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Symmetries and currents in nonholonomic mechanics

Michal Čech, Jana Musilová

Abstract. In this paper we derive general equations for constraint Noether-
-type symmetries of a first order non-holonomic mechanical system and
the corresponding currents, i.e. functions constant along trajectories of the
nonholonomic system. The approach is based on a consistent and effective
geometrical theory of nonholonomic constrained systems on fibred mani-
folds and their jet prolongations, first presented and developed by Olga
Rossi. As a representative example of application of the geometrical theory
and the equations of symmetries and conservation laws derived within this
framework we present the Chaplygin sleigh. It is a mechanical system sub-
ject to one linear nonholonomic constraint enforcing the plane motion. We
describe the trajectories of the Chaplygin sleigh and show that the usual
kinetic energy conservation law holds along them, the time translation gen-
erator being the corresponding constraint symmetry and simultaneously
the symmetry of nonholonomic equations of motion. Moreover, the expres-
sions for two other currents are obtained. Remarkably, the corresponding
constraint symmetries are not symmetries of nonholonomic equations of
motion. The physical interpretation of results is emphasized.

1 Introduction
While a wide variety of problems within the mechanics of first order systems with-
out constraints or with holonomic constraints is solved, mechanics of nonholo-
nomic systems is still studied relatively intensively by various authors using var-
ious approaches. Bibliography concerning nonholonomic constraints is very rich,
see e.g. famous books by Neimark and Fufaev [26], Bloch and coworkers [2], Cortés
Monforte [7], and Bullo [3], and others, or many papers as e.g. [9], [23], [24], [29],
[34], [35], [39], [40], or recently e.g. [28] (for nonlinear constraints), to mention just
a few. Most of the above cited works are concerned with linear or affine nonholo-
nomic constraints, relevant a.e. for technical applications. A geometrical theory of
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nonholonomic systems on fibred manifolds and their jet prolongations was proposed
by Olga Rossi (Krupková) in [14] and elaborated in her later works among which
we can emphasize e.g. [15], [16], [19]. This theory differs from other approaches
by the idea that a nonholonomic constraint is a fibred submanifold of the first
jet prolongation of the underlying fibred manifold. The nonholonomic mechanical
system is considered as a dynamical system on this constraint submanifold which
is its true phase space. The equations of motion called the reduced equations are
equivalent with the well known Chetaev equations [6] based on the standardly used
d’Alembert’s principle. In this sense the geometrical model is a generalization of
the d’Alembert’s principle to nonlinear as well as higher order constraints. A de-
tailed explanation of the theory based on the nonholonomic variational principle
can be found in [19].

The geometrical theory is an effective tool for solving a wide variety of problems
connected with nonholonomic systems. One of them is the nonholonomic inverse
problem, see e.g. [22] and [30]. The relevance and applicability of the theory was
verified on examples (see [37]) and practical situations (see [8], [10], [11], [12], [13]),
including the experimental verification in [12] and [13]. An interesting realistic
case of a nonlinear constraint is represented by the mechanical system consisting
of a mass particle in the special relativity theory. This problem is solved in [21]
and [31]. Explicit results of this kind should be compared with usually applied an-
alytic and geometric techniques which provide mostly only conclusions concerning
equilibria.

Some questions concerning nonholonomic systems are still not satisfactorily
understood. One of them is the problem of nonholonomic symmetries and con-
servation laws. On the other hand, a proper understanding of symmetries and
conservation laws is a key question in mechanics including nonholonomic systems
in particular. Here we emphasize a new concept of nonholonomic symmetry of
a Lagrangian system and generalization of Noether theorem formulated by Olga
Rossi [18] within the framework of her geometrical theory. An interesting example
of the projectile motion controlled by the constant speed constraint was discussed
and completely solved in [38].

In the present paper we derive general equations of constraint Noether-type
symmetries for a Lagrangian first order mechanical system subjected to a quite
general nonholonomic constraint and the expressions for corresponding currents,
i.e. quantities conserved along trajectories. It should be emphasized that the con-
straint symmetries of a Lagrangian in the generalized Noether theorem need not
be symmetries of the constraint equations of motion. So they play similar role as
“pseudosymmetries” in nonconservative mechanics (see [4], [33], [36]). More gen-
erally, in [36] the solution of the problem of symmetries is based on the idea of
generating first integrals through so called adjoint symmetries (a dual concept of
pseudosymmetries). We focus to Noether-type symmetries defined as vector fields
leaving invariant (up to a constraint form) the constraint Lepage equivalent of a
Lagrangian. We illustrate the results on an example interesting from the physical
point of view: the Chaplygin sleigh. It appears that the solution of the problem
is technically not so simple. We present the solutions of reduced equations of the
sleigh including graphical outputs, as well as conservation laws and corresponding
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symmetries. Moreover, we find the (non-variational) Chetaev constraint forces ex-
plicitly and emphasize the physical interpretation of the results. A brief overview
(following the page restriction requirements) has been submitted for publication in
the proceedings of the VIII-th International Conference Differential Geometry and
Dynamical Systems (DGDS) 2014 where the results were reported, see [5].

2 Elements of the geometrical theory of nonholonomic
mechanics

In this section we summarize elements of the geometrical theory of first order
nonholonomic mechanical systems arising from initially Lagrangian unconstrained
ones.

2.1 Underlying structures and notations
The geometrical theory of nonholonomic mechanical systems is developed on an
(m+ 1)-dimensional underlying fibred manifold (Y, π, X) with the total space Y ,
the one-dimensional base X and the projection (surjective submersion) π. The
dimension of fibres m represents the number of degrees of freedom of an un-
constrained system. We use the standard notation for jet prolongations of this
manifold, (JrY, πr, X), r = 0, 1, 2, Y = J0Y , π = π0 and for fibred manifolds
(JrY, πr,s, J

sY ), s = 0, 1. We denote as (V, ψ) a fibred chart on Y , where V ⊂ Y is
an open set, ψ = (t, qσ), 1 ≤ σ ≤ m. Then (U, ϕ), U = π(V ), ϕ = (t), is the associ-
ated chart on X, and (Vr, ψr), Vr = π−1

r,0 (V ), ψ1 = (t, qσ, q̇σ), ψ2 = (t, qσ, q̇σ, q̈σ),
are the associated fibred charts on J1Y and J2Y , respectively. Let U ⊂ X be an
open set. A section δ : U 3 t → δ(t) ∈ JrY , r = 1, 2, is called holonomic if there
exists a section γ : U 3 t → γ(t) ∈ Y such that δ = Jrγ.

We also use the standard concept of a vector field on Y and its prolongations
connected with the fibred structure. The standard concept of differential forms
is used as well. A vector field ξ on JrY is called πr-projectable if there exists a
vector field ξ0 on X such that Tπr ξ = ξ0 ◦ πr. A vector field ξ is called πr-vertical
if Tπr ξ = 0. A vector field ξ on JrY is called πr,s-projectable if there exists a
vector field ζ on JsY such that Tπr,s ξ = ζ ◦ πr,s. A vector field on JrY is called
πr,s-vertical if Tπr,s ξ = 0. The chart expressions of the above mentioned vector
fields are (for r = 0, 1, 2, s = 0, 1, s < r)

ξ = ξ0(t)
∂

∂t
+

r∑
j=0

ξσ(j)(t, q
ν , . . . , qνr )

∂

∂qσj
,

with ξ0 = 0 for a πr-vertical vector field, and

ξ = ξ0(t, qν , . . . , qνs )
∂

∂t
+

s∑
j=0

ξσj (t, qν , . . . , qνs )
∂

∂qσj
+

r∑
j=s+1

ξσj (t, qν , . . . , qνr )
∂

∂qσj
,

with ξ0 = 0 and ξσj = 0, j = 0, . . . , s, for a πr,s-vertical vector field. In the
preceding expressions we denoted qσ = qσ0 , q̇σ = qσ1 , q̈σ = qσ2 .

