a conjecture on the point-distinguishing chromatic index and determine

the point-distinguishing chromatic index of a union of paths.

In Section 2 we will list several lemmas which are useful in the proofs of main

results. In Section 3 we define a parameter and give some related results. In Section 4
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we determine the point-distinguishing chromatic index of the union of some paths.

In Section 5 we propose a conjecture. In Section 6 we give a remark.

We write Qn for an n-cube (with 2n vertices) and Cn for a cycle with n vertices.

Notation and terminology that are not defined here may be found in [2], [7].

2. Preliminaries

The following six results (Lemma 2.1 to 2.6) were proved in [7].

Lemma 2.1. χ0(Kn) = ⌈log2 n⌉+ 1.

Lemma 2.2. If n > 2, then ⌈log2(2n+ 1)⌉ 6 χ0(Kn,n) 6 ⌈log2 n⌉+ 2.

Lemma 2.3. If m < n, n > 4, m > ⌈log2 n⌉ + 1, then ⌈log2(m + n + 1)⌉ 6

χ0(Km,n) 6 ⌈log2 n⌉+ 2.

Lemma 2.4. If n > 2, then χ0(Qn) = n+ 1.

Lemma 2.5. If n > 3, then

χ0(Pn) = min
{

2
⌈

1
4 (1 +

√
8n− 9)

⌉

− 1, 2
⌈√

1
2 (n− 1)

⌉}

.

Lemma 2.6. If n > 3, then

χ0(Cn) = min
{

2
⌈

1
4 (1 +

√
8n+ 1)

⌉

− 1, 2
⌈
√

1
2n

⌉}

.

Lemma 2.7. (i) If k is an odd number, 3 6 l 6 1
2k(k + 1)− 1, then there exists

a length l nonclosed trail in K0
k such that its initial and final edges are loops.

(ii) If k is an even number, 3 6 l 6 1
2k(k+1)− 1

2k+1, then there exists a length

l nonclosed trail in K0
k such that its initial and final edges are loops.

P r o o f. If k = 2, then l = 3; if k = 3, then l = 3, 4, 5; if k = 4, then

l = 3, 4, 5, 6, 7, 8, 9. In these cases the results are trivial. Suppose k > 5.

(i) k is an odd number. K0
k has an Euler closed trail with length

(

k+1
2

)

. So

there exists a nonclosed trail in K0
k such that its initial and final edges are loops

and whose length is
(

k+1
2

)

− 1. (Such a trail can be easily constructed from an

Eulerian trail in K0
k − e, where e is an edge of K0

k .) By deleting some loops which

are not initial and final loops from this nonclosed trail, we can obtain nonclosed
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trails in K0
k such that their initial and final edges are loops and their lengths are

(

k+1
2

)

−2,
(

k+1
2

)

−3, . . . ,
(

k+1
2

)

−k+1. Let T be a nonclosed trail obtained by deleting

the initial and final edges (loops) from the length
(

k+1
2

)

− k + 1 nonclosed trail we

have obtained. Note that T has no loop and T has
(

k
2

)

− 1 edges.

Suppose 3 6 l 6 1
2k(k + 1) − k. Consider the subtrail T ′ formed from the first

l− 2 edges of T . If T ′ is not closed, then we can obtain a length l nonclosed trail in

K0
k such that the initial and final edges are loops by adding two loops at the initial

and final vertices from T ′. If T ′ is closed, then we consider the subtrail T ′′ obtained

from the second edge to the (l − 1)-th edge. The subtrail T ′′ is not closed. We can

obtain a length l nonclosed trail in K0
k such that its initial and final edges are loops

by adding two loops at the initial and final vertices from T ′′.

