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POSITIVITY OF GREEN’S MATRIX OF NONLOCAL

BOUNDARY VALUE PROBLEMS

Alexander Domoshnitsky, Ariel
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Abstract. We propose an approach for studying positivity of Green’s operators of a non-
local boundary value problem for the system of n linear functional differential equations
with the boundary conditions nixi −

∑n
j=1mijxj = βi, i = 1, . . . , n, where ni and mij

are linear bounded “local” and “nonlocal” functionals, respectively, from the space of ab-
solutely continuous functions. For instance, nixi = xi(ω) or nixi = xi(0) − xi(ω) and
mijxj =

∫ ω

0
k(s)xj(s) ds +

∑nij

r=1 cijrxj(tijr) can be considered. It is demonstrated that
the positivity of Green’s operator of nonlocal problem follows from the positivity of Green’s
operator for auxiliary “local” problem which consists of a “close” equation and the local
conditions nixi = αi, i = 1, . . . , n.
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1. Introduction

Ordinary differential equations with integral boundary conditions arise in the the-

ory of turbulence [22], in the theory of Markov processes [9], in heat flow problems

[12], [16], [14], [24], [25], in the study of the response of a spherical cap [3], [5], [20].

In the references in [6], one can find references to works on applications of nonlocal

problems in the modeling of thermostats, beams and suspension bridges.

Questions of representation of solutions and solvability of nonlocal problems for

functional differential equations were considered in [4], [17], [18], [13]. Positivity of

solutions for nonlocal boundary value problems for ordinary differential equations

was studied in [11], [10], [27], [26], [28]. The method is to reduce nonlocal boundary

value problems to the Hammerstein integral equation and then scrupulous analysis

of Green’s functions leads researchers to estimates (of the norm or spectral radii
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in linear case and the fact of a contraction in nonlinear one) of integral operators

and conclusions about positivity of solutions. It looks that some of these results

can be generalized also to particular cases of delay or functional differential differ-

ential equations, where Green’s functions of ordinary differential equations could be

used. For functional differential equations, forms of Green’s functions are essentially

more complicated. That is why quite a different approach was proposed for nonlo-

cal problems with functional differential equations [1], [8], where various results on

positivity/negativity of Green’s functions were obtained. One of the main ideas is to

obtain a connection between sign-constancy of Green’s functions for different prob-

lems with functional differential equations. This approach presents a basic method

for the analysis of solution’s positivity (see, for example, Theorem 15.3 in [1]). The

main results are obtained in the form of theorems about differential inequalities.

Choosing the test functions, researchers can get coefficient tests for positivity of

Green’s functions. Note that all these works concern positivity of solutions to non-

local problems only for scalar differential equations and not for systems. There are

almost no results on positivity of solutions of nonlocal problems in the case of sys-

tems. Among the results we can note results on existence [17], [18], [6], [15], [21] and

on positivity of solution-vectors in [15]. In this paper we try to present an approach

to the study of positivity of components of solution-vectors for systems of functional

differential equations.

Consider the system

(1.1) (Mx)(t) ≡ x′(t) + (Bx)(t) = f(t), t ∈ [0, ω],

where x = col(x1, . . . , xn), B : Cn
[0,ω] → Ln

∞[0,ω] is a linear continuous operator,

Cn
[0,ω] and L

n
∞[0,ω] are the spaces of continuous and essentially bounded functions

y : [0, ω] → R
n, respectively, f ∈ Ln

∞[0,ω]. Let l : D
n
[0,ω] → R

n be a linear bounded

functional from the space of absolutely continuous vector functions. The general

representation of the functional l is

(1.2) lx = Ψx(0) +

∫ ω

0

Φ(s)x′(s) ds,

where Ψ is an n × n constant matrix and Φ(s) is an n × n matrix with elements

φij ∈ Ln
∞[0,ω]. Note that functionals of the forms lx = col

{ ni
∑

j=1

rijxj(tij)
}n

i,j=1
, lx =

col
{ n
∑

j=1

∫ ω

0 kij(s)xj(s) ds
}n

i,j=1
, and all their linear combinations and superpositions

can be considered.
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If the homogeneous boundary value problem (Mx)(t) = 0, t ∈ [0, ω], i = 1, . . . , n,

lx = 0, has only the trivial solution, then the boundary value problem

(1.3) (Mx)(t) = f(t), t ∈ [0, ω], lx = β,

has for each f ∈ Ln
∞[0,ω] and β ∈ R

n a unique solution, which has the representa-

tion [4]