A differential q-form η on JrY is called πr-horizontal if iξη = 0 for every
πr-vertical vector field ξ on JrY . A q-form η on JrY is called πr,s-horizontal if
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iξη = 0 for every πr,s-vertical vector field ξ on JrY . πr-horizontal 1-forms have a
chart expression

η = η0(t, qσ, . . . , qσr ) dt .

Every π-projectable vector field ξ = ξ0(t) ∂∂t + ξσ(t, qν) ∂
∂qσ on Y can be prolonged

on JrY , r = 1, 2,

J1ξ = ξ0 ∂

∂t
+ ξσ

∂

∂qσ
+ ξ̃σ

∂

∂q̇σ
, or J2ξ = ξ0 ∂

∂t
+ ξσ

∂

∂qσ
+ ξ̃σ

∂

∂q̇σ
+ ξ̂σ

∂

∂q̈σ
,

where ξ̃σ = dξσ

dt − q̇σ dξ0

dt , and ξ̂σ = dξ̃σ

dt − q̈σ dξ0

dt . A q-form η on JrY is called
contact if Jrγ∗η = 0 for every section γ of π. Contact forms on JrY form a differ-
ential ideal IC called the contact ideal. For expressing differential forms in coordi-
nates we use the basis of 1-forms adapted to the contact structure, (t, ωσ, dq̇σ)
and (t, ωσ, ω̇σ, dq̈σ) on J1Y and J2Y , respectively, where ωσ = dqσ − q̇σ dt,
ω̇σ = dq̇σ − q̈σ dt. There exists a unique decomposition of a q-form η on JrY
into its (q − 1)-contact and q-contact component π∗r+1,rη = pq−1η + pqη. The
chart expression of pq−1η in the basis adapted to the contact structure is a linear
combination of terms with just (q − 1) factors of the type ωσ or ω̇σ and the chart
expression of pqη is a linear combination of terms with just q such factors. (The
only contact form on Y is the trivial (zero) one.) Notice that jet prolongations of
π-projectable vector fields are closely related to the contact ideal being its symme-
tries: ∂Jrξω ∈ IC for every ω ∈ IC . Here ∂Jrξ denotes the Lie derivative along a
vector field Jrξ.

A distribution on JrY is a mapping D : JrY 3 x → D(x) ⊂ TxJ
rY , where

D(x) is a vector subspace of TxJrY . A distribution is generated by local vector
fields ξι on JrY , ι ∈ I, where I is a set of indices. Equivalently, the distribution D
can be annihilated by 1-forms η on JrY such that iξη = 0 for every vector field ξ
belonging to the distribution D.

2.2 Unconstrained systems
The geometrical theory of nonholonomic systems, as introduced in [14], is uni-
versal in the following sense: It concerns all types of nonholonomic mechanical
systems given by equations of motion of the initial unconstrained system and the
nonholonomic constraint, independently whether the equations of motion of the
initial system are variational (Lagrangian) or not. In this paper we concentrate
on the first of both situations because the concept of nonholonomic symmetries is
formulated for constrained Lagrangians, not for equations.

Let λ be a first order Lagrangian, i.e. a horizontal form on J1Y , λ = L(t, qσ, q̇σ) dt.
The pair (π, λ) represents a Lagrange structure. The first order Lagrangean me-
chanics studies a.e. extremals of the Lagrange structure, i.e. sections γ of π repre-
senting critical sections γ of the variational integral (action function)

SΩ : Γ(π) 3 γ → SΩ[γ] =

∫
Ω

J1γ∗ λ

where Γ(π) is a set of all sections of the projection π defined on open subsets of
the base X, and Ω is a compact set included in the domain of γ. Critical sections
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of S are zero points of the variational derivative of S, i.e. integral

dS[γu]

du

∣∣∣∣
u=0

=

∫
Ω

J1γ∗ ∂J1ξλ ,

where ξ is a π-projectable vector field called the variation and {γu}, u ∈ (−ε, ε),
is a one-parameter system of sections generated by ξ such that γ0 = γ, i.e. γu =
φu ◦ γ ◦ φ−1

0u , where (φu, φ0u) is the one-parameter group of the vector field ξ. The
variational derivative of the variational integral leads to the first variation formula∫

Ω

J1γ∗∂J1ξλ =

∫
Ω

J1γ∗iJ1ξ dθλ +

∫
∂Ω

J1γ∗iJ1ξθλ , (1)

where θλ = Ldt+ ∂L
∂q̇σ ω

σ is the Lepage equivalent of the Lagrangian (the Poincaré-
-Cartan form). The condition for an extremal leads to Euler-Lagrange equations—
equations of motion of the system. The coordinate free expression of these equa-
tions reads J1γ∗ iJ1ξ dθλ = 0 or J2γ∗Eλ = 0, where in coordinates

Eλ = Eσ ω
σ ∧ dt , Eσ =

∂L

∂qσ
− d

dt

∂L

∂q̇σ
, (2)

or equivalently
Eσ ◦ J2γ = (Aσ +Bσν q̈

ν) ◦ J2γ = 0 ,

Aσ =
∂L

∂qσ
− d′

dt

∂L

∂q̇
, Bσν = − ∂2L

∂q̇σ∂q̇ν
.

(3)

Here
d′

dt
=

d

dt
− q̈σ ∂

∂q̇σ
=

∂

∂t
+ q̇

∂

∂qσ
.

A π-projectable vector field ξ on Y is called a symmetry of the Lagrange structure
(π, λ) if it holds ∂J1ξλ = 0. This condition is the Noether equation. For a given
Lagrangian it is interpreted as a set of equations for symmetries, for a given vector
field ξ it represents a functional equation for Lagrangians having the symmetry ξ.
(For our purposes the first of both interpretations will be relevant.) The chart
expression of the Noether equation is

∂L

∂t
ξ0 +

∂L

∂qσ
ξσ +

∂L

∂q̇σ

(
dξσ

dt
− q̇σ dξ0

dt

)
+ L

dξ0

dt
= 0 . (4)

Taking into account the first variation formula we can see that if ξ is a symmetry
of the Lagrange structure then the quantity

iJ1ξθλ =

(
L− q̇σ ∂L

∂q̇σ

)
ξ0 +

∂L

∂q̇σ
ξσ (5)

(called the current) is constant along extremals. This result representing conser-
vation laws is well known as the Emmy Noether theorem.
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2.3 Nonholonomic dynamics
Suppose that an unconstrained first order Lagrangian mechanical system is sub-
jected to a nonholonomic constraint given by k equations, 1 ≤ k ≤ m− 1,

fa(t, qσ, q̇σ) = 0 , 1 ≤ a ≤ k , where rank

(
∂fa

∂q̇σ

)
= k ,

or in a normal form

q̇m−k+a = ga(t, qσ, q̇l) , 1 ≤ l ≤ m− k .

