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BOUNDEDNESS OF SOLUTIONS TO PARABOLIC-ELLIPTIC

CHEMOTAXIS-GROWTH SYSTEMS WITH

SIGNAL-DEPENDENT SENSITIVITY

Kentarou Fujie, Tomomi Yokota, Tokyo

(Received September 30, 2013)

Abstract. This paper deals with parabolic-elliptic chemotaxis systems with the sensi-
tivity function χ(v) and the growth term f(u) under homogeneous Neumann boundary

conditions in a smooth bounded domain. Here it is assumed that 0 < χ(v) 6 χ0/v
k (k > 1,

χ0 > 0) and λ1 − µ1u 6 f(u) 6 λ2 − µ2u (λ1, λ2, µ1, µ2 > 0). It is shown that if χ0 is
sufficiently small, then the system has a unique global-in-time classical solution that is uni-
formly bounded. This boundedness result is a generalization of a recent result by K.Fujie,
M.Winkler, T. Yokota.
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1. Introduction and main result

In this paper we consider the global existence and boundedness in the parabolic-

elliptic chemotaxis-growth system

(1.1)



























ut = ∆u−∇ · (uχ(v)∇v) + f(u), x ∈ Ω, t > 0,

0 = ∆v − v + u, x ∈ Ω, t > 0,

∂u

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where Ω is a bounded domain in Rn (n ∈ N) with smooth boundary ∂Ω. We assume
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that the initial data u0 satisfies

(1.2) u0 ∈ C0(Ω), u0 > 0 and

∫

Ω

u0 > 0.

As for the chemotactic sensitivity function, we assume that

(1.3) χ ∈ C1((0,∞)) with χ > 0.

Also we assume that f ∈ C1([0,∞)) and there exist λ1, λ2, µ1, µ2 > 0 such that

(1.4) λ1 − µ1s 6 f(s) 6 λ2 − µ2s for all s ∈ [0,∞).

This system was introduced by Keller and Segel [6], [7] (see also [4], [14], [15]),

and the mathematical study of this system has developed extensively. In this paper

we especially focus on the signal-sensitivity function and the growth term. There

are some known results related to this system in [1], [2], [8]–[13], [16]–[19]. The

present work is devoted to the global existence and boundedness. We remark that

the existence of classical solutions to (1.1) is shown by a similar way as in [3]. Since

f(0) > λ1 > 0 by (1.4), the solution to (1.1) is nonnegative.

In order to formulate our main result, given a nonnegative 0 6≡ u0 ∈ C0(Ω), let us

define a constant γ > 0 as

(1.5) γ := min
{

‖u0‖L1(Ω),
λ1

µ1
|Ω|

}

∫

∞

0

1

(4πt)n/2
e−(t+(diamΩ)2/(4t)) dt < ∞,

where diamΩ := max
x,y∈Ω

|x − y|. We remark that the integrand in (1.5) decays expo-

nentially not only as t → ∞ but also as t → 0, and so γ < ∞ for all n ∈ N. The

constant γ marks an a priori pointwise lower bound on the solution component v, as

we shall see below. In what follows, when k = 1 we regard the value of kk/(k − 1)k−1

as 1.

Theorem 1.1. Let n ∈ N, and suppose that u0, χ and f satisfy (1.2), (1.3) and

(1.4), respectively. Moreover, assume that χ satisfies

χ(s) 6
χ0

sk
for all s ∈ [γ,∞),

with some k > 1 and some χ0 > 0 fulfilling

χ0 <
2

n

kk

(k − 1)
k−1

γk−1.
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Then (1.1) possesses a unique global classical solution (u, v) which satisfies

‖u(·, t)‖L∞ 6 M∞ for all t ∈ [0,∞)

with some constant M∞ > 0.

2. Preliminaries

We begin with the following lemma shown in [3]. This lemma is key to deriving

a uniform-in-time estimate for v.