(1.4) x(t) =

∫ ω

0

G(t, s)f(s) ds+X(t)β, t ∈ [0, ω],

where X(t) is the fundamental matrix of the system (Mx)(t) = 0, t ∈ [0, ω], such

that lX = I (I is a unit matrix), G(t, s) is called Green’s matrix of problem (1.3).

The operator G : Ln
∞[0,ω] → Cn

[0,ω] defined by the equality

(1.5) (Gf)(t) =

∫ ω

0

G(t, s)f(s) ds, t ∈ [0, ω],

is called Green’s operator of problem (1.3). The main purpose of this paper is to

study the following property formulated first by Tchaplygin [23]: when does it follow

from the conditions

(1.6) (Mx)(t) > (My)(t), t ∈ [0, ω], lx > ly,

that

(1.7) x(t) > y(t), t ∈ [0, ω]?

We understand these inequalities as inequalities for the corresponding components.

The property (1.6) =⇒ (1.7) is the basis of the approximation method [23] known

then as a monotone technique.

System (1.1) can be written also in the form

(1.8) (Mix)(t) ≡ x′i(t) +

n
∑

j=1

(Bijxj)(t) = fi(t), t ∈ [0, ω], i = 1, . . . , n,

where x = col(x1, . . . , xn), Bij : C
1
[0,ω] → L1

∞[0,ω] are linear continuous operators,

C1
[0,ω] and L

1
∞[0,ω] are the spaces of continuous and essentially bounded functions

y : [0, ω] → R
1, respectively, fi ∈ L1

∞[0,ω]. The operators Bij can be, for example,

of the forms (Bijx)(t) =
m
∑

k=1

pijk(t)x(hk(t)), t ∈ [0, ω], x(ξ) = 0 for ξ /∈ [0, ω],
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(Bijx)(t) =
∫ ω

0
Kij(t, s)x(s) ds, t ∈ [0, ω], and also their linear combinations or

superpositions.

The paper is built as follows. In Introduction we describe previous results on

nonlocal problems and formulate the purpose of the paper. In Section 2 we pro-

pose our method for studying nonlocal problems. This method presents a sort of

a right regularization developing the idea of Azbelev’s W -transform. In Section 3 we

study nonlocal problem on the semiaxis basing our approach on the Cauchy problem

for systems of delay differential equations. In Section 4 auxiliary results for scalar

functional differential equations are formulated. The main results on positivity of

Green’s operator are obtained in Section 5. Open problems and ways for possible

development in studying nonlocal problems are formulated in Section 6.

2. Desciprtion of right regularization scheme for studying positivity

of Green’s operators

Consider the auxiliary boundary value problem

(2.1) (M0x)(t) ≡ x′(t) + (B0x)(t) = z(t), l0x = α, t ∈ [0, ω],

where x = col(x1, . . . , xn), z ∈ Ln
∞[0,ω], B0 : C

n
[0,ω] → Ln

∞[0,ω] is a linear continuous

operator and l0 : D
n
[0,ω] → R

n is a linear bounded functional. When does positivity

of Green’s operator of problem (2.1) imply positivity of Green’s operator of the given

problem (1.3)? Our results claim that in the case of smallness of ‖B −B0‖, ‖l− l0‖

and under additional simple conditions that the operator B−B0 and the functional

l − l0 are, for example, negative, this conclusion is true.

It should be stressed that we can choose the auxiliary problem (2.1) such that the

homogeneous boundary value problem

(2.2) (M0x)(t) = 0, t ∈ [0, ω], l0x = 0,

has only the trivial solution. In this case the boundary value problem

(2.3) (M0x)(t) = z(t), t ∈ [0, ω], l0x = α,

has for each z ∈ Ln
∞[0,ω] and α ∈ R

n a unique solution, which has the representa-

tion [4]

(2.4) x(t) =

∫ ω

0

G0(t, s)z(s) ds+X0(t)α, t ∈ [0, ω],
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where X0(t) is the fundamental matrix of the equation

(2.5) (M0x)(t) = 0, t ∈ [0, ω],

such that l0X0 = I.