These equations define a constraint submanifold Q ⊂ J1Y of codimension k fibred
over Y (and, of course, over X as well). The corresponding projections π̄1,0 and
π̄1 are the mappings π1,0 and π1 restricted to Q, respectively. Denote

ι : Q 3 (t, qσ, q̇l) −→ (t, qσ, q̇l, ga(t, qν , q̇s)) ∈ J1Y

the canonical embedding of Q into J1Y . On the submanifold Q there arise the
induced contact ideal ĨC generated by forms ω̄σ = ι∗ωσ and the canonical distri-
bution

C = {spanϕa | 1 ≤ a ≤ k} , ϕa = ι∗ωm−k+a − ∂ga

∂q̇l
ι∗ ωl. (6)

The π̄1-projectable vector fields belonging to the canonical distribution are called
Chetaev vector fields. They represent admissible variations in the nonholonomic
variational principle (first introduced in [19]). Let us briefly recall this principle
and its consequences. Let (π, λ) be an unconstrained Lagrangian structure and θλ
the corresponding Poincaré-Cartan form. By the constraint system on Q defined
by λ we mean the differential form ι∗θλ. Denote λ̄ = ι∗λ = (L◦ ι) dt and θλ̄ = θι∗λ.
Calculating ι∗θλ we obtain

ι∗θλ = L̄dt+
∂L̄

∂q̇l
ω̄l + L̄aϕ

a = θι∗λ + L̄aϕ
a ,

L̄ = L ◦ ι , L̄a =
∂L

∂q̇m−k+a
◦ ι .

Let δ be a section of the projection π̄1 : Q → X defined on an open subset U ⊂ X
containing a compact set Ω ⊂ X. Let Z ∈ C be a π̄1-projectable vector field and
let (φu, φ0u) its one-parameter group and {δu} = {φu ◦ δ ◦ φ−1

0u }, δ0 = δ, the one-
parameter family of sections generated by Z. The constraint variational integral
and its variational derivative are

SΩ[δ] =

∫
Ω

δ∗ι∗θλ,
dS[δu]

du

∣∣∣∣
u=0

=

∫
Ω

δ∗∂Zι
∗θλ .

If we restrict to holonomic sections we obtain the variational derivative of the
variational integral in the form

dS[γu]

du

∣∣∣∣
u=0

=

∫
Ω

J1γ∗∂Zι
∗θλ .
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Nonholonomic first variation formula reads (taking into account that iZ(L̄aϕa) = 0,
because Z ∈ C) ∫

Ω

J1γ∗ ∂Zι
∗θλ =

∫
Ω

J1γ∗iZ dι∗θλ +

∫
∂Ω

J1γ∗iZθι∗λ . (7)

By a direct calculation we can justify that the integrand in the first integral on the
right-hand side of (7) depends only on components of Z on Y . The requirement of
vanishing of this integral (for arbitrary Ω) leads to equations of motion

J1γ∗iZ dι∗θλ = 0 =⇒
(
εs(L̄)− L̄aεs(ga)

)
◦ J2γ = 0 , (8)

for 1 ≤ s ≤ m− k. In the expressions of the type

εs(f) =
∂cf

∂qs
− dc

dt

∂f

∂q̇s
, where f = f(t, qσ, q̇l) ,

the constraint derivative operators are used

∂c
∂qs

=
∂

∂qs
+
∂ga

∂q̇s
∂

∂qm−k+a
,

dc
dt

=
∂

∂t
+ q̇l

∂

∂ql
+ ga

∂

∂qm−k+a
+ q̈l

∂

∂q̇l
=

d′c
dt

+ q̈l
∂

∂q̇l
.

Note that these operators have an important geometrical meaning: Vector fields

∂c
∂t

=
d′c
dt
− q̇l ∂c

∂ql
,

∂c
∂ql

,
∂

∂q̇l
, 1 ≤ l ≤ m− k ,

generate the canonical distribution C. The equations (8) can be written as follows

Ās + B̄sr q̈
r = 0 , 1 ≤ s ≤ m− k , (9)

Ās =
∂cL̄

∂qs
− d′c

dt

∂L̄

∂q̇s
− L̄a

(
∂cg

a

∂qs
− d′c

dt

∂ga

∂q̇s

)
, B̄sr = − ∂2L̄

∂q̇s∂q̇r
+ L̄a

∂2ga

∂q̇s∂q̇r
,

or, via functions Aσ and Bσν (3),

Ās =

[
As +

k∑
a=1

Am−k+a
∂ga

∂q̇s

+

k∑
a=1

(
Bs,m−k+a +

k∑
b=1

Bm−k+b,m−k+a
∂gb

∂q̇s

)(
∂ga

∂t
+
∂ga

∂qσ
q̇σ
)]
◦ ι

B̄sr =

[
Bsr +

k∑
a=1

(
Bs,m−k+a

∂ga

∂q̇r
+Bm−k+a,r

∂ga

∂q̇s

)

+

k∑
a,b=1

Bm−k+b,m−k+a
∂gb

∂q̇s
∂ga

∂q̇r

]
◦ ι .
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The last relations are universal in the following sense: They hold for both types of
equations of motion of an initial unconstrained mechanical system, i.e. variational
as well as non-variational ones.

We obtained m− k reduced equations of a nonholonomic system. These equa-
tions together with k equations of the constraint form a complete set of equations of
motion of the system for its trajectories γ : t→ γ(t) = (t, qσγ(t)) ∈ Y , 1 ≤ σ ≤ m.

2.4 Chetaev equations
In the framework of the geometrical theory of nonholonomic systems the well known
Chetaev equations of motion can be derived. We present them for completeness.
These equations are obtained by introducing the Chetaev constraint force into
equations of motion. Suppose that Aσ + Bσν q̈

ν = 0, 1 ≤ σ, ν ≤ m, are equations
of motion of an unconstrained system. The Chetaev force is defined as the form
φ = µa ∂f

a

∂q̇σ ω
σ∧ dt. The coefficients µa, 1 ≤ a ≤ k, on J1Y are Lagrange multipliers.

The Chetaev equations read(
Aσ +Bσν q̈

ν − µa ∂f
a

∂q̇σ

)
◦ J2γ = 0 . (10)

Together with the equations of the constraint fa = 0, 1 ≤ a ≤ k, we obtain m+ k
equations for trajectories and Lagrange multipliers. Knowing the Lagrange multi-
pliers we can determine the constraint force φ which is important for interpretation
of results from the point of view of physics.

3 Nonholonomic constraint symmetries
In this section we present the definition of a (nonholonomic) constraint symmetry
and derive general equations for symmetries of a constrained mechanical system
arising from an initially unconstrained first order Lagrangian structure.