(ii) k is an even number. K0
k has a nonclosed trail with length

(

k+1
2

)

− 1
2k + 1

and k loops. By deleting some loops which are not initial and final loops from this

length
(

k+1
2

)

− 1
2k+1 nonclosed trail, we can obtain nonclosed trails in K0

k such that

their initial and final edges are loops and their lengths are
(

k+1
2

)

− 1
2k,

(

k+1
2

)

− 1
2k −

1, . . . ,
(

k+1
2

)

− 1
2k− k+3. Let T be a nonclosed trail obtained by deleting the initial

and final edges (loops) from the length
(

k+1
2

)

− 1
2k − k + 3 nonclosed trail we have

obtained. Note that T has no loop and T has
(

k
2

)

− 1
2k + 1 edges.

If 3 6 l 6
(

k+1
2

)

− 1
2k − k + 2, we proceed similarly to the case (i) with 3 6 l 6

(

k+1
2

)

− k.

The proof of Lemma 2.7 is completed. �

Lemma 2.8. Suppose k, p, s1, s2, . . . , sp are integers with k > 2, p > 1 and si > 3,

i = 1, 2, . . . , p. The following two statements are equivalent:

(i) The graph Ps1 ∪Ps2 ∪ . . .∪Psp has a point-distinguishing general edge coloring

that uses k colors.

(ii) There exists a packing g of the graph P = Ps1+1 ∪ Ps2+1 ∪ . . . ∪ Psp+1 into K
0
k

such that ind(g) maps all pendant edges of P to loops of K0
k .

P r o o f. Let G = Ps1∪Ps2∪. . .∪Psp and suppose that the consecutive vertices of

Psi are u
(i)
1 , u

(i)
2 , . . . , u

(i)
si , while those of Psi+1 are v

(i)
1 , v

(i)
2 , . . . , v

(i)
si+1, i = 1, 2, . . . , p.

(i) ⇒ (ii): Consider a point-distinguishing general edge coloring f : E(G) →
{1, 2, . . . , k}. The map g : V (P ) → {1, 2, . . . , k} = V (K0

k) defined, for i = 1, 2, . . . , p,

by

g(v
(i)
j ) = f(u

(i)
j−1u

(i)
j ), j = 2, 3, . . . , si, g(v

(i)
1 ) = g(v

(i)
2 ), g(v

(i)
si+1) = g(v(i)si

),

is a required packing of P into K0
k . Indeed, the map ind(g) assigns to the edge

v
(i)
j v

(i)
j+1 the color set of the vertex u

(i)
j under f , it is therefore injective and maps

any pendant edge of P to a loop of K0
k .
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(ii) ⇒ (i): Suppose g : V (P ) → V (K0
k) is such a packing of P into K0

k that

ind(g) maps all pendant edges of P to loops of K0
k . Note that g(v

(i)
1 ) = g(v

(i)
2 ),

g(v
(i)
si ) = g(v

(i)
si+1), i = 1, 2, . . . , p. The general edge coloring f : E(G) → {1, 2, . . . , k}

that is defined, for i = 1, 2, . . . , p, by

f(u
(i)
j−1u

(i)
j ) = g(v

(i)
j ), j = 2, 3, . . . , si,

is point distinguishing, since the color set of the vertex u
(i)
j under f is equal to the

image of the edge v
(i)
j v

(i)
j+1 under the map ind(g). �

The following lemma is obvious.

Lemma 2.9. For any real number a, we have ⌈a⌉ 6 2
⌈

1
2 (a+ 1)

⌉

− 1 6 ⌈a⌉+ 1.

3. A parameter and some related results

Suppose G is a vdec-graph. Let nd = nd(G) denote the number of vertices of

degree d in G, δ 6 d 6 ∆, where δ,∆ are the minimum and maximum degree of G,

respectively. When G has one isolated vertex, let

̺(G) = min

{

θ ; δ 6 s 6 ∆ ⇒
s

∑

i=0

(

θ

i

)

>

s
∑

i=δ

ni(G)

}

.

Otherwise, when G has no isolated vertex we let

̺(G) = min

{

θ ; δ 6 s 6 ∆ ⇒
s

∑

i=1

(

θ

i

)

>

s
∑

i=δ

ni(G)

}

.

Proposition 3.1. For a vdec-graph G, we have χ0(G) > ̺(G).