Introduce the operator∆B = B−B0 and functional∆l = l−l0. After substituting

(2.4) into (1.3) we get the system

z(t) + {∆B[G0z +X0α]}(t) = f(t), t ∈ [0, ω],(2.6)

α+∆l[G0z +X0α] = β,(2.7)

for finding z(t) ∈ Ln
∞[0,ω] and α ∈ R

n. This system can be considered as a system

(2.8) y(t) = (Ay)(t) + g(t),

where y = col{x, α} with the corresponding operator A : L2n
∞[0,ω] → L2n

∞[0,ω] It is

clear from the form of equation (2.7) that for every g = col{f, β} we get a constant

n-vector α as a part of the solution-vector y = col{x, α}.

Let us introduce the n-vector E = col{1, . . . , 1}, and denote by ‖X0‖—the norm

of the fundamental matrix of equation (2.5), ‖∆B‖—the norm of the operator ∆B :

Cn
[0,ω] → Ln

∞[0,ω] and ‖∆l‖—the norm of the functional ∆l : Cn
[0,ω] → R

n,

(2.9) ‖G0‖ = max
t∈[0,ω]

∫ ω

0

|G0(t, s)|E(s) ds, t ∈ [0, ω].

Noted above for system (2.8) allows us to obtain the following assertion for unique

solvability of the system (2.6), (2.7).

Theorem 2.1. Let the boundary value problem (2.1) have only the trivial solution

and let the following inequalities be fulfilled:

‖∆B‖{‖G0‖+ ‖X0‖} < 1,(2.10)

‖∆l‖{‖G0‖+ ‖X0‖} < 1.(2.11)

Then the boundary value problem (1.3) has for each f ∈ Ln
∞[0,ω] and α ∈ R

n a unique

solution.

Let us use positivity/negativity of Green’s operator G0 and the fundamental ma-

trix X0 of auxiliary problem (2.1) together with positivity/negativity of the operator

∆B and functional ∆l in order to obtain positivity of Green’s operator G and the

fundamental matrix X of the given boundary value problem (1.3).
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Theorem 2.2. Let the auxiliary boundary value problem (2.1) have only the

trivial solution, and let its Green’s operator G0 be positive and the fundamental

matrix X0, satisfying the condition l0X0 = I, be nonnegative. Assume also that

(2.12) (−∆B) is a positive operator and (−∆l) is a positive functional,

and there exist n-vectors u ∈ Ln
∞[0,ω] and γ ∈ R

n with positive components and

a positive ε such that

u(t) + (∆BG0u)(t) + (∆B)X0(t)γ > ε, t ∈ [0, ω],(2.13)

γ +∆lG0u+∆lX0γ > 0.(2.14)

Then the boundary value problem (1.3) is uniquely solvable, its Green’s operator G

is positive and for nonnegative f and β the solution of (1.3) is nonnegative.

To prove Theorem 2.2 we use the results of paragraphs 5.6 and 5.7 of the book

by Krasnosel’skii and his coauthors [19] about estimates of the spectral radii of

positive operators for the operator A : L2n
∞[0,ω] → L2n

∞[0,ω]. From inequalities (2.13),

(2.14) we get the estimate ̺(A) < 1 for its spectral radius ̺(A). Then we have

y = (I − A)−1g = g + Ag + A2g + . . . and for every nonnegative f and β we get

a nonnegative y.

R em a r k 2.1. Theorem 2.2 can be interpreted as a theorem about integral in-

equality. In the frame of the traditional approach, called also the perturbation

scheme, we add the integral inequality also for functionals defining the boundary

conditions. This allows us to study not only problems with “close” to each other

operators B and B0, but also ones with “close” to each other boundary conditions de-

fined by the functionals l and l0. The smalness of ∆B and ∆l is defined, for example,

by (2.13) and (2.14).