3.1 The concept of constraint symmetries
Let Z be a Chetaev vector field, i.e. Z ∈ C. The chart expression of Z is

Z = Z0 ∂

∂t
+ Zl

∂

∂ql
+ Zm−k+a ∂

∂qm−k+a
+ Z̃l

∂

∂q̇l
,

Zm−k+a = Z0ga + (Zs − q̇sZ0)
∂ga

∂q̇s
. (11)

The condition for components Zm−k+a follows from the assumption that Z belongs
to the canonical distribution, i.e. iZϕa = 0 for 1 ≤ a ≤ k. We say that Z is a con-
straint symmetry of the nonholonomic mechanical system arising from a primarily
unconstrained Lagrangean structure (π, λ) subjected to nonholonomic constraints
q̇m−k+a = ga(t, qσ, q̇l) if the constrained system ι∗θλ on Q defined by λ remains
invariant under transformations given by the one-parameter group of the vector
field Z up to a constraint form. This means that

∂Zι
∗θλ = iZ dι∗θλ + diZι

∗θλ = Faϕ
a, (12)
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where Fa are some functions on Q. Relation (12) represents the constraint Noether
equation. From the nonholonomic variation formula (7) we can see that if Z is a
constraint symmetry of a nonholonomic mechanical system and γ is a solution of the
corresponding reduced equations together with constraints, then dJ1γ∗iZι

∗θλ = 0,
i.e. (iZι

∗θλ)◦J1γ = const. This means that the quantities Φ = iZι
∗θλ are constant

along solutions. We obtain

Φ =

(
L̄− q̇l ∂L̄

∂q̇l

)
Z0 +

∂L̄

∂q̇l
Zl. (13)

The quantities Φ are called Noether-type currents and the conditions Φ = const.
are the corresponding conservation laws.

3.2 Equations for constraint symmetries
Using the definition of constraint symmetries and relations (9) we obtain after
some tedious calculations the following set of partial differential equations for
(2(m− k) + 1) components of these symmetries:

Z0

[
d′cL̄

dt
−
(
∂cL̄

∂ql
− L̄aε′l(ga)

)
q̇l

]
+ Zl

(
∂cL̄

∂ql
− L̄aε′l(ga)

)
+

d′cZ
0

dt

(
L̄− ∂L̄

∂q̇l
q̇l
)

+
d′cZ

l

dt

∂L̄

∂q̇l
= 0 , (14)

Z0

[
d′c
dt

(
∂L̄

∂q̇l

)
− ∂c
∂qs

(
∂L̄

∂q̇l

)
q̇s + L̄aε

′
l(g

a)

−L̄aq̇s
(
∂c
∂ql

)(
∂ga

∂q̇s
− ∂c
∂qs

(
∂ga

∂q̇l

))]

+Zs

[
∂c
∂qs

(
∂L̄

∂q̇l

)
+ L̄a

(
∂c
∂ql

(
∂ga

∂q̇s

)
− ∂c
∂qs

(
∂ga

∂q̇l

))]

+Z̃s
(

∂2L̄

∂q̇l∂q̇s
− L̄a

∂2ga

∂q̇l∂q̇s

)
+
∂cZ

0

∂ql

(
L̄− ∂L̄

∂q̇s
q̇s
)

+
∂cZ

s

∂ql
∂L̄

∂q̇s
= 0 , (15)

L̄a
∂2ga

∂q̇l∂q̇s
(Zs − q̇sZ0) +

(
L̄− ∂L̄

∂q̇s
q̇s
)
∂Z0

∂q̇l
+
∂L̄

∂q̇s
∂Zs

∂q̇l
= 0 , (16)

for 1 ≤ l ≤ m − k. The following expression represents the coefficients Fa of the
constraint form Faϕ

a (we present them for completeness):

Fa = iZ dL̄a + L̄b

(
∂gb

∂qm−k+a
Z0 +

∂2gb

∂qm−k+a∂q̇s
(Zs − q̇sZ0)

)
+

(
L̄− ∂L̄

∂q̇s
q̇s
)

∂Z0

∂qm−k+a
+
∂L̄

∂q̇s
∂Zs

∂qm−k+a
.

For a special but in practical situations frequent case of a semiholonomic constraint
(linear constraint with ε′l(g

a) = 0, 1 ≤ l ≤ m − k, 1 ≤ a ≤ k) the equations for
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symmetries take a simplified form

d′cL̄

dt
Z0 +

∂cL̄

∂ql
(Zl − q̇lZ0) +

(
L̄− q̇l ∂L̄

∂q̇l

)
d′cZ

0

dt
+
∂L̄

∂q̇l
d′cZ

l

dt
= 0 ,

d′

dt

(
∂L̄

∂q̇l

)
Z0 +

∂c
∂qs

(
∂L̄

∂q̇l

)
(Zs − q̇sZ0)

+Z̃s
∂2L̄

∂q̇l∂q̇s
+
∂L̄

∂q̇s
∂cZ

s

∂ql
+
∂cZ

0

∂ql

(
L̄− q̇s ∂L̄

∂q̇s

)
= 0 ,(

L̄− q̇s ∂L̄
∂q̇s

)
∂Z0

∂q̇l
+
∂L̄

∂q̇s
∂Zs

∂q̇l
= 0 ,

1 ≤ l, s ≤ m−k. These relations are fully consistent with equations for symmetries
of Poincaré-Cartan form of unconstrained systems, ∂J1ξθλ = 0, taking into account
that for unconstrained systems ξ is a π-projectable vector field on Y , i.e. ξ0 =
ξ0(t), ξσ = ξσ(t, qν), 1 ≤ σ, ν ≤ m, and components ξ̃σ are uniquely given by ξ0

and ξν (see relations in Section 2.1). It is obvious that for a nonholonomic case
the constraint differential operators are used instead of the usual ones.

Using the expressions for currents and for coefficients of reduced equations Āl
and B̄ls given by (9) we obtain a more suitable form of equations (14)–(16):

d′cΦ

dt
+ Āl(Z

l − q̇lZ0) = 0 , (17)

∂cΦ

∂ql
− ĀlZ0 +

{
∂Ās
∂q̇l

+
∂L̄a
∂q̇l

ε′s(g
a)

}
alt(l,s)

(Zs − q̇sZ0)− B̄lsZ̃s = 0 , (18)

∂Φ

∂q̇l
+ B̄ls(Z

s − q̇sZ0) = 0 , (19)

where 1 ≤ l, s ≤ m − k. (The equations are expressed via currents, for clar-
ity. Nevertheless, the constraint derivatives of the current Φ depend on symmetry
components and their derivatives. There arises, of course, the problem of solution
of these equations for concrete situations.)

Equations (17)–(19) enable us to obtain symmetries of the mechanical system
via currents: For a regular matrix B denote B = B̄−1. Multiplying the system of
equations (19) by the matrix B we get

Zl − q̇lZ0 = −Bls ∂Φ

∂q̇s
.

Putting the obtained expressions for Zl − q̇lZ0 into (13) we can express the com-
ponent Z0 explicitly. Putting the result into (17)–(19) we finally obtain explicit
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expressions for the components of symmetries:

Z0 =
1

L̄

(
Φ + Bls ∂L̄

∂q̇l
∂Φ

∂q̇s

)
,

Zl = q̇lZ0 − Bls ∂Φ

∂q̇s
, (20)

Z̃l = Bls
(
∂cΦ

∂qs
− ĀsZ0 +

{
∂Ār
∂q̇s

+
∂L̄a
∂q̇s

ε′r(g
a)

}
alt(r,s)

(Zr − q̇rZ0)

)
.

The problem of computing symmetries simplifies if we know the currents (constants
of motion). This might happen during the process of solving the equations of
motion. It is obvious that for vector fields obtained by such a way the verification
of conditions (14)–(16) should be made. In particular we take advantage of this
simplification in the example presented in Section 4.