P r o o f. Suppose f is a point-distinguishing general edge coloring, of G, using l

colors 1, 2, . . . , l.

(i) If G has one isolated vertex, then for any s with δ 6 s 6 ∆, the color set

of each one of the vertices of degree δ(= 0), δ + 1, . . ., or s is an 0-set, 1-set,. . ., or

an s-set of {1, 2, . . . , l}. The number of 0-sets, 1-sets,. . ., and s-sets of {1, 2, . . . , l}
is

(

l
0

)

+
(

l
1

)

+ . . . +
(

l
s

)

. Since different vertices have different color sets, we have
(

l
0

)

+
(

l
1

)

+ . . . +
(

l
s

)

> nδ(G) + nδ+1(G) + . . . + ns(G). Note that ̺(G) is the

minimum integer θ such that
(

θ
0

)

+
(

θ
1

)

+ . . .+
(

θ
s

)

> nδ(G) + nδ+1(G) + . . .+ ns(G)

is valid for any s with δ 6 s 6 ∆. So l > ̺(G) and χ0(G) > ̺(G).

(ii) When G has no isolated vertex, we can prove that χ0(G) > ̺(G) similarly. �

From Lemmas 2.1, 2.2, 2.3, 2.4 we may obtain easily the following Propositions 3.2,

3.3, 3.4, 3.5.
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Proposition 3.2. Suppose k, n are integers, n > 3. If 2k−1 < n < 2k, then

χ0(Kn) = k + 1 = ̺(G) + 1; if n = 2k, then χ0(Kn) = k + 1 = ̺(G).

Proposition 3.3. Suppose k, n are integers, n > 2. If 2k−1 < n < 2k, then

k+1 6 χ0(Kn,n) 6 k+ 2, ̺(Kn,n) = k+1, and ̺(Kn,n) 6 χ0(Kn,n) 6 ̺(Kn,n) + 1;

if n = 2k, then χ0(Kn,n) = k + 2 = ̺(Kn,n).

Proposition 3.4. Supposem < n, n > 4, m > ⌈log2 n⌉+1. If 2k−1 < n < 2k and

m+n > 2k or n = 2k, then ̺(Km,n) = k+1, and ̺(Km,n) 6 χ0(Km,n) 6 ̺(Km,n)+1.

Proposition 3.5. If n > 2, then χ0(Qn) = n+ 1 = ̺(Qn).

Proposition 3.6. If n > 3, then ̺(Pn) 6 χ0(Pn) 6 ̺(Pn) + 1.

P r o o f. Let f(n) = 1
2 (−1+

√
8n− 9), g(n) = 1

2 (−1+
√
8n+ 1); clearly, f(n) <

g(n), and so ⌈f(n)⌉ 6 ⌈g(n)⌉. Note that ̺(Pn) is the minimum integer r such that
(

r
1

)

+
(

r
2

)

> n, hence ̺(Pn) = ⌈g(n)⌉. By Lemma 2.5 we have χ0(Pn) 6 f1(n) =

2
⌈

1
4 (1+

√
8n− 9)

⌉

− 1 = 2
⌈

1
2 (f(n)+ 1)

⌉

− 1, where f1(n) is the smallest odd integer

bounded from below by ⌈f(n)⌉, which necessarily satisfies f1(n) 6 ⌈f(n)⌉ + 1 (see

Lemma 2.9). Then from ⌈f(n)⌉ 6 ⌈g(n)⌉ = ̺(Pn) it follows that f1(n) 6 ⌈f(n)⌉+1 6

̺(Pn) + 1 and ̺(Pn) 6 χ0(Pn) 6 ̺(Pn) + 1. �

Note that Proposition 3.6 will also be obtained from Theorem 4.1 (see Corol-

lary 4.5).

Proposition 3.7. If n > 3, then ̺(Cn) 6 χ0(Cn) 6 ̺(Cn) + 1.