R em a r k 2.2. Difficulties in the study of many boundary value problems are

also connected with their non-separated boundary conditions. It is a complicated

problem to construct Green’s operators of the “model” problem (2.1) even for aux-

iliary equations in the case of non-separated boundary conditions. Our idea is to

choose the “model” problem with separated conditions, i.e., the matrices Ψ and Φ

(see the description of functional (1.2)) for l0 are diagonal ones or in other words

l0x = col{l01x1, l02x2, . . . , l0nxn}. The functional l can also include non-diagonal

elements, but they should be “small enough”.

R em a r k 2.3. The conditions of Theorem 2.2 imply the property (1.6) =⇒ (1.7).

This allows us to estimate the solution-vector x(t) of boundary value problem (1.3).
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R em a r k 2.4. It is clear that in the case of negative Green’s operators G0 and

nonpositive fundamental matrices X0 we have to require that ∆B and ∆l be positive

operators and functionals and to assume that u(t)+(∆BG0u)(t)+(∆B)X0(t)γ 6 −ε,

t ∈ [0, ω], γ +∆lG0u+∆lX0γ < 0.

In the previous results we need estimates of Green’s matrix G0(t, s) and the fun-

damental matrix X0(t). This fact leads to the corresponding difficulties in the study

of positivity of Green’s matrices. In the following assertion we come up with the idea

to use differential inequalities. The assertion is an analog of theorems about differ-

ential inequalities. We have to know only that G0 is positive and the fundamental

matrix X0 satisfying the condition l0X0 = I is nonnegative, and do not assume their

estimates.

Theorem 2.3. Let the auxiliary boundary value problem (2.1) have only the triv-

ial solution, let its Green’s operator G0 be positive and the fundamental matrix X0,

satisfying the condition l0X0 = I, be nonnegative, condition (2.12) be fulfilled and

let there exist n-vector v ∈ Dn
∞[0,ω] with positive components and positive ε such

that

u(t) ≡ v′(t) + (Bv)(t) > ε, t ∈ [0, ω],(2.15)

γ ≡ lv > 0.(2.16)

Then the boundary value problem (1.3) is uniquely solvable, its Green’s operator G

is positive and for nonnegative f and β the solution of (1.3) is nonnegative.

P r o o f. Proof follows from the fact that the function u(t) defined by (2.15)

and the constant γ defined by (2.16) satisfy inequalities (2.13), (2.14). Reference to

Theorem 2.2 completes the proof. �

Analogously we can obtain the following assertion.

Theorem 2.4. Let the auxiliary boundary value problem (2.1) have only the

trivial solution, let its Green’s operator (−G0) be positive and the fundamental

matrix X0, satisfying the condition l0X0 = I, be nonpositive, the condition

(2.17) ∆B is a positive operator and ∆l is a positive functional

be fulfilled and let there exist an n-vector v ∈ Dn
∞[0,ω] with positive components and

a positive ε such that

u(t) ≡ v′(t) + (Bv)(t) 6 −ε, t ∈ [0, ω],(2.18)

γ ≡ lv < 0.(2.19)
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Then the boundary value problem (1.3) is uniquely solvable, its Green’s operator G

is negative and for nonnegative f and β the solution of (1.3) is nonpositive.

3. Positivity of Green’s operator in the case of nonlocal Cauchy

problem with non-separated boundary conditions

Consider the delay system

(3.1) (Mix)(t) ≡ x′i(t) +
n
∑

j=1

pij(t)xj(t− τij(t)) = fi(t), t ∈ [0,∞), i = 1, . . . , n,

where

(3.2) xi(ξ) = 0, ξ < 0, i = 1, . . . , n,

with the boundary conditions

(3.3) xi(0)−

n
∑

j=1

mijxj = βi, i = 1, . . . , n

where mij : C
1
[0,∞) → R

1 (i, j = 1, . . . , n) are linear bounded functionals. Consider

the auxiliary problem (3.1), (3.2), (3.4), where

(3.4) xi(0) = αi, i = 1, . . . , n.