3.3 Classification of constraint symmetries
There is a possibility to classify the constraint Noether-type symmetries in the
context of constraint equations of motion. For a regular matrix B̄ the equations of
motion (9) can be written in the explicit form q̈l = −BlsĀs (recall that B = B̄−1).
The holonomic paths of these equations in Q are integral sections of local vector
field belonging to the canonical distribution C called constraint semispray (see [14])

Γ =
∂

∂t
+ q̇l

∂

∂ql
+ ga

∂

∂qm−k+a
+ Γ̃l

∂

∂q̇l
, Γ̃l = −BlsĀs . (21)

The constraint semispray Γ spans a distribution DΓ of rank one called a constraint
connection. Let Z be a vector field on Q. It is a symmetry of equations of motion
of the corresponding nonholonomic mechanical system if [Γ, Z] = fΓ, where [Γ, Z]
is the Lie bracket of vector fields Γ and Z and f = f(t, qσ, q̇l) is a function on Q.
Let Φ be a current, i.e. quantity conserved along trajectories of the nonholonomic
system (not necessarily a Noether-type current). Then Γ(Φ) = ∂ΓΦ = 0. If Z is a
symmetry of equations of motion then [Γ, Z](Φ) = fΓ(Φ) = 0. On the other hand,
[Γ, Z](Φ) = ∂Γ∂ZΦ − ∂Z∂ΓΦ = ∂Γ(∂ZΦ). This means that ∂ZΦ is the current as
well.

Let Z be a constraint symmetry of a nonholonomic system. Let us discuss
possible relationship between distributions spanned by vector fields Γ, Z and [Γ, Z].
First of all let us answer the question whether and under what conditions a vector
field belonging to the distribution DΓ can be a constraint symmetry. Putting
components of the vector field fΓ, f = f(t, qσ, q̇l) being a function on Q, into
conditions (14)–(16) we obtain

d′cL̄

dt
= 0 ,

∂cL̄

∂ql
= 0 ,

∂L̄

∂q̇l
= 0 , 1 ≤ l ≤ m− k .

Because of the relation

dF =
d′cF

dt
dt+

∂cF

∂ql
ωl +

∂F

∂q̇l
dq̇l +

∂F

∂qm−k+a
ϕa
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for every function F = F (t, qσ, q̇l) on Q this means that dL̄ ∈ annih C and L̄ is
constant along the distribution DΓ. In the following considerations we exclude this
trivial situation.

Another question is whether and under what conditions the Lie bracket [Γ, Z]
belongs to the canonical distribution. For general vector fields ξ, ζ ∈ C it holds
i[ξ,ζ]ϕ

a = −dϕa(ξ, ζ). As dϕa need not belong to the constraint ideal IC , it is
evident that [ξ, ζ] need not belong to C. For dϕa we obtain from (6)

dϕa =− ε′s(ga) ω̄s ∧ dt+
∂c
∂qr

(
∂ga

∂q̇s

)
ω̄s ∧ ω̄r +

∂2ga

∂q̇r∂q̇s
ω̄s ∧ dq̇r

− ∂ga

∂qm−k+b
ϕb ∧ dt− ∂

∂qm−k+b

(
∂ga

∂q̇s

)
ϕb ∧ ω̄s.

Calculating the Lie bracket [Γ, Z] using relations (20) and (21) we obtain after
some technical calculations

i[Γ,Z] ϕ
a = −dϕa(Γ, Z) (22)

= Bls
[
ε′l(g

a)
∂Φ

∂q̇s

+ q̇p
∂2ga

∂q̇p∂q̇l

(
∂cΦ

∂qs
− ∂Φ

∂q̇v
Brv
{
∂Ār
∂q̇s

+ ε′r(g
a)
∂L̄a
∂q̇s

}
alt(r,s)

)]
,

where Φ is the Noether-type current corresponding to the constraint symmetry Z.
We can see that for a semiholonomic constraint this condition is fulfilled and thus
[Γ, Z] ∈ C. For a general linear constraint this conditions reduces to

i[Γ,Z] ϕ
a = Blsε′l(ga)

∂Φ

∂q̇s
. (23)

There can be, of course, special cases with a general constraint for which the
condition is fulfilled too. We shall see various situations in the example presented
in Section 4.

Now let us discuss the relation of the Lie bracket [Γ, Z] with respect to dis-
tributions spanned by vector fields Γ and Z. Let Φ be again the Noether-type
current corresponding to the constraint symmetry Z (not belonging to DΓ). Then
∂ZΦ = 0 and thus ∂[Γ,Z]Φ = ∂Γ∂ZΦ − ∂Z∂ΓΦ = 0. This means that the quan-
tity Φ is conserved along the vector field [Γ, Z]. On the other hand, let ζ be a
vector field belonging to the distribution D(Γ, Z) spanned by vector fields Γ and Z,
i.e. ζ = aΓ+bZ, where a = a(t, qσ, q̇l) and b = b(t, qσ, q̇l) are functions on Q. Then
ζ(Φ) = ∂ζΦ = a ∂ΓΦ + b ∂ZΦ = 0 and Φ is conserved along the distribution D(Γ,Z).
Moreover, because of the relation [Γ, Z](Φ) = 0 it is conserved along the distribu-
tion D spanned by vector fields Γ, Z and [Γ, Z]. There are three possibilities for
the relation of a symmetry Z to the vector field Γ:

1) Z is a symmetry of equations of motion, i.e. [Γ, Z] = aΓ, a = a(t, qσ, q̇l).

2) The Lie bracket of vector fields Γ and Z belongs to the distribution spanned
by these vector fields, i.e. [Γ, Z] = aΓ + bZ, where a = a(t, qσ, q̇l) and b =
b(t, qσ, q̇l) are functions on Q.
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3) There is no specific relation of the symmetry Z to the vector field Γ.

In the cases 1) and 2) the the distribution spanned by vector fields Γ, Z and [Γ, Z]
has the rank two, in the case 3) its rank is three. (Recall that this distribution
need not be a subdistribution of the canonical distribution C, because [Γ, Z] need
not belong to C.) We shall derive the conditions under which situations 1) take
place. After some tedious technical calculations we obtain components of the vec-
tor field Ξ = [Γ, Z] for a vector field Z belonging to the canonical distribution
(i.e. relations (11) are considered). It holds

Ξ = Ξ0 ∂

∂t
+ Ξl

∂

∂ql
+ Ξm−k+a ∂

∂qm−k+a
+ Ξ̃l

∂

∂q̇l
, (24)

Ξ0 = −d′cZ
0

dt
+ BsrĀr

∂Z0

∂q̇s
,

Ξl = −d′cZ
l

dt
+ BsrĀr

∂Zl

∂q̇s
+ Z̃l,

Ξm−k+a = Ξ0ga + (Ξl − q̇lΞ0)
∂ga

∂q̇l
+

[
(Zl − q̇lZ0)ε′l(g

a)− Z0BsrĀr q̇l
∂ga

∂q̇l∂q̇s

]
,

Ξ̃l = Z0 d′c
dt

(−BlrĀr) + (Zs − q̇sZ0)
∂c
∂qs

(−BlrĀr)

+ Z̃s
∂

∂q̇s
(−BlrĀr)−

d′cZ̃
l

dt
+
∂Z̃l

∂q̇s
BsrĀr .