P r o o f. We adopt the notation used in the proof of Proposition 3.6. First

note that ̺(Cn) = ̺(Pn) = ⌈g(n)⌉. Lemma 2.6 yields χ0(Cn) 6 g1(n) = 2
⌈

1
4 (1 +√

8n+ 1)
⌉

−1 = 2
⌈

1
2 (g(n)+1)

⌉

−1, where g1(n) is the smallest odd integer bounded

from below by ⌈g(n)⌉, which evidently satisfies g1(n) 6 ⌈g(n)⌉+ 1 = ̺(Cn) + 1 (see

Lemma 2.9). Thus we obtain ̺(Cn) 6 χ0(Cn) 6 ̺(Cn) + 1. �

4. Point-distinguishing chromatic index of the union of paths

In this section we will prove that χ0(G) = ̺(G) or ̺(G) + 1 in the case when G is

a vertex-disjoint union of p paths Ps1 ∪ Ps2 ∪ . . . ∪ Psp , where si > 3.

We solve this problem by considering first the packing from the graph Ps1+1 ∪
Ps2+1 ∪ . . . ∪ Psp+1 into K

0
k with 2p pendant edges of the paths mapped to loops in

K0
k . Note in particular that we must have k > 2p. Write L =

p
∑

i=1

si and note that

n1(G) = 2p and n1(G) + n2(G) = L.
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Theorem 4.1. Suppose k = 2p + r, and L =
p
∑

i=1

si. The following conditions

are both necessary and sufficient for the packing Ps1+1 ∪Ps2+1 ∪ . . .∪Psp+1 into K
0
k

with the 2p pendant edges of the paths mapped to loops in K0
k .

L =
(

k+1
2

)

or L 6
(

k+1
2

)

− 3 if r = 0;

L 6
(

k+1
2

)

− 1
2r if r > 0 and r is even;

L 6
(

k+1
2

)

− p if r is odd.

P r o o f. Let P = Ps1+1 ∪ Ps2+1 ∪ . . . ∪ Psp+1.

1. Necessity. Consider the image H of P under a given packing of P into K0
k .

The degrees of 2p vertices in H must be odd and the remaining r vertices must

have an even degree. Now consider the edge complement Hc of H in K0
k , i.e.,

Hc = K0
k − E(H). If r (and hence k) is odd, Hc will have 2p odd degree vertices

which are not incident to loops in Hc. Hence Hc will have at least p edges (links).

If r is a positive even integer then Hc will have r odd degree vertices and at least 1
2r

edges (links). If r = 0 then Hc has no loops and every vertex of Hc has even degree.

So Hc has either no edges or at least three edges.

2. Sufficiency. Order the paths Psi+1 so that s1 > s2 > . . . > sp > 3. Since K0
k

contains a set of
⌊

1
2k

⌋

> p independent edges (not loops), we are done in the case

when all si are equal to 3, so we may assume s1 > 4. We proceed by induction on p.

(1) Consider the case p = 1. From
(

k+1
2

)

> s1 > 4 it follows that 2 + r = k > 3,

hence r > 0 and a required packing of Ps1+1 into K
0
k exists by Lemma 2.7.

(2) Now assume that p > 2, s1 > 4 and the conditions are sufficient for any union

of p− 1 paths. From
(

k+1
2

)

> s1 + s2 > 7 it follows that k > 4. Let λ = s1 + s2 − 4,

so that λ > s2. We shall try to pack paths of lengths λ, s3, . . . , sp into K0
k−2 by

induction. This may fail due to the fact that the total length is too large, so we

will reduce the lengths. If λ > 6 and k is even, first reduce λ by three. Now reduce

each λ or si, i > 3, by multiples of four until we have removed the total length of

2k − 5 (k even), or 2k − 6 (k odd) or until we have reduced all the lengths to at

most 6 and at least 3 (if λ < 6, then si 6 4 for all i > 3). Call these reduced lengths

λ′, s′3, . . . , s
′
p and pack trails of these lengths into K

0
k−2. We will show that this will

always succeed.

