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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 6 , PAGES 8 8 3 – 8 9 5

AN EFFICIENT ESTIMATOR FOR GIBBS RANDOM FIELDS

Martin Janžura

An efficient estimator for the expectation
R

f dP is constructed, where P is a Gibbs random
field, and f is a local statistic, i. e. a functional depending on a finite number of coordinates.
The estimator coincides with the empirical estimator under the conditions stated in Greenwood
and Wefelmeyer [6], and covers the known special cases, namely the von Mises statistic for the
i.i.d. underlying fields and the case of one-dimensional Markov chains.

Keywords: Gibbs random field, efficient estimator, empirical estimator

Classification: 62F12, 62M40

1. INTRODUCTION

The expectation of a local statistic defined on a stationary random field can be estimated
from observations in a large window with the aid of the empirical estimator, which is
given as the average of the function values over all shifts inside the window. Under
appropriate conditions on the underlying random field, the estimator is consistent and
asymptotically normal. But, in general, it may not be efficient. For the exponential type
distributions of random processes and fields, which coincide with the Gibbs random fields
as studied within the frame of statistical physics as well as image processing, the problem
of efficiency was addressed by Greenwood and Wefelmeyer [6]. Under the regularity
condition, which only makes the efficiency study meaningful, and which for the Gibbs
fields reads as the restriction to the Dobrushin’s uniqueness region, they showed that
the empirical estimator is efficient if and only if the considered local statistic belongs (in
a special wide sense) to the same space as the potential of the underlying Gibbs random
field.

In the present paper we adopt most of the results obtained by Greenwood and We-
felmeyer [6], but we shall extend them substantially by a general construction of the
efficient estimator. Roughly speaking, the empirical estimate

∫
f dP̂ must be substi-

tuted by the estimate in the form
∫

f dP bg, where ĝ is the (efficient) estimate of the
unknown potential. We shall also prove that these two estimates coalesce under the
conditions stated in Greenwood and Wefelmeyer [6]. In addition, we shall show that the
known special results concerning the i.i.d. and Markov cases, are also covered by our
general result.
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Besides the main reference, the efficiency issues are based on the pioneering Hájek’s
results [8] and the comprehensive book by Bickel et al. [1]. The regularity LAN condition
is due to Janžura [10]. The results on Gibbs random fields are partly from Künsch’ paper
[14] and Georgii’s book [4], the statistical analysis results from Janžura [12].

For the sake of simplicity, within this paper we consider only the finite state space and
the finite-dimensional (parametric) case. With an appropriate effort, the generalization
is possible.

2. GIBBS RANDOM FIELDS

Let X0 be a finite set, and, for some d ≥ 1, let Zd be the d-dimensional integer lattice, and
X = XZd

0 the corresponding product space. For V ⊂ Zd we denote by FV the σ-algebra
generated by the projection ProjV : X → XV

0 , and by BV the set of (bounded) FV -
measurable functions. Further, we shall write xV = ProjV (x) for x ∈ X and V ⊂ Zd,
and we shall denote by V = {W ⊂ Zd; 0 < |W | < ∞} the system of finite non-void
subsets of Zd.

We denote by P the set of all probability measures on X with the product σ-algebra
F . Further, by PS we denote the set of stationary (translation invariant) probability
measures, i. e. PS = {P ∈ P;P = P ◦ τ−1

j for every j ∈ Zd}, where τj : X → X is for
every j ∈ Zd the corresponding shift operator defined by [τj(x)]t = xj+t for every t ∈ Zd,
x ∈ X . Finally, by PE we denote the set of ergodic probability measures, i. e. PE = {P ∈
PS ;P (F ) ∈ {0, 1} for every F ∈ E} where E = {F ∈ F ;F = τ−1

j (F ) for every j ∈ Zd}.
The functions from B =

⋃
V ∈V BV will be quoted as (finite range) potentials. For a

potential Φ ∈ BV , V ∈ V, we define the Gibbs specification as the family of probability
kernels ΠΦ = {ΠΦ