The requirement [Γ, Z] = aΓ (in such a case the constraint symmetry Z is a
symmetry of equations of motion as well) means that there exists a function
a = a(t, qσ, q̇l) on the constraint submanifold Q such that Ξ0 = a, Ξl = aq̇l,
Ξm−k+a = aga, Ξ̃l = −BlsĀs, 1 ≤ l, s ≤ m − k, 1 ≤ a ≤ k. This leads to
conditions (

d′c
dt
− BsrĀr

∂

∂q̇s

)
(Zl − q̇lZ0)− BlrĀrZ0 − Z̃l = 0 , (25)

(Zl − q̇lZ0)ε′l(g
a)− q̇lZ0BsrĀr

∂2ga

∂q̇l∂q̇s
= 0 , (26)

−d′c
dt

(BlrĀrZ0)− (Zs − q̇sZ0)
∂c
∂qs

(BlrĀr) + Z̃s
∂

∂q̇s
(BlrĀr)

−d′cZ̃
l

dt
+
∂Z̃l

∂q̇s
(BsrĀr) + BlrBspĀrĀp

∂Z0

∂q̇s
= 0 . (27)

It is evident that the condition (26) is automatically satisfied if the constraint is
semiholonomic. The constraint symmetries (vector fields Z ∈ C which are solutions
of equations (14)–(16)) are simultaneously symmetries of constraint equations of
motion iff they obey the above derived conditions (25)–(27).

4 Example: Chaplygin sleigh
In this section we use the geometrical theory for solving the motion of so called
Chaplygin sleigh. This example is exposed in [26], where the motion of Chaplygin
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sleigh is described in another way without considering the problem of symmetries
and conservations laws. We study this problem using our results obtained in Sec-
tion 3.

4.1 Chaplygin sleigh and its motion
The sleigh consists of a rigid body sliding on the horizontal plane without friction
(see the figure 1). The constraint is imposed by a sharp blade placed at a point A

 

y  

x  

A  
A  

C  
C  

      

t  

t t   

a  a  

Figure 1: Chaplygin sleigh.

such that the distance between this point and the center of mass of the body C is
AC = a. The blade prevents the sleigh to move in the direction perpendicular to
the straight line AC. The constraint defining the constraint submanifold Q in the
fibred chart with coordinates (t, ϕ, x, y, ϕ̇, ẋ, ẏ), i.e. m = 3, reads

ẏ cosϕ− ẋ sinϕ = 0 =⇒ ẏ = ẋ tanϕ . (28)

The canonical embedding ι : Q→ J1Y has the form

ι : Q 3 (t, ϕ, x, y, ϕ̇, ẋ)→ (t, ϕ, x, y, ϕ̇, ẋ, ẋ tanϕ) ∈ J1Y .

The canonical distribution is annihilated by the form ϕ1 obtained by putting the
constraint equation into the general expression (6). We obtain

ϕ1 = dy − tanϕdx .

The unconstrained Lagrangian is λ = Ldt, with

L =
1

2
m
[
(ẋ− aϕ̇ sinϕ)2 + (ẏ + aϕ̇ cosϕ)2

]
+

1

2
Jϕ̇2,

where m and J are the mass and inertia (with respect to the axis perpendicular to
the coordinate plane xy and going through C) of the sleigh, respectively. Constraint
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Lagrangian functions are

L̄ = L ◦ ι =
m

2

(
ẋ2

cos2 ϕ
+ a2k2ϕ̇2

)
, (29)

L̄1 =
∂L

∂ẏ
◦ ι = m(ẋ tanϕ+ aϕ̇ cosϕ) , k2 = 1 +

J

ma2
.

Putting this into (9) we obtain the matrices Ā, B̄ and B = B̄−1,

Ā =
(
−maϕ̇ẋcosϕ , maϕ̇2

cosϕ −
mϕ̇ẋ sinϕ

cos3 ϕ

)
, (30)

B̄ =

(
−ma2k2 0

0 − m
cos2 ϕ

)
B =

(
− 1
ma2k2 0

0 − cos2 ϕ
m

)
,

and the equations of motion

0 = −ma2k2ϕ̈− ma

cosϕ
ϕ̇ẋ =⇒ ϕ̈+

ϕ̇ẋ

ak2 cosϕ
= 0 , (31)

0 = − m

cos2 ϕ
ϕ̈− m sinϕ

cos3 ϕ
ϕ̇ẋ =⇒ ẍ− aϕ̇2 cosϕ+ ϕ̇ẋtanϕ = 0 . (32)

Solutions of these equations take the following form:

ϕ(t) = k arcsin tanh

(
C1

k2
(t− C2)

)
+ C3 , ϕ = kψ + C3 ,

x(t) = ak2

∫
cos (kψ + C3) tanψ dψ ,

y(t) = ak2

∫
sin (kψ + C3) tanψ dψ ,

where C1, C2 and C3 are integration constants. Using the initial conditions ϕ(0) =
0, ϕ̇(0) = ω0 > 0, ẋ(0) = 0 we obtain constants C1 = kω0, C2 = 0, C3 = 0 and the
corresponding particular solution

ϕ(t) = k arcsin tanh
ω0t

k
, tanψ = sinh

ω0t

k
,

x(t) = ak2

∫
cos kψ tanψ dψ , (33)

y(t) = ak2

∫
sin kψ tanψ dψ .

The graphical outputs for some special situations (a = 1, ω0

k = 1, m = 2, values
k = 1, 2, 3, 4) are presented in figures 2–5 for illustration.
Notice that in [26] equivalent equations of motion are obtained for variables u
and v representing components of the sleigh velocity with respect to non-inertial
reference frame connected with the sleigh, and the variable ω representing the
angular velocity ϕ̇. The equations of motion are obtained by formulating the
second Newton’s law in the above mentioned non-inertial reference frame. Thus
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t x

y

x

y

asymptote: x = 1

Figure 2: Chaplygin sleigh motion: k = 1.

t x

y

x

y

asymptote: y = 2π

Figure 3: Chaplygin sleigh motion: k = 2.

they contain the “fictive” forces ~F ∗. Moreover, the “reaction” force ~R normal to
the straight line AC and representing the constraint is included. Its magnitude is
considered as an unknown quantity and it is obtained by solving the equations of
motion as well. The solution of these equations of motion is then transformed into
the inertial reference frame. Our solution is the same as the last cited one. Recall
that in [26] the conservation laws are not discussed.
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t x

y

x

y

asymptote: x = – 15

Figure 4: Chaplygin sleigh motion: k = 3.

t x

y

x

y

asymptote: y = –8π
po

Figure 5: Chaplygin sleigh motion: k = 4.
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4.2 Constraint symmetries and currents
Putting the expressions (29) for constraint Lagrange functions into equations (17),
(18), (19) we obtain

d′cΦ

dt
− maϕ̇ẋ

cosϕ
(Zϕ − ϕ̇Z0) +m

(
aϕ̇2

cosϕ
− ϕ̇ẋ tanϕ

cos2 ϕ

)
(Zx − ẋZ0) = 0 ,

∂cΦ

∂ϕ
+
mẋ2 tanϕ

cos2 ϕ
Z0 −m

(
ẋ tanϕ

cos2 ϕ
− aϕ̇

cosϕ

)
Zx +ma2k2Z̃ϕ = 0 ,

∂cΦ

∂x
+m

(
ẋ tanϕ

cos2 ϕ
− aϕ̇

cosϕ

)
Zϕ +

m

cos2 ϕ
Z̃x = 0 , (34)

∂Φ

∂ϕ̇
−ma2k2(Zϕ − ϕ̇Z0) = 0 ,

∂Φ

∂ẋ
− m

cos2 ϕ
(Zx − ẋZ0) = 0 .