The general solution of problem (3.1), (3.2), (3.4) can be represented in the form

(3.5) x(t) =

∫ t

0

C(t, s)f(s) ds+X(t)α,

where x = col{x1, . . . , xn}, α = col{α1, . . . , αn}, C(t, s) is the n× n Cauchy matrix,

X(t) is an n× n fundamental matrix such that X(0) = I.

Theorem 3.1. Assume that pij 6 0 for i 6= j, τij > 0, i, j = 1, . . . , n, functionals

mij : C
1
[0,∞) → R

1 are positive ones,

(3.6)

∫ t

t−τii(t)

pii(s) ds 6
1

e
, t > 0, i = 1, . . . , n,
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there exists a constant vector v = col{v1, . . . , vn} with all positive components and

a positive ε such that

(3.7)

n
∑

j=1

pij(t)vj > ε, t > 0, i = 1, . . . , n,

and

(3.8) vi −

n
∑

j=1

mijvj > 0, i = 1, . . . , n.

Then the boundary value problem (3.1), (3.2) and (3.3) is uniquely solvable for ev-

ery f ∈ Ln
[0,∞), α ∈ R

n, its Green’s operator G is positive, and for every nonnegative

f and β, the solution is nonnegative.

Lemma 3.1 ([1], [2]). Assume that pij 6 0 for i 6= j, τij > 0, i, j = 1, . . . , n,

and inequality (3.6) is fulfilled. Then the Cauchy matrix satisfies the inequality

C(t, s) > 0 for t > s > 0, the fundamental matrix such that X(0) = I satisfies

the inequality X(t) > 0 for t > 0. If, in addition, condition (3.7) is fulfilled, then

the matrices C(t, s) and X(t) satisfy exponential estimates, i.e., there exist positive

numbers N and a such that

(3.9) Ci,j(t, s) 6 Ne−a(t−s), Xij(t) 6 Ne−at, i, j = 1, . . . , n, 0 6 s 6 t <∞.

Proof of Theorem 3.1 follows from Lemma 3.1 and Theorem 2.3.

R em a r k 3.1. Let us describe the types of functionals which can be studied by

the method proposed above. The functionals

mijx =

nij
∑

k=1

rijkxk(tijk), mijx =

nij
∑

k=1

∫ ∞

0

Rijk(s)xj(hijk(s)) ds,

where rijk and nij are real numbers and Rijk(t) functions are summable on the

semiaxis, and all their linear combinations and superpositions are allowed. It is

clear that for sufficiently small |rijk| and
∫∞

0
|Rijk(s)| ds the inequalities (3.8) will

be fulfilled.

R em a r k 3.2. Let us explain how the vector v in Theorem 3.1 can be found.

Define the matrix Q = {qij}, where qij = − ess sup
t>0

|pij(t)|, if i 6= j, and qii =

ess inf
t>0

pii(t), i, j = 1, . . . , n. The vector v can be found as v = Q−1E.
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4. Positivity of Green’s operators in the scalar case

Let us consider the scalar equation

(4.1) (Mx)(t) ≡ x′(t) + (Bx)(t) = f(t), t ∈ [0, ω],

coupled with the boundary condition

(4.2) lx = α,

where B : C1
[0,ω] → L1

∞[0,ω] is a linear continuous operator, l : D
1
[0,ω] → R

1 is a linear

bounded functional defined on the space of scalar absolutely continuous functions.

Using the general form of the functional l : D1
[0,ω] → R

1 we can write (4.2) in the

form

(4.3) lx ≡ ψx(0) +

∫ ω

0

ϕ(s)x′(s) ds = α.

We consider also the one-point problem (4.1), (4.4), where

(4.4) x(ω) = α,

which is an important particular case of boundary condition (4.3) (ψ = 1, ϕ(t) ≡ 1),

and the periodic problem (4.1), (4.5), where

(4.5) x(0)− x(ω) = α.

Define the operator N : C[0,ω] → C[0,ω] by the formula

(4.6) (Nx)(t) =

∫ ω

t

(Bx)(s) ds.