Λ}Λ∈V where

ΠΦ
Λ(xΛ|xΛc) = ZΦ

Λ (xΛc) exp

 ∑
j∈Λ−V

Φ ◦ τj(x)


with the normalizing constant

ZΦ
Λ (xΛc) =

∑
yΛ∈XΛ

0

exp

 ∑
j∈Λ−V

Φ ◦ τj(yΛ, xΛc)


for every Λ ∈ V. Note that Λ − V = {j ∈ Zd; (j + V ) ∩ Λ 6= ∅}. We do not emphasize
the range V in the notation. It is an inseparable part of the potential Φ, and it is only
important that, due to the finiteness of V , the set Λ − V is also finite. In fact, the set
Λ−V is the minimal set of indices for which the term Φ ◦ τj(x) actually depends on xΛ,
and we could sum over any larger set.

A probability measure P ∈ P is a Gibbs distribution (Gibbs random field) with the
potential Φ ∈ B if

PΛ|Λc (xΛ|xΛc) = ΠΦ
Λ (xΛ|xΛc) a. s. [P ]

for every Λ ∈ V. The set of such P ’s will be denoted by G(Φ), while the set of station-
ary (resp. ergodic) Gibbs distributions will be denoted by GS(Φ) = G(Φ) ∩ PS (resp.
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GE(Φ) = G(Φ) ∩ PE). In general GE(Φ) 6= ∅. We may say that the (first-order) phase
transition occurs if |G(Φ)| > 1. Then, some elements are non-ergodic, and some even
may not be translation invariant (stationary) although the specification is so. For a de-
tailed treatment and the examples see, e. g., Georgii [4, Chapter 6.2]. Unfortunately, for
the efficiency study the phase transitions mean the non-smoothness and non-regularity,
and, therefore, must be excluded – see Section 5 below.

Let us end this section with the observation that, since for Φ ∈ BV we have ΠΦ
Λ ∈

BΛ+V−V for every Λ ∈ V, the above defined Gibbs random fields obey the (spatial)
Markov property.

3. EQUIVALENCE OF POTENTIALS

Besides the phase transitions, there is another kind of non-uniqueness that can com-
plicate the treatment, namely the possible equivalence of potentials. Two potentials
Φ, Ψ ∈ B are equivalent, we write Φ ≈ Ψ, if G(Φ) = G(Ψ). There is a couple of equiva-
lent characterizations (see Georgii [4] or Janžura [11]), e. g., Φ ≈ Ψ iff ΠΦ

{0} = ΠΨ
{0}. For

our purposes, there will be important the following one:

Φ ≈ Ψ iff
∫

Φ dP =
∫

ΨdP + c for every P ∈ PS with some fixed constant c.

The equivalence can appear very easily, e. g.,

Φ ≈ Φ + g − g ◦ τj + c for some g ∈ B, j ∈ Zd, and a constant c.

From the statistical analysis point of view the equivalence of potentials means breaking
the basic identifiability condition, and, therefore, must be unambiguously avoided.

A rather standard way consists in dealing with the equivalence classes instead of the
particular potentials. But we prefer to restrict our considerations to a rich enough sub-
class of mutually nonequivalent potentials. Such subclass should contain representatives
of all equivalence classes. That can be arranged by dealing with the so called vacuum
potentials. Let us fix some state b ∈ X0, quoted as the vacuum state. For any V ∈ V,
let us denote Bb

V = {Φ ∈ BV ; Φ(xV ) = 0 if xt = b for some t ∈ V }. Further, in order
to avoid equivalence by shifting, let us introduce V0 = {V ∈ V;mint∈V {t} = 0} where
the minimum is with respect to some fixed complete (e. g., the lexicographical) order-
ing. Now, for a finite subsystem A ⊂ V0 we set Bb

A = {Φ ∈ B; Φ =
∑

A∈AΦA,ΦA ∈
Bb

A for every A ∈ A}, and, consequently, Bb =
⋃
A⊂V0,|A|<∞ Bb

A will be our class of
vacuum potentials.

