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HOW MANY ARE AFFINE CONNECTIONS WITH TORSION

Zdeněk Dušek and Oldřich Kowalski

Abstract. The question how many real analytic affine connections exist
locally on a smooth manifold M of dimension n is studied. The families of
general affine connections with torsion and with skew-symmetric Ricci tensor,
or symmetric Ricci tensor, respectively, are described in terms of the number
of arbitrary functions of n variables.

1. Introduction

When we consider an infinite family of well-determined geometric objects, it is
natural to put the question about “how many” such objects there exist. In the real
analytic case, the Cauchy-Kowalevski Theorem is the standard tool ([3], [7], [11]).
Hence a natural way how to measure an infinite family of real analytic geometric
objects is a finite family of arbitrary functions of k variables and (optionally) a
family of arbitrary functions of k − 1 variables, and, optionally, “modulo” another
family of arbitrary functions of k−1 variables. The last (optional) family of functions
corresponds to the family of automorphisms of any geometric object from the given
family. A good example is the following question: How many there are real analytic
Riemannian metrics in dimension 3? It is known (see [4], [8]) that every such metric
can be put locally into a diagonal form and that all coordinate transformations
preserving diagonal form of the given metric depend on 3 arbitrary functions of two
variables. Hence all Riemannian metrics in dimension 3 can be locally described by
3 arbitrary functions of 3 variables modulo 3 arbitrary functions of 2 variables. An
immediate question arise if we can “calculate the number” of more basic geometric
objects, namely the affine connections, in an arbitrary dimension n. To the authors’
knowledge, no attempts are known in this direction from the past. We shall be
occupied with real analytic affine connections in arbitrary dimension n. Our first
result is the description of this class of connections using n(n2 − 1) functions of
n variables modulo 2n functions of n− 1 variables. For this purpose, we use the
existence of the system of pre-semigeodesic coordinates. (see [9] for the definition
and various applications of this concept and [2] for the alternative proof of the
existence of such a system of coordinates).

A well known fact from Riemannian geometry is that a Riemannian connection
has symmetric Ricci form. Our next aim is to determine “how big” is the class
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of all real analytic affine connections with skew-symmetric Ricci form (again, in
dimension n) and those with symmetric Ricci form. For this purpose, a direct
approach using the Cauchy-Kowalevski Theorem can be used. Surprisingly, for the
torsion-free connections with symmetric Ricci form, another method was necessary,
see [2] for the details.

We prove that the class of real analytic connections with torsion and with
skew-symmetric Ricci form depends on n(2n2 − n− 3)/2 functions of n variables
and n(n+ 1)/2 functions of n− 1 variables, modulo 2n functions of n− 1 variables.
We prove further that the class of real analytic connections with symmetric Ricci
form depends on n(2n2−n−1)/2 functions of n variables and n(n− 1)/2 functions
of n− 1 variables, modulo 2n functions of n− 1 variables.

2. The Cauchy-Kowalevski Theorem

For the aim of the next sections, and to remain self-contained, we shall formulate
two important special cases of the Cauchy-Kowalevski Theorem, namely the case
of order one and the case of “pure” order 2. We shall start with the complete and
explicit version in order 1.

Theorem 1. Consider a system of partial differential equations for unknown
functions U1(x1, . . . , xn), . . . , UN (x1, . . . , xn) on an open domain in Rn and of the
form

∂U1

∂x1 = H1
(
x1, . . . , xn, U1, . . . , UN ,

∂U1

∂x2 , . . . ,
∂U1

∂xn
, . . . ,

∂UN

∂x2 , . . . ,
∂UN

∂xn

)
,

∂U2

∂x1 = H2
(
x1, . . . , xn, U1, . . . , UN ,

∂U1

∂x2 , . . . ,
∂U1

∂xn
, . . . ,

∂UN

∂x2 , . . . ,
∂UN

∂xn

)
,

...
∂UN

∂x1 = HN
(
x1, . . . , xn, U1, . . . , UN ,

∂U1

∂x2 , . . . ,
∂U1

∂xn
, . . . ,

∂UN

∂x2 , . . . ,
∂UN

∂xn

)
,

where Hi, i = 1, . . . , N , are real analytic functions of all variables in a neighbou-
rhood of (x1