Definition 4.1. Let us say that the problem (4.1), (4.3) satisfies the condition Θ

if

(4.7)

∫ ω

s
φ(ξ)C′

ξ(ξ, s) dξ + φ(s)

θ +
∫ ω

0
φ(s)C′

s(s, 0) ds
< 0.

For equation (4.1), we propose the following assertion about nine equivalences.
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Theorem 4.1. Let B : C[0,ω] → L[0,ω] be a positive Volterra nonzero operator.

Then the following assertions are equivalent:

1) there exists a positive absolutely continuous function v such that

(4.8) Mv(t) 6 0, v(ω)−

∫ ω

t

Mv(s) ds > 0 for t ∈ [0, ω),

2) the spectral radius of the operator N : C[0,ω] → C[0,ω] is less than one,

3) the problem (4.1), (4.4) is uniquely solvable, and its Green’s function G(t, s) is

negative for 0 6 t < s 6 ω and nonpositive for 0 6 s 6 t 6 ω,

4) a nontrivial solution of the homogeneous equation (Mx)(t) = 0, t ∈ [0, ω] has

no zeros on [0, ω],

5) the Cauchy function C(t, s) of equation (4.1) is positive for 0 6 s 6 t 6 ω,

6) there exists a positive continuous function v such that v(t) > (Nv)(t), t ∈ [0, ω),

7) the periodic problem (4.1), (4.5) is uniquely solvable, and its Green’s function

P (t, s) is positive for 0 6 s 6 t 6 ω,

8) there exists a positive essentially bounded function u such that

(4.9) Be
∫

t

s
u(ξ) dξ(t) 6 u(t), t ∈ [0, ω].

If in addition the condition Θ is fulfilled, then the following assertion is included

in the list of the equivalences:

9) the problem (4.1), (4.3) is uniquely solvable and its Green’s function P (t, s) is

positive for t, s ∈ [0, ω].

Theorem 4.1 was proved in [1], [8].

R em a r k 4.1. For a wide class of boundary value problems, for example for many

generalized periodic problems, the condition Θ is fulfilled. Here let us discuss only

problems with the general form of boundary condition. Let us assume that θ > 0 and

φ(s) < −ε < 0, then it follows from Theorem 4.1 that on the nonoscillation interval

C(t, s) > 0 and consequently in the case of a positive operator B the derivative

satisfies the inequality C′
t(t, s) 6 0 for 0 6 s 6 t 6 ω. It is obvious that the

denominator in (4.7) is positive. The numerator will be negative if the interval [0, ω]

is small enough.
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5. Positivity of Green’s operators in the case of nonlocal problem

with non-separated boundary conditions

In Theorem 3.1, the Cauchy problem was used as a model problem (2.3). The

results of this section are based on positivity/negativity of Green’s matrices of several

other problems for system (1.8). Consider the diagonal equations

(5.1) (mixi)(t) ≡ x′i(t) + (Biixi)(t) = fi(t), t ∈ [0, ω],

coupled with the boundary conditions

(5.2) lixi = 0,

for i = 1, . . . , n, where Bii : C
1
[0,ω] → L1

∞[0,ω] is a linear continuous operator, l :

D1
[0,ω] → R

1 is a linear bounded functional defined on the space of scalar absolutely

continuous functions.

Denote by gi(t, s) Green’s function of problem (5.1), (5.2). Define the operator

K : Cn
[0,ω] → Cn

[0,ω] by the formula

(5.3) (Kx)(t) = col

{

−

∫ ω

0

gi(t, s)

n
∑

j=1,j 6=i

(Bijxj)(s) ds

}n

i=1

, t ∈ [0, ω].

Let us start with the following assertion proved in [1].

Theorem 5.1. Let the following conditions be fulfilled:

1) n scalar boundary value problems (5.1), (5.2) are uniquely solvable, their

Green’s functions gi(t, s), i = 1, . . . , n preserve their signs;

2) the nondiagonal operators Bij , i, j = 1, . . . , n, j 6= i, are positive or negative

such that the operator K : Cn
[0,ω] → Cn

[0,ω] determined by the formula (5.3) is

positive.