Proposition 3.1. i) For Φ, Ψ ∈ Bb it holds:

Φ ≈ Ψ iff Φ = Ψ.

ii) For every Φ ∈ B there exists Ψ ∈ Bb such that Φ ≈ Ψ.

P r o o f . i) We may observe that for Φ, Ψ ∈ Bb we have Φ−Ψ ∈ Bb, and

Φ ≈ Ψ iff Φ−Ψ ≈ 0.
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That simplifies a bit the tedious calculation. For some Φ ∈ Bb
A with A =

⋃
A∈AA we

must deduce Φ ≡ 0 from the condition
∑

j∈−A Φ ◦ τj ∈ B(A−A)\{0} (that is equivalent
to Φ ≈ 0) by a proper sequence of substituting. Let A1 ∈ A be minimal in the sense:
(A1)c ∩ (A + t) 6= ∅ for every A ∈ A \ {A1} and t ∈ Zd. Then∑

j∈−A Φ ◦ τj(xA1 , b(A−A)\A1) = ΦA1(xA1),

and since by the assumption ΦA1 must not depend on x0 we may always substitute
x0 = b and obtain ΦA1 ≡ 0. Then we repeat the consideration with A \ {A1}, etc., and
finally we obtain ΦA ≡ 0 for every A ∈ A.

ii) The statement follows from Theorem 2.35 b) in Georgii [4] or by direct calculations
with the aid of Möbius formula for constructing the vacuum potentials. �

4. EMPIRICAL RANDOM FIELDS

For a fixed configuration x ∈ X and some Λ ∈ V we define a probability measure P̂Λ
x by∫

Φ dP̂Λ
x = |Λ|−1

∑
t∈Λ

Φ ◦ τt(x) for every Φ ∈ B.

Such probability distributions will be quoted as empirical random fields. On the other
hand, for fixed Φ ∈ BV we have

∫
Φ dP̂Λ

• ∈ BV +Λ, which means that for specifying the
marginal distribution P̂Λ

x /FV we actually need to know only xV +Λ ∈ XV +Λ
0 .

Now, let us consider a sequence of properly growing subsets {Vn}∞n=1 in Zd, e. g., the
cubes Vn = [−n, n]d for simplicity.

Then, for a fixed potential Φ ∈ B let us denote by

q(Φ) = lim
n→∞

|Vn|−1 log ZΦ
Vn

(xVn
c)

the pressure corresponding to the potential Φ. The limit exists uniformly for every
x ∈ X , e. g., by Theorem 15.30 in Georgii [4].

In general, the pressure q is a convex continuous function on B, strictly convex on
Bb, and even strongly convex on every compact subset of Bb (see Dobrushin and Na-
hapetian [3]).

Further, for every P ∈ PS we may define the entropy rate

H(P ) = lim
n→∞

|Vn|−1

∫
[− log PVn(xVn)] dP (x)

where the limit exists by Theorem 15.12 again in Georgii [4].

Proposition 4.1. For P ∈ PS , the following statements are equivalent:

i) P ∈ GS(Φ);

ii) |Vn|−1 log PVn
(xVn

)−
∫

Φ dP̂Vn
x + q(Φ) ⇒ 0 for n →∞;

iii) H(P ) = q(Φ)−
∫

Φ dP .
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P r o o f . While i) ⇒ ii) and ii) ⇒ iii) are rather straightforward, the proof of iii) ⇒ i)
needs a rather sophisticated construction (see, e. g., Georgii [4, Theorem 15.37] or
Janžura [13]). �

5. UNIQUENESS REGION

For every t ∈ Zd let us denote

γt(Φ) =
1
2

sup

{ ∑
x0∈X0

∣∣∣ΠΦ
{0}(x0|yZd\{0})−ΠΦ

{0}(x0|zZd\{0})
∣∣∣ ; ys = zs for s 6= t

}
.