0, . . . , x
n
0 , a

1, . . . , aN , a1
2, . . . , a

1
n, . . . , a

N
2 , . . . , a

N
n ), where xj0, ai, aij are

arbitrary constants.
Further, let the functions ϕ1(x2, . . . , xn), . . . , ϕN (x2, . . . , xn) be real analytic in

a neighbourhood of (x2
0, . . . , x

n
0 ) and satisfy ϕi(x2

0, . . . , x
n
0 ) = ai for i = 1, . . . , N

and(∂ϕ1

∂x2 , . . . ,
∂ϕ1

∂xn
, . . . ,

∂ϕN

∂x2 , . . . ,
∂ϕN

∂xn

)
(x2

0, . . . , x
n
0 ) = (a1

2, . . . , a
1
n, . . . , a

N
2 , . . . , a

N
n ) .

Then the system has a unique solution (U1(x1, . . . , xn), . . . , UN (x1, . . . , xn))
which is real analytic around (x1

0, . . . , x
n
0 ), and satisfies

U i(x1
0, x

2, . . . , xn) = ϕi(x2, . . . , xn) , i = 1, . . . , N .
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For the “pure” case of order 2, the basic assumptions about the system of PDEs
are analogous: The left-hand sides are second derivatives

∂2U1

(∂x1)2 , . . . ,
∂2UN

(∂x1)2

and the right-hand sides H1, . . . ,HN involve, as arguments, the original coordi-
nates, the unknown functions U1, . . . , UN , their first derivatives and their second
derivatives except the derivatives written on the left-hand sides. Thus, for each
i = 1, . . . , N , on the right-hand side, we have the function

Hi(xj , Up, ∂U
p

∂xk
,
∂2Up

∂xk∂xl
) , j, k = 1, . . . , n, l = 2, . . . , n, p = 1, . . . , N .

Then the statement of the theorem says that there exist locally a unique N -tuple
(U1, . . . , UN ) of real analytic functions which is a solution of the new PDE system,
and satisfies the initial conditions

U i(x1
0, x

2, . . . , xn) = ϕi0(x2, . . . , xn) ,

∂U i

∂x1 (x1
0, x

2, . . . , xn) = ϕi1(x2, . . . , xn ) .

The general solution then depends on 2N arbitrary functions ϕi0, ϕi1 of n − 1
variables. See [3], [7] and [11] for the general case and more details.

3. Transformation of the connection

We work locally with the spaces R[u1, . . . , un], or R[x1, . . . , xn], respectively. We
will use the notation u = (u1, . . . , un) and x = (x1, . . . , xn). For a diffeomorphism
f : R[u] → R[x], we write xk = fk(ul), or x = x(u) for short. We start with the
standard formula for the transformation of the connection, which is

(1) Γ̄hij(u) =
(

Γγαβ
(
x(u)

)∂fα
∂ui

∂fβ

∂uj
+ ∂2fγ

∂ui∂uj

)∂fh
∂uγ

.

Lemma 2 ([2]). For any affine connection determined by Γhij(x), there exist a local
transformation of coordinates determined by x = f(u) such that the connection in
new coordinates satisfies Γ̄h11(u) = 0, for h = 1, . . . , n. All such transformations
depend on 2n arbitrary functions of n− 1 variables.

Proof. We substitute from (1) to the equations Γ̄h11(u) = 0 and we get

(2)
(

Γγαβ
(
x(u)

)∂fα
∂u1

∂fβ

∂u1 + ∂2fγ

(∂u1)2

)∂fh
∂uγ

= 0 , h = 1, . . . , n .