Let k′ = k − 2, p′ = p − 1, r′ = r, L′ = L − (2k − 1) when k is even and

L′ = L− (2k − 2) when k is odd.

⊲ We have removed the total length of 2k − 5 (k even), or 2k − 6 (k odd).

If k is even and r′ = 0, then L′ = L − (2k − 1) =
(

k+1
2

)

− (2k − 1) =
(

k−1
2

)

or

L′ = L − (2k − 1) 6
(

k+1
2

)

− 3 − (2k − 1) =
(

k−1
2

)

− 3; if k is even and r′ > 0, then

L′ = L − (2k − 1) 6
(

k+1
2

)

− 1
2r − (2k − 1) =

(

k−1
2

)

− 1
2r

′; if k is odd and r′ > 0,
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then L′ = L− (2k− 2) 6
(

k+1
2

)

− p− (2k− 2) =
(

k−1
2

)

− p′. Thus we may apply the

induction hypothesis.

⊲ We have reduced all the lengths to at most 6 and at least 3.

If k′ is even and r′ = 0, then L′ 6 6(p− 1) = 3(k − 2) 6
(

k−1
2

)

− 3 when k > 8; if

k′ is even and r′ > 0, then L′ 6 6(p− 1) = 3(k− r− 2) 6
(

k−1
2

)

− 1
2r when k > 6; if

k′ is odd and r′ > 0, then L′ 6 6(p− 1) = 3(k− r− 2) 6
(

k−1
2

)

− (p− 1) when k > 7

or r > 3. We may apply the induction hypothesis in these cases.

What is left to be analyzed are three cases. In each of them we present directly

packings of those unions of paths for which we are unable to use the induction

hypothesis. All unions not mentioned are “covered” by the induction.

Case 1. k = 6, p = 3, r = 0, k′ = 4, p′ = 2, r′ = 0.

There is a required packing of the graph P7 ∪ P7 ∪ P7 into K0
6 , under which

images of consecutive vertices of the three components P7 form three sequences

(1, 1, 6, 4, 3, 2, 2), (3, 3, 5, 6, 2, 4, 4) and (5, 5, 2, 1, 3, 6, 6). This fact will be for simplic-

ity coded by

P7 ∪ P7 ∪ P7 → (1, 1, 6, 4, 3, 2, 2), (3, 3, 5, 6, 2, 4, 4), (5, 5, 2, 1, 3, 6, 6).

The remaining unions of three paths can be packed into K0
6 as follows:

P8 ∪ P7 ∪ P6 → (1, 1, 6, 3, 5, 6, 2, 2), (3, 3, 1, 2, 5, 4, 4), (5, 5, 1, 4, 6, 6),

P9 ∪ P6 ∪ P6 → (1, 1, 2, 6, 5, 3, 4, 2, 2), (3, 3, 2, 5, 4, 4), (5, 5, 1, 4, 6, 6),

P7 ∪ P6 ∪ P6 → (1, 1, 6, 3, 4, 2, 2), (3, 3, 2, 5, 4, 4), (5, 5, 1, 4, 6, 6),

P9 ∪ P5 ∪ P5 → (1, 1, 5, 4, 6, 5, 3, 2, 2), (3, 3, 1, 4, 4), (5, 5, 2, 6, 6),

P8 ∪ P6 ∪ P5 → (1, 1, 6, 5, 3, 4, 2, 2), (3, 3, 1, 5, 4, 4), (5, 5, 2, 6, 6),

P7 ∪ P7 ∪ P5 → (1, 1, 6, 3, 4, 2, 2), (3, 3, 1, 5, 6, 4, 4), (5, 5, 2, 6, 6),

P8 ∪ P7 ∪ P4 → (1, 1, 5, 2, 4, 6, 2, 2), (3, 3, 1, 6, 3, 4, 4), (5, 5, 6, 6),

P9 ∪ P6 ∪ P4 → (1, 1, 6, 2, 5, 4, 3, 2, 2), (3, 3, 1, 2, 4, 4), (5, 5, 6, 6),

P10 ∪ P5 ∪ P4 → (1, 1, 6, 2, 5, 1, 4, 3, 2, 2), (3, 3, 5, 4, 4), (5, 5, 6, 6),

P11 ∪ P4 ∪ P4 → (1, 1, 6, 2, 3, 1, 2, 5, 4, 2, 2), (3, 3, 4, 4), (5, 5, 6, 6),

P6 ∪ P6 ∪ P6 → (1, 1, 3, 6, 2, 2), (3, 3, 2, 5, 4, 4), (5, 5, 1, 4, 6, 6),

P8 ∪ P5 ∪ P5 → (1, 1, 5, 6, 4, 3, 2, 2), (3, 3, 1, 4, 4), (5, 5, 2, 6, 6),

P7 ∪ P6 ∪ P5 → (1, 1, 6, 5, 3, 2, 2), (3, 3, 1, 5, 4, 4), (5, 5, 2, 6, 6),

P7 ∪ P7 ∪ P4 → (1, 1, 6, 4, 5, 2, 2), (3, 3, 4, 1, 2, 4, 4), (5, 5, 6, 6),

P8 ∪ P6 ∪ P4 → (1, 1, 6, 3, 4, 5, 2, 2), (3, 3, 2, 1, 4, 4), (5, 5, 6, 6),

P9 ∪ P5 ∪ P4 → (1, 1, 6, 2, 5, 1, 4, 2, 2), (3, 3, 5, 2, 4, 4), (5, 5, 6, 6),

P10 ∪ P4 ∪ P4 → (1, 1, 5, 2, 4, 5, 3, 1, 2, 2), (3, 3, 4, 4), (5, 5, 6, 6),

P6 ∪ P5 ∪ P5 → (1, 1, 6, 4, 2, 2), (3, 3, 1, 4, 4), (5, 5, 2, 6, 6),

P5 ∪ P5 ∪ P5 → (1, 1, 3, 2, 2), (3, 3, 6, 4, 4), (5, 5, 2, 6, 6),

P7 ∪ P4 ∪ P4 → (1, 1, 6, 4, 5, 2, 2), (3, 3, 4, 4), (5, 5, 6, 6),

P6 ∪ P5 ∪ P4 → (1, 1, 6, 4, 2, 2), (3, 3, 1, 4, 4), (5, 5, 6, 6),

636



P6 ∪ P4 ∪ P4 → (1, 1, 6, 4, 2, 2), (3, 3, 4, 4), (5, 5, 6, 6),

P5 ∪ P5 ∪ P4 → (1, 1, 6, 2, 2), (3, 3, 1, 4, 4), (5, 5, 6, 6).

Case 2. k = 5, p = 2, r = 1, k′ = 3, p′ = 1, r′ = 1.

P6 ∪ P6 → (1, 1, 3, 5, 2, 2), (3, 3, 2, 1, 4, 4),

P7 ∪ P5 → (1, 1, 5, 4, 3, 2, 2), P (3, 3, 1, 4, 4),

P7 ∪ P5 → (1, 1, 2, 4, 5, 3, 2, 2), P (3, 3, 4, 4).

Case 3. k = 4, p = 2, r = 0, k′ = 2, p′ = 1, r′ = 0.

Now s1 + s2 ∈ {7, 10} and λ′ = 3, hence we can apply the induction hypothesis.

We now add back the two remaining vertices a and b of K0
k and construct trails of

the required original lengths. Let the trail T of length λ′ go from the vertex u to the

vertex v in K0
k−2. Let u

′ be any vertex on this trail which is a distance t1 6 s1 − 2

(along T ) from u, a distance t2 6 s2 − 2 (along T ) from v and such that t2 ≡ s2 − 2

(mod 2). Such a vertex exists since λ′ 6 (s1−2)+(s2−2) and λ′ > s2 > 3. The trail

of length λ′ is composed of two edge-disjoint subtrails: one subtrail (from u to u′),

denoted by T1, is of length t1 and its initial edge is a loop at u, the other one (from

u′ to v), denoted by T2, is of length t2 and its final edge is a loop at v.