If γ(Φ) =
∑

t∈Zd γt(Φ) < 1, the potential is said to satisfy the Dobrushin’s uniqueness
condition. Let us denote by D = {Φ ∈ B; γ(Φ) < 1} the Dobrushin’s uniqueness region.
For every Φ ∈ D it holds G(Φ) = GS(Φ) = GE(Φ) = {PΦ}. For more details see
Dobrushin [2], Künsch [14], or Georgii [4].

6. FINITE-DIMENSIONAL (PARAMETRIC) SPACE OF POTENTIALS

From now, we shall consider the linear subspace H ⊂ Bb of potentials, where

H = Lin
(
Φ1, . . . ,ΦK

)
and Φ1, . . . ,ΦK ∈ Bb are vacuum potentials. Then the potentials are mutually non-
equivalent, i. e.

Φθ =
K∑

i=1

θi Φi ≈ 0 iff θ = 0.

Let us denote Θ = {θ ∈ RK , Φθ ∈ D} and PΘ = {P θ}θ∈Θ, where P θ = PΦθ

. Similarly,
we shall write q(θ) for q(Φθ), or covθ for covP θ

, and denote

Bθ(f1, f2) =
∑
t∈Zd

covθ(f1, f2 ◦ τt)

for every f1, f2 ∈ B.
Moreover, let us introduce the transform

U : Θ → RK

defined by U(θ) =
∫

ΦdP θ where Φ = (Φ1, . . . ,ΦK).

Proposition 6.1. For q : Θ → R and U : Θ → RK it holds:

i) q is a smooth, strongly convex function.

ii) Bθ(f1, f2) exists for any f1, f2 ∈ B; Bθ(f, f) > 0 iff f 6≈ 0.

iii) ∇q(θ) = U(θ),

∇2q(θ) = ∇U(θ) = Bθ(Φ,Φ).
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iv) U is a regular mapping, B•(f1, f2) is continuous for fixed f1, f2 ∈ B.

P r o o f . The results follow by Künsch [14], together with Dobrushin and Nahapetian [3]. �

Theorem 6.2. For θ ∈ Θ, f ∈ B it holds:

i)
∫

f dP̂Vn
• →

∫
f dP θ, for n →∞ a. s. [P θ].

ii) |Vn|
1
2

[∫
f dP̂Vn

• −
∫

f dP θ

]
⇒ N (0, Bθ(f, f)) for n →∞ in distribution [P θ].

iii) |Vn|
1
2

[∫
ΦdP̂Vn

• −
∫

ΦdP θ − `θ
n

]
→ 0 for n →∞ in probability [P θ],

where `θ
n = ∇

[
|Vn|−1 log P θ

Vn

]
is the score function.

iv) log
P

θ+|Vn|−
1
2 α

Vn

P θ
Vn

− |Vn|
1
2

[∫
Φα dP̂Vn

• −
∫

Φα dP θ

]
+

1
2
Bθ(Φα,Φα) → 0

for n →∞ in probability [P θ].

P r o o f . While i) is just the ergodic theorem, ii) is the CLT due to Künsch[14]. For iii)
and iv) (local asymptotic normality) see Janžura [10]. �

7. EFFICIENT ESTIMATOR

For a fixed local statistic f ∈ BW , W ∈ V, let us set

Tn =
∫

f dP
bθn with θ̂n = U−1

(∫
ΦdP̂Vn

•

)
whenever

∫
ΦdP̂Vn

• ∈ U(Θ). We claim that Tn is an efficient estimator for
∫

f dP θ,
θ ∈ Θ.

Since U is regular and therefore U(Θ) ⊂ RK is open, and
∫

ΦdP̂Vn
• →

∫
ΦdP θ

a. s. [P θ] by the ergodic theorem, we have θ̂n, and, consequently, Tn defined with a
probability tending to 1. For

∫
ΦdP̂Vn

• /∈ U(Θ) we may set Tn arbitrary. In fact, due
to Proposition 6.1, we have

θ̂n = arg minθ∈RK

{
q(θ)−

∫
Φθ dP̂Vn

•

}
which is well defined whenever

∫
ΦdP̂Vn

• ∈
⋃

α∈RK

{∫
ΦdP ;P ∈ GS(Φα)

}
, and we need

the formal definition only outside that set.
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Remark 7.1. For every i = 1, . . . ,K we have Φi ∈ Bb
Ai

with Ai =
⋃

A∈Ai A. Thus

Φα ∈ B
A

with A =
⋃K

i=1 Ai, and, in order to have
∫

ΦdP̂Vn
• well defined, we need the

data to be observed from the region Vn + A = V n.