We suppose further that the determinant of the Jacobi matrix of the transforma-
tion x = f(u) is nonzero, which corresponds to the regularity condition for the
transformation. We multiply these equations by the inverse of the Jacobi matrix
and we obtain the equivalent equations

(3) ∂2fγ

(∂u1)2 = −Γγαβ
(
x(u)

)∂fα
∂u1

∂fβ

∂u1 , γ = 1, . . . , n .
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On the right-hand sides, we have analytic functions depending on f1, . . . , fn and
their first derivatives. We choose arbitrary analytic functions ϕiλ(u2, . . . , un), for
i = 1, . . . , n and λ = 0, 1. According to the Cauchy-Kowalevski Theorem (the case
of pure order 2), there exist unique functions f i(u1, . . . , un) such that

(4)
f i(u1

0, u
2, . . . , un) = ϕi0(u2, . . . , un) ,

∂f i

∂u1 (u1
0, u

2, . . . , un) = ϕi1(u2, . . . , un) .

Obviously, determinant of the Jacobi matrix for these functions will be nonzero for
the generic choice of the functions ϕiλ(u2, . . . , un). �

Remark 3. Hereby, the local existence of pre-semigeodesic coordinates is proved.

We finish this paragraph with the following existence therorem, which is a
corollary of Lemma2.

Theorem 4. All affine connections with torsion in dimension n depend locally
on n(n2 − 1) arbitrary functions of n variables, modulo 2n arbitrary functions of
(n− 1) variables.

Proof. After the transformation into pre-semigeodesic coordinates, we obtain n
Christoffel symbols equal to zero. We are left with n3 − n = n(n2 − 1) functions.
The transformations into pre-semigeodesic coordinates is uniquely determined up
to the choice of 2n functions ϕi0(u2, . . . , un), ϕi1(u2, . . . , un) of n− 1 variables. �

4. The Ricci tensor

We consider the space Rn[ui] with the coordinate vector fields Ei = ∂
∂ui . We will

denote derivatives with respect to ui by the bottom index i. Using the standard
definition

(5) R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

we calculate the curvature operators

R(Ei, Ej)Ek = (Γαjk)iEα − (Γβik)jEβ + ΓαjkΓγiαEγ − ΓβikΓδjβEδ.

For the Ricci form

(6) Ric(X,Y ) = trace
[
W 7→ R(W,X)Y

]
,

we obtain

(7) Ric(Ei, Ej) =
n∑

k,l=1

[
(Γkij)k − (Γkkj)i + ΓlijΓkkl − ΓlkjΓkil

]
.
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5. Skew-symmetric Ricci tensor

We analyze the condition for the skew-symmetry of the Ricci form using formulas
(7). We split the skew-symmetry conditions into four cases:

(8)

Ric(E1, E1) = 0 ,

Ric(Ei, Ei) = 0 , i > 1,

Ric(E1, Ei) + Ric(Ei, E1) = 0 , i > 1,

Ric(Ei, Ej) + Ric(Ej , Ei) = 0 , 1 < i < j ≤ n .

In each formula which follows, we denote by Λ′ij the terms which involve first
derivatives with respect to u2, . . . , un and by Λij the terms which do not involve
any differentiation (and which form a homogeneous polynomial of degree 2 in Γkij).
Corresponding to the four cases above, we obtain, using (7), the equations

(9)

n∑
k=2

(Γkk1)1 = Λ′11 + Λ11 ,

(Γ1
ii)1 = Λ′ii + Λii , i > 1 ,

(Γ1
i1)1 −

n∑
k=2

(Γkki)1 = Λ′1i + Λ1i , i > 1 ,

(Γ1
ij)1 + (Γ1

ji)1 = Λ′ij + Λij , 1 < i < j ≤ n .

Theorem 5. The family of connections with torsion whose Ricci form is skew-sym-
metric depends locally on n(2n2−n−3)

2 functions of n variables and n(n+1)
2 functions

of n− 1 variables, modulo 2n functions of n− 1 variables.

Proof. After the transformation into pre-semigeodesic coordinates, the family
of torsion-free connections depends on q(n) = n(n2 − 1) functions (Christoffel
symbols). In the system of equations (9), there are p(n) = n(n+ 1)/2 conditions
for the skew-symmetry of the Ricci form. These conditions involve first derivatives
of the Christoffel symbols and they are written in a way that the derivatives with
respect to the first coordinate are on the left-hand side and all the other terms are
on the right-hand side. Any Christoffel symbol appears on the left-hand side of the
mentioned equations at most once.