Then the assertions a), b) are equivalent and each of them implies c).

a) There exists a vector function v ∈ Cn
[0,ω] with positive absolutely continuous

components vi : [0, ω] → [0,∞) such that the solution w of the problem

(5.4) (miwi)(t) ≡ w′
i(t) + (Biiwi)(t) = (Miv)(t), t ∈ [0, ω], liwi = livi,

is positive for t ∈ [0, ω], i = 1, . . . , n.

b) The spectral radius of the operator K : Cn
[0,ω] → Cn

[0,ω] is less than one.
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c) The boundary value problem (1.8), (5.2) is uniquely solvable for every right

hand side f = col(f1, . . . , fn) such that fi ∈ Ln
∞[0,ω], i = 1, . . . , n, and elements

of its Green’s matrix preserve sign and satisfy the inequalities

(5.5) gi(t, s)Gij(t, s) > 0, t, s ∈ [0, ω],

while

(5.6) |Gii(t, s)| > |gi(t, s)|, t, s ∈ [0, ω],

for i, j = 1, . . . , n.

Consider the equation

(5.7) (Mix)(t) ≡ x′i(t) +

n
∑

j=1

pij(t)xj(t− τij(t)) = fi(t), t ∈ [0, ω], i = 1, . . . , n,

where

(5.8) xi(ξ) = 0, ξ /∈ [0, ω],

with boundary conditions

(5.9) −xi(ω) +

n
∑

j=1

mijxj = βi, i = 1, . . . , n.

As a model problem we can take the one-point problem (5.7), (5.8), (5.10), where

(5.10) −xi(ω) = αi, i = 1, . . . , n.

Denote P (t) = ε + max
16i6n

n
∑

j=1

pij(t), where ε is a positive number, τ(t) =

max
16i,j6n

τij(t).

Theorem 5.2. Assume that pij > 0, τij > 0 for i, j = 1, . . . , n, the functionals

mij : C
1
[0,∞) → R

1 are positive ones,

(5.11)

∫ t

t−τ(t)

P (s) ds 6
1

e
, t > 0, i = 1, . . . , n,

and

(5.12) exp

{

−e

∫ ω

0

P (s) ds

}

>

n
∑

j=1

mij

{

−e

∫ t

0

P (s) ds

}

, i = 1, . . . , n.
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Then the boundary value problem (5.7), (5.8) and (5.9) is uniquely solvable for ev-

ery f ∈ Ln
[0,∞), α ∈ R

n, its Green’s operator G is negative, and for every nonpositive

f and β, the solution is nonnegative.

P r o o f. Let us consider the diagonal equation

(5.13) (mix)(t) ≡ x′i(t) + pii(t)xi(t− τii(t)) = fi(t), t ∈ [0, ω],

coupled with condition (5.10). The vector-function

(5.14) vi(t) = exp

{

−e

∫ t

0

P (s) ds

}

, i = 1, . . . , n,

satisfies the assertion 1) of Theorem 4.1. This, according to Theorem 4.1, implies that

Green’s functions gi(t, s) of all diagonal problems (5.13), (5.10) are nonpositive for

(t, s) ∈ (0, ω)×(0, ω), and gi(t, s) < 0 for 0 < t < s < ω, i = 1, . . . , n. Vector-function

(5.14) satisfies also the assertion a) of Theorem 5.1. According to Theorem 5.1,

Green’s operator G0 of problem (5.7), (5.8), (5.10) is negative. It is clear that X0 is

nonpositive. Inequality (5.12) implies condition (2.19). Now, Theorem 2.4 completes

the proof of Theorem 5.2. �

R em a r k 5.1. It is clear that the inequality

(5.15) exp

{

−e

∫ ω

0

P (s) ds

}

>
n
∑

j=1

mij1, i = 1, . . . , n,

can be set instead of (5.12) in Theorem 5.2.

Consider now the nonlocal problem (5.7), (5.8), (5.16), where

(5.16) xi(0)− xi(ω)−
n
∑

j=1

mijxj = βi, i = 1, . . . , n.

As a model problem we can take the periodic problem (5.7), (5.8), (5.17), where

(5.17) xi(0)− xi(ω) = αi, i = 1, . . . , n.