Theorem 7.2. For every θ ∈ Θ we have

|Vn|
1
2

[
Tn −

∫
f dP θ −

∫
gθ

f dP̂Vn
•

]
→ 0 for n →∞ in probability [P θ],

where

gθ
f = Bθ(f,Φ) Bθ(Φ,Φ)−1

(
Φ−

∫
ΦdP θ

)
.

P r o o f . Since Tn =
∫

f dPU−1(
R

Φ d bP Vn
• ) and

∫
f dP θ =

∫
f dPU−1(

R
Φ dP θ), we obtain

by the first order expansion with some (random) ε̃n ∈ [0, 1]:

Tn −
∫

f dP θ =
d
dε

∫
f dPU−1(

R
f(ε d bP Vn

• +(1−ε) dP θ))
∣∣∣
ε=eεn

= Beθn
(f,Φ) Beθn

(Φ,Φ)−1

(∫
ΦdP̂Vn

• −
∫

ΦdP θ

)

with θ̃n = U−1
(∫

f(ε̃n dP̂Vn
• + (1− ε̃n) dP θ)

)
. Thus

|Vn|
1
2

[
Tn −

∫
f dP θ −

∫
gθ

f dP̂Vn
•

]
=

[
Beθn

(f,Φ) Beθn
(Φ,Φ)−1 −Bθ(f,Φ) Bθ(Φ,Φ)−1

]
·

·|Vn|
1
2

(∫
ΦdP̂Vn

• −
∫

ΦdP θ

)
,

where, with the aid of results of the preceding section, namely Proposition 4.1 and
Theorem 6.2, the first term tends to zero a. s. and in probability [P θ] due to the ergodic
theorem and continuity of Bθ. The second term tends to N (0, Bθ(Φ,Φ)) in distribution
by the CLT, which completes the proof. �

Remark 7.3. We may observe

Bθ(f − gθ
f ,Φ) = Bθ(f,Φ)−Bθ(f,Φ) Bθ(Φ,Φ)−1Bθ(Φ,Φ) = 0.

Thus, gθ
f is the canonical gradient, i. e. the projection of the local statistic f into the

space H equipped with the scalar product Bθ(·, ·) (cf. Greenwood and Wefelmeyer [6]
or Bickel et al. [1, Section 3.3]).
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Remark 7.4. Due to Theorem 6.2 iii) we can obtain the same limit theorem with the
efficient influence function

Bθ(f,Φ) Bθ(Φ,Φ)−1 `θ
n

(as required, e. g., in Bickel et al. [1, Section 2.3]) instead of
∫

gθ
f dP̂Vn

• .

Before proving the efficiency of the estimator, let us introduce the relevant definitions.

Definition 7.5. The estimator T̃n is called regular, if

|Vn|
1
2

(
T̃n −

∫
f dP θ+|Vn|−

1
2 α

)
⇒ L(θ) for n →∞ in distribution

[
P θ+|Vn|−

1
2 α

]
,

where L(θ) is some limiting distribution.

Proposition 7.6. The estimator

Tn =
∫

f dP
bθn with θ̂n = U−1

(∫
ΦdP̂Vn

•

)
is regular with L(θ) = N

(
0, Bθ(f,Φ) Bθ(Φ,Φ)−1Bθ(Φ, f)

)
.

P r o o f . For θ ∈ ΘD let us denote Lθ
n = log

P
θ+|Vn|−

1
2 α

Vn

P θ
Vn

and T θ
n = |Vn|

1
2

[
Tn −

∫
f dP θ

]
.