Let I = {i ∈ {3, 4, . . . , p} ; s′i < si}. For each i ∈ I pick an endvertex vi 6= u′ of

the trail Ti of length s′i in K0
k−2 and let VI = {vi ; i ∈ I}. Further, for each i ∈ I

consider a set Ti of (si − s′i − 2)/2 paths of the form P (a, x, b), where x 6∈ VI ∪ {u′}.
Since (si − s′i − 2)/2 is odd, the subgraph Gi of K

0
k induced by the set of edges

{via, vib} ∪
⋃

W∈Ti

E(W ) is Eulerian, and so (vi is a common vertex of Ti and Gi)

there is a trail of length si in K0
k having the same initial and final edges as Ti. Of

course, we have (and are able) to suppose that paths in Ti and Tj are edge-disjoint
whenever i, j ∈ I, i 6= j.

We now construct trails corresponding to Ps1+1 and Ps2+1.

⊲ k is odd, λ > 7 and s1 − (t1 + 2) ≡ s2 − (t2 + 2) ≡ 0 (mod 4).

Linking up T1 with the edge u
′a and the unused 1

2 (s1 − (t1 + 2)) paths of length

two between a and b and the edge aa (the loop incident to a) gives a trail of length

s1 from u to a with initial edge uu and final edge aa. Similarly, linking up bb and

the unused 1
2 (s2 − (t2 + 2)) paths of length two between a and b with the edge u′b

and T2 gives a trail of length s2 from b to v with initial edge bb and final edge vv.

⊲ k is odd, λ > 7 and s1 − (t1 + 2) ≡ s2 − (t2 + 2) ≡ 2 (mod 4).

Linking up T1 with the edge u
′a and the unused 1

2 (s1 − (t1 + 2)) paths of length

two between a and b and the edge bb gives a trail of length s1 from u to b with initial

edge uu and final edge bb. Similarly, linking up aa and the unused 1
2 (s2 − (t2 + 2))

paths of length two between a and b with the edge bu′ and T2 gives a trail of length

s2 from a to v with initial edge aa and final edge vv.

⊲ k is even, λ > 6 and s1 − (t1 + 2) ≡ 3 (mod 4), s2 − (t2 + 2) ≡ 0 (mod 4).
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Linking up T1 with the edge u
′b and the unused 1

2 (s1 − (t1 +3)) (odd number of)

paths of length two between a and b and two edges ab and bb gives a trail of length

s1 from u to b with initial edge uu and final edge bb. Linking up aa and the unused
1
2 (s2 − (t2 + 2)) paths of length two between a and b with the edge au′ and T2 gives

a trail of length s2 from a to v with initial edge aa and final edge vv.

⊲ k is even, λ > 6 and s1 − (t1 + 2) ≡ 1 (mod 4), s2 − (t2 + 2) ≡ 2 (mod 4).

Linking up T1 with the edge u
′b and the unused 1

2 (s1 − (t1 +3)) (even number of)

paths of length two between a and b and two edges ba and aa gives a trail of length

s1 from u to a with initial edge uu and final edge aa. Linking up bb and the unused
1
2 (s2 − (t2 + 2)) paths of length two between a and b with the edge au′ and T2 gives

a trail of length s2 from b to v with initial edge bb and final edge vv.

⊲ k is even, λ 6 5 or k is odd, λ 6 6.

This time λ′ = λ, si = s′i, i = 3, 4, . . . , p. By the induction hypothesis in K0
k−2

there are edge-disjoint trails of lengths λ′, s′3, s
′
4, . . . , s

′
p, in which initial and final

edges are loops. The trail of length s′i is the required trail of length si, i = 3, 4, . . . , p.

The lengths of T1 and T2 are exactly s1 − 2 and s2 − 2. We can obtain two trails of

lengths s1 and s2 by linking T1 with u′a and aa, and by linking T2 with u′b and bb,

respectively.