Denote

(5.18) χ(t− τij(t)) =

{

1, t− τij(t) ∈ [0, ω],

0, t− τij(t) /∈ [0, ω].
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Theorem 5.3. Assume that pij 6 0 for i 6= j, pii > 0, i, j = 1, . . . , n, functionals

mij : C
1
[0,∞) → R

1 are positive, at least one of the two conditions either

(5.19)

∫ t

t−τii(t)

pii(s) ds 6
1

e
, τii(t) > 0, t > 0, i = 1, . . . , n,

or

(5.20)

∫ ω

0

pii(s) ds < 1, i = 1, . . . , n,

is fulfilled, there exist positive ε and continuous 0 < P∗(t) < min
16i6n

n
∑

j=1

pij(t) such

that the inequalities

n
∑

j=1

pij(t)χ(t − τij(t)) > ε > 0, t ∈ [0, ω], i = 1, . . . , n,(5.21)

n
∑

j=1

pij(t)χ(t − τij(t)) exp

{
∫ t

t−τij(t)

P∗(ξ) dξ

}

− P∗(t) > ε > 0,(5.22)

t ∈ [0, ω], i = 1, . . . , n,

and

(5.23) 1− exp

{

−

∫ ω

0

P∗(ξ) dξ

}

−

n
∑

j=1

mij exp

{

−

∫ t

0

P∗(ξ) dξ

}

> 0, i = 1, . . . , n,

are satisfied.

Then the boundary value problem (5.7), (5.8) and (5.16) is uniquely solvable

for every f ∈ Ln
[0,∞), α ∈ R

n, its Green’s operator G is positive, and for every

nonnegative f and β, the solution is nonnegative.

R em a r k 5.2. It is clear that the inequality

(5.24) 1− exp

{

−

∫ ω

0

P∗(ξ) dξ

}

−

n
∑

j=1

mij1 > 0, i = 1, . . . , n

can be set instead of (5.23) in the formulation of Theorem 5.3.

P r o o f. If we put v(t) = exp{−
∫ t

0 pii(ξ) dξ} into the assertion 1) of Theorem 4.1,

we get that condition (5.19) implies, according to Theorem 4.1, positivity of Green’s

function gi(t, s) of the problem consisting of the diagonal equation (5.13) and the

periodic boundary condition (5.17). Positivity of Green’s function gi(t, s) of problem
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(5.13), (5.17) follows also from condition (5.20) [13]. It follows from inequalities (5.21)

that the n-vector v(t) = col{v1(t), . . . , vn(t)} = col{1, . . . , 1} satisfies the assertion a)

of Theorem 5.1. Positivity of Green’s operator of system (5.7), (5.8), (5.17) follows

now from Theorem 5.1. The vector-function v(t) = {v1(t), . . . , vn(t)}, where vi(t) =

exp
{

−
∫ t

0 P∗(ξ) dξ
}

, i = 1, . . . , n, satisfies Theorem 2.3 which completes the proof.

�

6. Discussion and open problems

Results about positivity/negativity of Green’s operators open the way for studying

nonlinear functional differential systems. Researchers could use the known scheme

of quasi-linearization developed in the books [4], [18] and special nonlinear ap-

proaches [18] for the analysis of systems of nonlinear equations. Another direction

to develop this topic is connected with the analysis of nonlinear nonlocal bound-

ary conditions. Results on problems with nonlinear conditions are presented in the

survey paper [7]. It is clear that an analog of Theorem 2.1 can be obtained in the

case of systems of nonlinear functional differential equations coupled with nonlinear

conditions, where, for example, contraction of the corresponding operators instead

of the estimates of the spectral radius of the operator A should be obtained.

Assertion 9) of Theorem 4.1 allows researchers to study nonlocal problems di-

rectly, constructing Green’s functions of scalar equations. This idea can work, for

example, in the case of “diagonal” nonlocal conditions. It would be interesting to

use this possibility and to get results about positivity of Green’s operators without

the assumption about positivity of Green’s operator for “close” local problems.

Nonlocal boundary conditions can be interpreted as a sort of feedback control. It

would be interesting to find examples of this control in applications.
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