Then due to Theorem 6.2 iv) and Theorem 7.2 we obtain

(T θ
n , Lθ

n)> ⇒ N2(µ,Σ) in distribution [P θ],

where

µ =
(

0
− 1

2Bθ(Φα,Φα)

)
and Σ =

(
Bθ(gθ

f , gθ
f ) Bθ(gθ

f ,Φα)
Bθ(Φα, gθ

f ) Bθ(Φα,Φα)

)
.

And by the third LeCam’s lemma (see, e. g., Bickel et al. [1, Lemma A.9.3.]) it also
holds

(T θ
n , Lθ

n)> ⇒ N2(µ∗,Σ) in distribution [P θ+|Vn|−
1
2 α

Vn
],

where

µ∗ =
(

Bθ(Φα, gθ
f )

1
2Bθ(Φα,Φα)

)
.

Now, we observe Bθ(Φα, gθ
f ) = Bθ(Φα, f), and

|Vn|
1
2

(
Tn −

∫
f dP θ+|Vn|−

1
2 α

)
= T θ

n + |Vn|
1
2

(∫
f dP θ −

∫
f dP θ+|Vn|−

1
2 α

)
= T θ

n −B
θ+εn|Vn|−

1
2 α

(Φα, gθ
f ) ⇒ N1

(
Bθ(Φα, f), Bθ(gθ

f , gθ
f )

)
−Bθ(Φα, f)

= N1

(
0, Bθ(gθ

f , gθ
f )

)
,where the limit is in distribution [P θ+|Vn|−

1
2 α

Vn
], and εn ∈ [0, 1].

Finally, since
Bθ(gθ

f , gθ
f ) = Bθ(f,Φ) Bθ(Φ,Φ)−1Bθ(Φ, f),

we have the claimed result. �
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Definition 7.7. A regular estimator Tn will be called efficient if

|Vn|−
1
2

(
Tn −

∫
f dP θ

)
⇒ N

(
0, Bθ(f,Φ) Bθ(Φ,Φ)−1Bθ(Φ, f)

)
for n →∞ in distribution [P θ]

(see also Definition 1 in Section 2.3 in Bickel et. al. [1]).

Remark 7.8. The above definition is fully justified by the Hájek’s convolution theorem
(cf., e. g. Theorem 2.3.1 in Bickel et. al. [1]), which guaranties the maximum possible
concentration of the estimate in the vicinity of the true value.

In fact, the asymptotic linearity of the proposed estimator, as proved in Theorem 7.2,
is crutial for both the regularity and the efficiency of the estimator (see also Proposi-
tion 7.6 in Greenwood and Wefelmeyer [6]).

Theorem 7.9. The estimator Tn is efficient for
∫

f dP θ, θ ∈ Θ.

P r o o f . Directly from Theorem 7.2, Proposition 3.1, and the above definitions. �

8. EXAMPLES

8.1. Efficiency of the empirical estimator

By the definition of the transform U we have∫
Φ dP

bθn =
∫

Φ dP̂Vn
•

for every Φ ∈ {Φ1, . . . ,ΦK} and, consequently, for every Φ ∈ H. Therefore, whenever
f ∈ H, the empirical estimator

∫
f dP̂Vn

• is efficient, which fully agrees with the main
Theorem in Greenwood and Wefelmeyer[6]. But, moreover, suppose only f ≈ Φ0 for
some Φ0 ∈ H. Then, by Section 3, we have

∫
(f − Φ0) dP = c for every P ∈ PS .

Moreover, since Bθ(f − Φ0, f − Φ0) = 0, by the CLT (Theorem 6.2 iii)) we now have

|Vn|
1
2

∫
(f − Φ0 − c) dP̂Vn

• → 0 for n →∞ in probability [P θ].