Now we select one Christoffel symbol in each of the equations, for example the
following Christoffel symbols:

Γ2
21 for i > 1 (1 function),

Γ1
ii for i > 1 (altogether n− 1 functions),

Γ1
ij for i > j (altogether n(n− 1) functions).

We choose the other q(n)−p(n) = n(2n2−n−3)/2 Christoffel symbols as arbitrary
functions. We substitute the arbitrary functions chosen above into the system (9)
and transport them to the right-hand side, if necessary. We obtain a new system of
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equations of the form

(10)

(Γ2
21)1 = −

n∑
k=3

(Γk1k)1 + Λ′11 + Λ11 ,

(Γ1
ii)1 = Λ′ii + Λii, i > 1 ,

(Γ1
i1)1 = −

n∑
k=2

(Γkik)1 + Λ′1i + Λ1i, i > 1 ,

(Γ1
ji)1 = Λ′ij + Λij , 1 < i < j ≤ n ,

where the Christoffel symbols on the right-hand sides are already fixed. We have
got a standard system of p(n) equations for the last p(n) functions for which the
Cauchy-Kowalevski Theorem can be applied. The general solution depends on
p(n) arbitrary functions of n− 1 variables and, because we used pre-semigeodesic
coordinates, this number is to be reduced by 2n functions. �

6. Symmetric Ricci tensor

We recall the formula for the nondiagonal entries of the Ricci form

(11) Ric(Ei, Ej) =
n∑

k,l=1

[
(Γkij)k − (Γkkj)i + ΓlijΓkkl − ΓlkjΓkil

]
.

We analyze the symmetry conditions for the Ricci form, which is

(12) Ric(Ei, Ej)− Ric(Ej , Ei) = 0 , 1 ≤ i < j ≤ n .

We analyze these conditions using formulas (11). In each of the equations which
follow, we denote by Λij the terms which do not involve any differentiation and
which form a homogeneous polynomial in Γkij .

(13)
n∑
k=1

[
(Γkij)k − (Γkkj)i − (Γkji)k + (Γkki)j

]
= Λij , 1 ≤ i < j ≤ n .

Now we denote by Λ′ij the terms which involve first derivatives with respect to
u2, . . . , un and we simplify the above sums. We will split the situation into the two
cases, i = 1 and i > 1. We obtain

(14)
−

n∑
k=2

(Γkkj)1 − (Γ1
j1)1 = Λ′1j + Λ1j , 1 < j ≤ n ,

(Γ1
ij)1 − (Γ1

ji)1 = Λ′ij + Λij , 1 < i < j ≤ n .

Theorem 6. The family of connections with torsion whose Ricci form is symmetric
depends locally on n(2n2−n−1)

2 functions of n variables and n(n−1)
2 functions of

n− 1 variables, modulo 2n functions of n− 1 variables.
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Proof. After the transformation into pre-semigeodesic coordinates, the family of
connections depends on q(n) = n3 − n = n(n2 − 1) functions (Christoffel symbols).
In the system of equations (13) or (14), there are p(n) = n(n − 1)/2 conditions
for the symmetry of the Ricci form. We let the p(n) Christoffel symbols Γ1

ji to
be determined later and we chose all the other q(n) − p(n) = n(2n2 − n − 1)/2
Christoffel symbols as arbitrary functions. If we transport the chosen Christoffel
symbols to the right-hand sides of the equations (14), we obtain a standard system
of p(n) equations for the last p(n) functions for which the Cauchy-Kowalevski
Theorem can be applied. The general solution depends on p(n) arbitrary functions
of n− 1 variables and, because we used pre-semigeodesic coordinates, this number
is to be reduced by 2n functions. �

7. Final remarks

An interesting observation shows that, for n→∞, the number of functions of n
variables describing the family of connections with skew-symmetric Ricci tensor
behaves as n3 and the number of functions describing the family of connections with
symmetric Ricci tensor also behaves as n3. On the other hand, exactly the same
asymptotic estimate holds for the family of all connections. This is an interesting
paradox related to the fact that the calculation of the Ricci tensor from a given
connection is a nonlinear procedure.
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