Expressing the components (Zϕ− ϕ̇Z0) and (Zx− ẋZ0) from the last two of these
equations, putting them into the first equation and substituting v = ẋ

cosϕ we obtain(
∂

∂t
+ ϕ̇

∂

∂ϕ
+ v cosϕ

∂

∂x
+ v sinϕ

∂

∂y
− ϕ̇v

ak2

∂

∂ϕ̇
+ aϕ̇2 ∂

∂v

)
Φ = 0 . (35)

So, we have the characteristics ODE’s

dt

1
=

dϕ

ϕ̇
=

dx

v cosϕ
=

dy

v sinϕ
= −ak2 dϕ̇

ϕ̇v
=

dv

aϕ̇2
.

Integrating the last equation we obtain

1

2
v2 +

1

2
a2k2ϕ̇2 = const., i.e.

1

2

ẋ2

cos2 ϕ
+

1

2
a2k2ϕ̇2 = const.

This quantity multiplied by the sleigh mass m represents the total mechanical
energy E0 of the sleigh which is the sum of the translational energy ET = 1

2
mẋ2

cos2 ϕ

and the rotational energy ER = 1
2 (J + ma2)ϕ̇2 with respect to the vertical axis

going through the point A. Recall that due to the Steiner theorem J +ma2 is the
inertia of the sleigh with respect to this axis. More precisely, the total mechanical
energy of the sleigh expressed via the components of the velocity of the center od
mass (xC , yC) is

E =
m

2

(
ẋ2
C + ẏ2

C

)
+

1

2
Jϕ̇2.

Taking into account that xC = x + a cosϕ, yC = y + a sinϕ and considering the
constraint we can immediately see that E = E0. For the particular solution of
equations of motion presented in the previous section we have

E0 =
1

2
ma2k2ω2

0 , C1 = kω0 =

√
2E0

ma2
.
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The corresponding conserved current can be obtained using the equations of motion
and the fact that the constrained Lagrange function L̄ does not depend on time
explicitly,

Φ1 = −m
2

(
ẋ2

cos2 ϕ
+ a2k2ϕ̇2

)
. (36)

Putting this expression into equations (20) we can verify that the corresponding
symmetry is Z = ∂

∂t . Taking into account the solution of equations of motion
(section 4.2) we obtain the following expressions for the translational and rotational
energy and the angle ϕ as functions of time (see also figure 6):

ET = E0 tanh 2ω0t

k
, ER = E0 cosh−2 ω0t

k
, sin

ϕ

k
= tanh

ω0t

k
. (37)

time [s]time [s]

φ [rad]

ω [rad s–1]

ET/E0

ER/E0

energy
ratio

asymptote: / 2φ = π

Figure 6: Conservation of energy, damping of rotation.

The graphs show the asymptotic behavior of the sleigh motion: the translational
motion accelerates at the expense of the rotational motion which is asymptotically
damped.
The decomposition of the energy into the term corresponding to translational mo-
tion of the point A and the energy corresponding to the rotation of the sleigh
around the axis going through this point is “induced” by the formulation of the
problem itself (the constraint concerns the motion of the point A). On the other
hand, more correct from the point of view of physics is the energy decomposition
into the translational energy of the center of mass C, ET,C = 1

2m(ẋ2
C+ ẏ2

C), and the
rotational energy of the sleigh with respect to the center of mass, ER,C = 1

2Jϕ̇
2.
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time [s]time [s]

ET,C/E0

ER,C/E

0

energy 
ratio

ET,C/E0

ER,C/E

0

energy 
ratio

k2 = 4 k2 = 2

Figure 7: Energy decomposition with respect to the center of mass.

Considering the solution of equations of motion we obtain

ET,C = E0

(
tanh2 ω0t

k
+

1

k2 cosh2 ω0t
k

)
, ER,C =

E0

cosh2 ω0t
k

(
1− 1

k2

)
. (38)

Figure 7 shows the behavior of both types of kinetic energy during the time for two
different values k. Relations (37) represent the limit case of (38) for J � ma2, i.e.
k →∞, as expected. Notice that for k = 1 (zero inertia with respect to the center
of mass, or, more exactly, J � ma2) we have ET,C = E0 and ER,C = 0. This
result is not in contradiction with the initial conditions. ER,C vanishes because of
zero inertia, even though ω0 6= 0. (Figures 6 and 7 are drawn for ω0/k = 1 for
simplicity.)

Expressing the quantities C2 and C3 (the fact that they are zeros for the chosen
initial conditions does not affect their general meaning of integration constants) we
obtain the following currents

Φ2 =
mẋ

cosϕ
sin
(ϕ
k

)
+makϕ̇ cos

(ϕ
k

)
Φ3 =

1

2
ma2k2 ln


√

ẋ2

a2 cos2 ϕ + k2ϕ̇2 + ẋ
a cosϕ√

ẋ2

a2 cos2 ϕ + k2ϕ̇2 − ẋ
a cosϕ

−ma2t

√
ẋ2

a2 cos2 ϕ
+ k2ϕ̇2,

and in shortened notation with help of energies

Φ3 =
1

2
ma2k2 ln

√
E0 +

√
ET√

E0 −
√
ET
− at

√
2mE0

For the special case of zero inertia J , i.e. k = 1, the current Φ2 represents the
y-component of the impulse of the sleigh, pC,y = mẏC = m(ẋ tanϕ + aϕ̇ cosϕ).
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(We shall see later that in such a case the component pC,x must be conserved as
well.)

The corresponding symmetries are (denoting ψ = ϕ
k as above)

Z(Φ2) =
1

ak
cosψ

∂

∂ϕ
+ cosϕ sinψ

∂

∂x
+ sinϕ sinψ

∂

∂y

− ẋ cosψ

a2k3 cosϕ

∂

∂ϕ̇
+

1

ak
(aϕ̇ cosϕ− ẋ tanϕ) cosψ

∂

∂ẋ
,

Z(Φ3) =
k2

ẋ2

a2 cos2 ϕ + k2ϕ̇2
ln


√

ẋ2

a2 cos2 ϕ + k2ϕ̇2 + ẋ
a cosϕ√

ẋ2

a2 cos2 ϕ + k2ϕ̇2 − ẋ
a cosϕ

Γ

−
ϕ̇t+ ẋ

aϕ̇ cosϕ√
ẋ2

a2 cos2 ϕ + k2ϕ̇2

(
∂

∂ϕ
− (aϕ̇ cosϕ− ẋtanϕ)

∂

∂ẋ

)

+
ak2 cosϕ− ẋt√

ẋ2

a2 cos2 ϕ + k2ϕ̇2

(
∂

∂x
+ tanϕ

∂

∂y
+

ϕ̇

ak2 cosϕ

∂

∂ϕ̇

)
,

or, in shortened notation via energies

Z(Φ3) =
ma2k2

2E0
ln

(√
E0 +

√
ET√

E0 −
√
ET

)
Γ

−

√
ma2

2E0

(
ϕ̇t+

ẋ

aϕ̇ cosϕ

)(
∂

∂ϕ
− (aϕ̇ cosϕ− ẋtanϕ)

∂

∂ẋ

)

+

√
ma2

2E0
(ak2 cosϕ− ẋt)

(
∂

∂x
+ tanϕ

∂

∂y
+

ϕ̇

ak2 cosϕ

∂

∂ϕ̇

)
where the vector field Γ reads

Γ =
∂

∂t
+ ϕ̇

∂

∂ϕ
+ ẋ

∂

∂x
+ ẋ tanϕ

∂

∂y
− ϕ̇ẋ

ak2 cosϕ

∂

∂ϕ̇
+ (aϕ̇2 cosϕ− ϕ̇ẋ tanϕ)