Then we may write∫
f dP̂Vn

• =
∫

(f − Φ0 − c) dP̂Vn
• + c +

∫
Φ0 dP̂Vn

•

=
∫

(f − Φ0 − c) dP̂Vn
• +c+

∫
Φ0 dP

bθn =
∫

(f−Φ0−c) dP̂Vn
• +

∫
f dP

bθn

and since
∫

(f − Φ0 − c) dP̂Vn
• = oP θ

(
|Vn|−

1
2

)
, the empirical estimator

∫
f dP̂Vn

• still
remains efficient. The correction term occurs due to the “non-stationarity” of the em-
pirical distribution P̂Vn

• . By a slight modification it could be made stationary, but we
would loose the unbiasness:

∫ ∫
Φ dP̂Vn

• dP θ =
∫

Φ dP θ which is crucial for the limit
theorems.
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Remark 8.1. Thanks to the above result we have also directly the efficiency of the
parameter estimate

θ̂n = U−1

(∫
ΦdP̂Vn

•

)
which is a regular transform of the efficient empirical estimate

∫
ΦdP̂Vn

• . We may ob-
serve that the estimate θ̂n is secondary, derived from the primary estimate

∫
ΦdP̂Vn

• .
The definition of the estimate is natural, it corresponds to the relation between the the-
oretical terms, and it also agrees with the (approximate) maximum likelihood estimate
(see, e. g., Janžura [12]). Anyhow, also the efficiency study for the estimate θ̂n would be
hardly possible without studying the efficiency of the estimate

∫
ΦdP̂Vn

• .

8.2. von Mises statistic for i.i.d. variables

For X0 = {x0, . . . , xK} with b = x0 we consider

Φi ∈ Bb
{0} for i = 1, . . . ,K,

defined by Φi(x) = δ(x, xi) for x ∈ X0.
Then P θ ∈ G(Φθ) is the product distribution with P θ

{t}(xi) = eθi

1+
PK

j=1 eθj
for i 6= 0

and P θ
{t}(x0) = 1

1+
PK

j=1 eθj
for every t ∈ Zd.

With a given collection of data x̂Vn ∈ XVn
0 we have

∫
Φi dP̂Vn

• = 1
|Vn|

∑
t∈Vn

δ(xi, x̂t)

for i = 1, . . . ,K. Providing
∫

ΦidP̂Vn
• > 0 for i = 1, . . . ,K, and

∑K
i=1

∫
ΦidP̂Vn

• < 1 we
obtain

θ̂i
n = log

∫
ΦidP̂Vn

•

1−
∑K

j=1

∫
ΦjdP̂Vn

•
for i = 1, . . . ,K.

Now, for a local statistic f ∈ BΛ, Λ ∈ V, we obtain by Theorem 6.2 the efficient estimate
of

∫
f dP θ in the form∫

f d
⊗
t∈Λ

P
bθn

{t} =
∑

yΛ∈XΛ
0

f(yΛ)
∏
t∈Λ

1
|Vn|

∑
`∈Vn

δ(yt, x̂`)

=
1

|Vn||Λ|
∑

zΛ∈(bxVn )Λ

f(zΛ)

which is nothing else but the von Mises statistic, i. e. the average over all data permu-
tations.

8.3. Markov chains

Now, suppose d = 1, X0 = {x0, x1, . . . , xL}, K = L(L + 1), and

Φ =
{
Φi,Φik; i, k = 1, . . . , L

}
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where

Φi(x) = δ(x, xi) for x ∈ X0,

Φik(x, y) = δ(x, xi) · δ(y, xk) for x ∈ X0, y ∈ X1.

Then, providing the empirical distribution is again positive, we have P
bθn given as the dis-

tribution of an ergodic Markov chain with the initial distribution P
bθn

{0}(xi) =
∫

Φi dPVn
0

for i = 1, . . . , L, and the transition probabilities P
bθn

{1|0}(yj |xi) =
R

Φijd bP Vn
•R

Φid bP Vn
•

for i, j =

1, . . . , L. Thus, the result agrees with that of Greenwood and Wefelmeyer [5].