Obviously we have enough paths P (a, x, b) of length two from a to b for construct-

ing the required trails of lengths from s1 to sp. �

Corollary 4.2. If L 6
(

k
2

)

then there exists a packing from Ps1+1 ∪Ps2+1 ∪ . . .∪
Psp+1 into K

0
k with the 2p pendant edges of the paths mapped to loops in K0

k .

P r o o f. Let r = k− 2p. From L 6
(

k
2

)

=
(

k+1
2

)

− k we know that L 6
(

k+1
2

)

− 3

when r = 0 (k > 4), L 6
(

k+1
2

)

− 1
2r when r > 0 and r is an even number,

L 6
(

k+1
2

)

− p when r > 0 and r is an odd number. Thus this corollary follows by

Theorem 4.1. �

Corollary 4.3. Let G be the vertex-disjoint union of p paths Ps1 , Ps2 , . . . , Psp ,

where si > 3, i = 1, 2, . . . , p. Then χ0(G) = ̺(G) or ̺(G) + 1.

P r o o f. Let L =
p
∑

i=1

si. From the definition of ̺(G) we know that
(

̺(G)
1

)

>

2p,
(

̺(G)+1
2

)

=
(

̺(G)
1

)

+
(

̺(G)
2

)

> L. By Corollary 4.2 there exists a packing from

Ps1+1 ∪ Ps2+1 ∪ . . . ∪ Psp+1 into K0
̺(G)+1 with the 2p pendant edges of the paths

mapped to loops in K0
̺(G)+1. Thus χ0(G) 6 ̺(G) + 1 by Lemma 2.8. Of course we

have χ0(G) > ̺(G). The proof is completed. �

The following two lemmas are obvious.
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Corollary 4.4. Let G be the vertex-disjoint union of p paths Ps1 , Ps2 , . . . , Psp ,

where si > 3, i = 1, 2, . . . , p, L =
p
∑

i=1

si. Then χ0(G) = ̺(G) when ̺(G) = 2p, L =
(

̺(G)+1
2

)

or ̺(G) = 2p, L 6
(

̺(G)+1
2

)

− 3 or ̺(G) − 2p is a positive even number,

L 6
(

̺(G)+1
2

)

− 1
2̺(G)+ p or ̺(G)− 2p is an odd number, L 6

(

̺(G)+1
2

)

− p; χ0(G) =

̺(G) + 1 otherwise.

Corollary 4.5. Let Ps be a path with s(> 3) vertices. Then χ0(Ps) = ̺(Ps)

when ̺(Ps) = 2, s = 3 or ̺(Ps) > 2 is an even number, s 6
(

̺(Ps)+1
2

)

− 1
2̺(Ps) + 1

or ̺(Ps) > 2 is an odd number, s 6
(

̺(Ps)+1
2

)

− 1; χ0(Ps) = ̺(Ps) + 1 otherwise.

5. A conjecture

First we give an example.

Example 5.1. Suppose mC3 is the disjoint union of m cycles of order 3. Then

̺(3C3) = min
{

θ ;
(

θ
1

)

+
(

θ
2

)

> 9
}

= 4. However, χ0(G) = 6 = ̺(G) + 2.

Based on Propositions 3.2 to 3.7, the results in Section 4 and Example 5.1, we

propose the following conjecture.

Conjecture 5.2 (VDGEC Conjecture). If G is a vdec-graph, then ̺(G) 6

χ0(G) 6 ̺(G) + 2 and

lim
n→∞

|G(3)(n)|
|G(1)(n)|+ |G(2)(n)|+ |G(3)(n)| = 0

where G(i)(n) denotes the set of all order n vdec graphs with point-distinguishing

general chromatic indices ̺(G) + i− 1, i = 1, 2, 3.

6. A remark

Remark 6.1. Balister et al. in [2] obtained a result about a packing of Ps1+1 ∪
Ps2+1 ∪ . . . ∪ Psp+1 into Kk with the 2p endpoints mapped to distinct vertices (and

then verified VDPEC Conjecture for the union of paths).
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