∂

∂ẋ
,

which is the vector field representing the equations of motion on the submanifold Q.
Keep in mind that the above presented shortened notation via energies is given only
for better clarity. For eventual further calculations the full expression in coordinates
(t, ϕ, x, y, ϕ̇, ẋ) on Q must be used, i.e. it is necessary to put

E0 =
ma2

2

(
ẋ2

a2 cos2 ϕ
+ k2ϕ̇2

)
, ET =

mẋ2

2 cos2 ϕ
, ψ =

ϕ

k

into corresponding expressions.
The equations (14)–(16) take the form

− ẋϕ̇

a cosϕ
Zϕ +

(
ẋϕ̇ sinϕ

a2 cos3 ϕ
+

ϕ̇2

a cosϕ

)
Zx

− 1

2

(
ẋ2

a2 cos2 ϕ
+ k2ϕ̇2

)
d′cZ

0

dt
+ k2ϕ̇

d′cZ
ϕ

dt
+

ẋ

a2 cos2 ϕ

d′cZ
x

dt
= 0 , (39)
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(
ẋ sinϕ

a2 cos3 ϕ
+

ϕ̇

a cosϕ

)
Zx + k2Z̃ϕ

−1

2

(
ẋ2

a2 cosϕ
+ k2ϕ̇2

)
∂cZ

0

∂ϕ
+ k2ϕ̇

∂cZ
ϕ

∂ϕ
+

ẋ

a2 cos2 ϕ

∂cZ
x

∂ϕ
= 0 , (40)(

ẋ sinϕ

a2 cos3 ϕ
− ϕ̇

a cosϕ

)
Zϕ +

1

a2 cos2 ϕ
Z̃x

−1

2

(
ẋ2

a2 cos2 ϕ
+ k2ϕ̇2

)
∂cZ

0

∂x
+ k2ϕ̇

∂cZ
ϕ

∂x
+

ẋ

a2 cos2 ϕ

∂cZ
x

∂x
= 0 , (41)

−1

2

(
ẋ2

a2 cos2 ϕ
+ k2ϕ̇2

)
∂Z0

∂ϕ̇
+ k2ϕ̇

∂Zϕ

∂ϕ̇
+

ẋ

a2 cos2 ϕ

∂Zx

∂ϕ̇
= 0 , (42)

−1

2

(
ẋ2

a2 cos2 ϕ
+ k2ϕ̇2

)
∂Z0

∂ẋ
+ k2ϕ̇

∂Zϕ

∂ẋ
+

ẋ

a2 cos2 ϕ

∂Zx

∂ẋ
= 0 . (43)

Putting the components of vector fields Z(Φ1), Z(Φ2) and Z(Φ3) into equations
(39)–(43) we can verify that they are constraint symmetries. Thus Φ1, Φ2 and Φ3

are Noether-type currents. Nevertheless, the physical interpretation of symmetries
Z(Φ2) and Z(Φ3) and their currents is not completely clear in a general situation.

The relation for the current Φ2 is linear in variables velocity and angular veloc-
ity. This enables us to conclude that for a general description of the sleigh motion it
is satisfactory to consider special initial conditions ẋ(0) = 0 and ϕ̇(0) = ω(0) 6= 0.
If v(0) 6= 0 and ϕ̇ = ω0, then v(τ) = 0 and ϕ̇(τ) = Ω0 6= ω0 at some other time τ .

Calculating [Γ, Z] for all three obtained symmetries Z(Φ1), Z(Φ2) and Z(Φ3)
we can see that only the symmetry Z(Φ1) = ∂

∂t is simultaneously the symme-
try of constrained (reduced) equations of motion. Concretely, it is evident that
[Γ, ∂

∂t ] = 0. Moreover, using the condition (23) we can check that it holds

i[Γ,Z1]ϕ
1 = 0 , i[Γ,Z2]ϕ

1 = − ẋ

ak cos2 ϕ
cos

ϕ

k
+

ϕ̇

cosϕ
sin

ϕ

k
,

i[Γ,Z3]ϕ
1 = − a

ϕ̇ cosϕ

√
ẋ2

a2 cos2 ϕ
+ k2ϕ̇2.

This means that for the symmetry Z1 the vector field [Γ, Z1] belongs to the canon-
ical distribution unlike the vector fields [Γ, Z2] and [Γ, Z3].

4.3 Chetaev equations and constraint forces

Finally, let us express Chetaev equations of motion and the constraint forces as
exposed in section 2.4 (equations (10)). Rewriting the constraint as

f(t, ϕ, x, y, ϕ̇, ẋ, ẏ) ≡ ẏ − ẋ tanϕ = 0
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we obtain the following equations:

−mak2ϕ̈+mẍ sinϕ−mÿ cosϕ =
µ

a

∂f

∂ϕ̇
,

∂f

∂ϕ̇
= 0 ,

maϕ̈ sinϕ−mẍ+maϕ̇2 cosϕ = µ
∂f

∂ẋ
,

∂f

∂ẋ
= −tanϕ , (44)

−maϕ̈ cosϕ−mÿ +maϕ̇2 sinϕ = µ
∂f

∂ẏ
,

∂f

∂ẏ
= 1 ,

µ being a Lagrange multiplier. The constraint force is

φ = µ

(
1

a

∂f

∂ϕ̇
,
∂f

∂ẋ
,
∂f

∂ẏ

)
= µ(0,−tanϕ, 1) . (45)

It has a clear physical meaning in the reference frame connected with the point
A and rotating with the sleight: Denote ~r ′ = (0, a cosϕ, a sinϕ), ~ω = (ϕ̇, 0, 0),
~ε = (ϕ̈, 0, 0), ~A(0, ẍ, ÿ). (Note that ~r ′ determines the position of the center of
mass C of the sleigh with respect to the point A.) Denoting φ as ~F ∗ as it is usual
in physics, we obtain

~F ∗ =
(
maϕ̈ sinϕ−mẍ+maϕ̇2 cosϕ, −maϕ̈ cosϕ−mÿ +maϕ̇2 sinϕ, 0

)
,

~F ∗ = −m~ε× ~r ′ −m~ω × (~ω × ~r ′)−m~A . (46)

This force is the sum of three terms: the Euler force, the centrifugal force and the
translational force. The Coriolis force is missing because the velocity of the center
of mass with respect to the reference system connected with the point A is zero.

Using the constraint to write ÿ = ẍ tanϕ+ ϕ̇ẋ
cos2 ϕ and substituting into (44) we

obtain after some calculations the Lagrange multiplier µ and the constraint force φ:

µ = − mJ

J +ma2
ϕ̇ẋ, φ =

mJ

J +ma2
(0, ϕ̇ẋ tanϕ, −ϕ̇ẋ) . (47)

Notice that these forces are not variational in the sense of e.g. [17], [25], [27], [32].
Thus the Chaplygin sleigh cannot be alternatively described as an unconstrained
variational system with an appropriately modified Lagrangian. For k = 1 the
constraint force vanishes. This is consistent with the (non-realistic, of course)
limit case J → 0 in relations (38): The motion of the center of mass is uniform
and straightforward (both components of the impulse of the center of mass are
conserved), while the sleigh rotates around it with the initial angular velocity ω0

but with zero energy due to J = 0.
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