8.4. Reversible Markov chains

Let us suppose, moreover, that there is a finite group of transforms Γ = {γ : H → H}
where again H = Lin(Φi,Φik; i, k = 1, . . . , L). Let us denote by

HΓ = {Φ ∈ H; γ ◦ Φ = Φ for every γ ∈ Γ}

the set of invariant potentials with respect to the group Γ. For all PΦ, Φ ∈ HΓ, suppose,
in addition,

∫
ΨdPΦ =

∫
γ ◦ ΨdPΦ for every γ ∈ Γ, Ψ ∈ H. (This is fulfilled, e. g., if

γ ◦Φ = Φ ◦ γ̃ with some γ̃ : X → X .) Then the efficient estimator for
∫

ΨdPΦ ,Ψ ∈ H,
is given by ∫

1
|Γ|

∑
γ∈Γ

γ ◦ΨdP̂Vn
• .

Namely, we may write∫
ΨdP

bΦn

=
∫

1
|Γ|

∑
γ∈Γ

γ ◦ΨdP
bΦn

=
∫

1
|Γ|

∑
γ ◦ΨdP̂Vn

•

since 1
|Γ|

∑
γ∈Γ γ ◦ Ψ ∈ HΓ. Here Φ̂n ∈ HΓ is given by

∫
Φ̃ dP

bΦn

=
∫

Φ̃ dP̂Vn
• for every

Φ̃ ∈ HΓ.

Now, for the above Markov chains example, let us set Γ = {γ0, γ1} where γ0 is the
identity, i. e., γ0 ◦ Φ̃ = Φ̃ for every Φ̃ ∈ H, and

γ1 ◦ Φ̃(x0) = Φ̃(x0) for Φ̃ ∈ B{0},

γ1 ◦ Φ̃(x0, x1) = Φ̃(x1, x0) for Φ̃ ∈ B{0,1} is the reversion.

Then all the assumptions are satisfied and we obtain the efficient estimator for f ∈ B{0,1}
in the form

1
2

1
n− 1

n−1∑
i=1

[f(x̂i, x̂i+1) + f(x̂i+1, x̂i)]

just as in Greenwood and Wefelmeyer [5].
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9. A NOTE ON THE PERFORMANCE

Unfortunately, for the Gibbs random fields, there is a lack of analytic formulas for
calculating the expectations

∫
f dPΦ. The only feasible way consists of substituting the

theoretic terms by their simulated counterparts.
The problem occurs both for calculating the estimate θ̂n = U−1

(∫
ΦdP̂Vn

•

)
, and the

final evaluation of the expectation
∫

f dP
bθn .

The estimate θ̂n can be calculated by an iterative procedure

θ̂n(k + 1) = θ̂(k)− Ck

(∫
ΦdP

bθn(k) −
∫

ΦdP̂Vn
•

)
where Ck → 0 for k →∞, but the term

∫
ΦdP

bθn(k) must be for every actual k substi-
tuted by

∫
ΦdP̂M

xM (k), where M ∈ V is as large as possible and xM (k) ∈ XM
0 is simulated

with the distribution P
bθn(k) , e. g., by a Markov Chain Monte Carlo procedure (cf., e. g.,

Younes [15]).
At the stopping time k∗, the procedure returns both the estimate θ̂n(k∗) and the

simulated data xM (k∗). Thus, the expectation
∫

f dP
bθn is finally substituted by∫

f dP̂M
xM (k∗).

The whole procedure remains optimal from the asymptotic point of view, but for a fixed
size data xV n

it is an open question whether it gives really a “better” estimate than
the empirical estimator

∫
f dP̂Vn

• . Apparently, if f ∈ BV , with V ∈ V much “larger” to
compare with A where Φ ∈ BA, or, at least, with much larger diameter, our approach
may be strongly recommended since the empirical mean

∫
f dP̂M

xM (k∗) is an average of

much larger number of values than
∫

f dP̂Vn
xV n

, and would be very likely more “precise”.
And the whole approach can be understood as a bootstrap-like method.
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M. Hušková, eds.), Physica–Verlag, Heidelberg 1994, pp. 285–296.
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e-mail: janzura@utia.cas.cz


		webmaster@dml.cz
	2016-01-03T22:43:18+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