Lemma 2.1. Let w ∈ C0(Ω) be a nonnegative function such that
∫

Ω
w > 0. If z

is a weak solution to






−∆z + z = w, x ∈ Ω,

∂z

∂ν
= 0, x ∈ ∂Ω,

then

z >

(
∫

∞

0

1

(4πt)n/2
e−(t+(diamΩ)2/(4t)) dt

)
∫

Ω

w > 0 in Ω.

Here we give an a priori pointwise lower bound on the solution component v. The

first equation in (1.1) and the condition (1.4) imply

d

dt

∫

Ω

u =

∫

Ω

f(u) > λ1|Ω| − µ1

∫

Ω

u.

Integrating this inequality, we have
∫

Ω

u >
λ1

µ1
|Ω|+ e−µ1t

(

‖u0‖L1(Ω) −
λ1

µ1
|Ω|

)

for all t ∈ (0,∞),

and then ∫

Ω

u > min
{

‖u0‖L1(Ω),
λ1

µ1
|Ω|

}

.

By virtue of Lemma 2.1 we can thereby estimate v from below as follows:

(2.1) v(x, t) > γ

for all x ∈ Ω and t ∈ (0, T ), whenever (u, v) solves (1.1) in Ω× (0, T ) for some T > 0.

Here γ > 0 is a constant defined as (1.5).

R em a r k 2.1. The maximum principle yields the lower pointwise estimate for

v(·, t) for fixed t > 0. On the other hand, Lemma 2.1 and the uniform-in-time

estimate for mass imply the uniform estimate (2.1).

We next collect some known facts concerning the Neumann Laplacian in Ω. For

the proof of (iii) see [5], Lemma 2.1.
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Lemma 2.2. For r ∈ (1,∞), let ∆ denote the realization of the Laplacian in

Lr(Ω) with domain
{

w ∈ W 2,r(Ω); ∂w/∂ν = 0 on ∂Ω
}

. Then the operator −∆+ 1

is sectorial and possesses closed fractional powers (−∆+ 1)
θ
, θ ∈ (0, 1), with dense

domain D((−∆+ 1)θ). Moreover, the following statements hold:

(i) If m ∈ {0, 1}, p ∈ [1,∞] and q ∈ (1,∞), then there exists a constant cm,p > 0

such that for all w ∈ D((−∆+ 1)
θ
),

‖w‖Wm,p(Ω) 6 cm,p‖(−∆+ 1)
θ
w‖Lq(Ω),

provided that m < 2θ and m− n/p < 2θ − n/q.

(ii) Let p ∈ (1,∞). Then there exist c > 0 and ν1 > 0 such that for all u ∈ Lp(Ω)

and any t > 0,

‖(−∆+ 1)θet(∆−1)u‖Lp(Ω) 6 ct−θe−ν1t‖u‖Lp(Ω).

(iii) Let p ∈ (1,∞). Then there exists ν2 > 1 such that for ε > 0 there exists cε > 0

such that for all Rn-valued z ∈ C∞

0 (Ω),

‖(−∆+ 1)
θ
et(∆−1)∇ · z‖Lp(Ω) 6 cεt

−θ−1/2−εe−ν2t‖z‖Lp(Ω), t > 0.

Accordingly, for all t > 0 the operator (−∆+ 1)
θ
et∆∇· admits a unique ex-

tension to all of Lp(Ω) which, again denoted by (−∆+ 1)
θ
et∆∇·, satisfies the

above estimate for all Rn-valued z ∈ Lp(Ω).

3. Proof of main result

We first deduce Lp-boundedness of solutions to (1.1). Next let us show that Lp-

boundedness with sufficiently large p implies L∞-boundedness. Combining these

results will prove our main theorem.

Lemma 3.1. Let p > 1, and suppose that (u, v) is a classical solution to (1.1) in

Ω× (0, T ) for some T > 0. Then there exist C1, C2 > 0 such that

d

dt

∫

Ω

up 6 −
p(p− 1)

2

∫

Ω

up−2|∇u|
2
+

p(p− 1)

2

∫

Ω

upχ2(v)|∇v|
2

+ C1

∫

Ω

up + C2 for all t ∈ (0, T ).
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P r o o f. By virtue of the first equation in (1.1) and Young’s inequality, we have

d

dt

∫

Ω

up 6 −
p(p− 1)

2

∫

Ω

up−2|∇u|2 +
p(p− 1)

2

∫

Ω

upχ2(v)|∇v|2 +

∫

Ω

up−1f(u).

The condition (1.4) yields
∫

Ω up−1f(u) 6 λ2

∫

Ω up−1 − µ2

∫

Ω up 6 C1

∫

Ω up + C2 for

some constants C1, C2 > 0, and hence we obtain the desired inequality. �

The next lemma is obtained in [3]. For convenience we give the sketch of the proof.

Lemma 3.2. Let p > 1, and suppose that (u, v) is a classical solution to (1.1)

in Ω × (0, T ) for some T > 0. Moreover, for γ > 0 given by (1.5) (see also (2.1)),

let ϕ ∈ C1([γ,∞)) such that ϕ > 0 and there exists a constant M > 0 satisfying

sϕ(s) 6 M for all s > γ. Let A and B be positive constants such that AB = p.

Then

∫

Ω

up
(

−ϕ′(v)−
B2

2
ϕ2(v)

)

|∇v|
2
6

A2

2

∫

Ω

up−2|∇u|
2
+M

∫

Ω

up for all t ∈ (0, T ).

Sketch of the p r o o f. Multiplying the second equation in (1.1) by upϕ(v) and

using integration by parts, we see that

−

∫

Ω

upϕ′(v)|∇v|
2
= p

∫

Ω

up−1ϕ(v)∇u · ∇v +

∫

Ω

upϕ(v)v −

∫

Ω

up+1ϕ(v).

Applying Young’s inequality completes the proof. �

Now we give Lp-boundedness of solutions to (1.1).

Proposition 3.3. Suppose that n ∈ N, and that u0, χ and f satisfy (1.2), (1.3)

and (1.4), respectively. Let (u, v) be a classical solution to (1.1) in Ω × (0, T ) for

some T > 0. Moreover, let γ > 0 be as in (1.5) and (2.1). Suppose that there

exist k > 1 and χ0 > 0 such that χ(s) 6 χ0/s
k for all s > γ. Then for any

p ∈
[

1, χ−1
0

[

kk/(k − 1)k−1]γk−1
)

there exists a constant Mp > 0 fulfilling

‖u(·, t)‖Lp 6 Mp for all t ∈ [0, T ).

P r o o f. Taking any p ∈
[

1, χ−1
0

[

kk/(k − 1)k−1]γk−1
)

, we have χ0 < p−1
[

kk/

(k − 1)
k−1]

γk−1. Now we take ε > 0 and L > 0 such that

ε < p(p− 1), L < γ <
k

k − 1
L and χ0 6

1

p

√

p(p− 1)− ε

p(p− 1)

kk

(k − 1)
k−1

Lk−1.
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Applying Lemma 3.2 to ϕ(s) := 1/(B2(s− L)), A :=
√

p(p− 1)− ε and B :=

p/
√

p(p− 1)− ε, we infer that

(3.1)

∫

Ω

up
(

− ϕ′(v)−
B2

2
ϕ2(v)

)

|∇v|2 6
p(p− 1)− ε

2

∫

Ω

up−2|∇u|2 +M

∫

Ω

up

and

(3.2)
p(p− 1)

2
χ2(s) 6 −ϕ′(s)−

B2

2
ϕ2(s) for all s > γ.

Now by (3.2), we can combine (3.1) with Lemma 3.1 to see that

(3.3)
d

dt

∫

Ω

up 6 −
p(p− 1)

2

∫

Ω

up−2|∇u|
2
+

p(p− 1)− ε

2

∫

Ω

up−2|∇u|
2

+ (M + C1)

∫

Ω

up + C2

= −
ε

2

∫

Ω

up−2|∇u|
2
+ (M + C1)

∫

Ω

up + C2

for all t ∈ (0, T ). Since the first equation in (1.1) and the condition (1.4) yield

d

dt

∫

Ω

u =

∫

Ω

f(u) 6 λ2|Ω| − µ2

∫

Ω

u,

we see that for all t ∈ (0,∞),

∫

Ω

u 6
λ2

µ2
|Ω|+ e−µ2t

(

‖u0‖L1(Ω) −
λ2

µ2
|Ω|

)

6 max
{

‖u0‖L1(Ω),
λ2

µ2
|Ω|

}

.

By virtue of this estimate, proceeding similarly as in [3], Proposition 4.3, we can

complete the proof from (3.3). �

Next, assuming Lp-boundedness, we derive L∞-boundedness.

Proposition 3.4. Let n ∈ N, and assume that u0, χ and f satisfy (1.2), (1.3)

and (1.4), respectively. Let (u, v) be the classical solution to (1.1) in Ω× (0, T ), and

assume further that χ ∈ L∞((γ,∞)) with γ > 0 given by (1.5) (see also (2.1)). Then

if there exist p > n/2 and a constant Mp > 0 such that ‖u(·, t)‖Lp 6 Mp for all

t ∈ (0, T ), then there exists a constant M∞ > 0 independent of T such that

‖u(·, t)‖L∞ 6 M∞ for all t ∈ (0, T ).
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P r o o f. Let p > n/2. We may assume that p < n. We see from (1.4) that

f(s)+s 6 C(1 + s) for some C > 0. We can take q > n so that q > p. Then we have

(3.4) ‖f(u) + u‖Lq(Ω) 6 C‖1 + u‖
p/q
Lp(Ω)‖1 + u‖

1−p/q
L∞(Ω)

6 C′

p‖1 + u‖
1−p/q
L∞(Ω)

6 C′′

p + C′′

p ‖u‖
1−p/q
L∞(Ω),

where C′

p, C
′′

p are some positive constants. Recalling the choice of q, we see that

1−p/q ∈ (0, 1). Moreover, we choose q > n satisfying further that 1−(n− p)q/(np) >

0, which enables us to pick λ ∈ (1,∞) fulfilling 1/λ < 1− (n− p)q/(np). The elliptic

regularity
(

‖∇v‖Lnp/(n−p)(Ω) 6 kp‖u‖Lp(Ω)

)

and Hölder’s inequality yield

(3.5) ‖uχ(v)∇v‖Lq(Ω) 6 ‖χ‖L∞((γ,∞))‖∇v‖Lqλ′ (Ω)‖u‖Lqλ(Ω)

6 ‖χ‖L∞((γ,∞))|Ω|
1/(qλ′)−(n−p)/(np)

‖∇v‖Lnp/(n−p)(Ω)‖u‖Lqλ(Ω)

6 ‖χ‖L∞((γ,∞))|Ω|
1/(qλ′)−(n−p)/(np)

kpMp‖u‖
1−β
L1(Ω)‖u‖

β
L∞(Ω)

6 Kp‖u‖
β
L∞(Ω),

where λ′ := λ/(λ − 1), for some β ∈ (0, 1) and Kp > 0. Now let t ∈ (0, T ). Then we

have

u(·, t) = et(∆−1)u0 −

∫ t

0

e(t−s)(∆−1)
(

∇ · (u(s)χ(v(s))∇v(s)) + (f(u(s)) + u(s))
)

ds.

Let θ ∈
(

n/(2q), 1/2
)

and ε ∈
(

0, 1/2− θ
)

. Using Lemma 2.2, we see that

‖u(·, t)‖L∞(Ω) 6 ‖u0‖L∞(Ω) + c0,∞c

∫ t

0

(t− s)
−θ

e−ν1(t−s)‖f(u(s)) + u(s)‖Lq(Ω) ds

+ c0,∞cε

∫ t

0

(t− s)
−θ−1/2−ε

e−ν2(t−s)‖u(s)χ(v(s))∇v(s)‖Lq(Ω) ds.

Combining (3.4) and (3.5) with the above inequality implies the uniform estimate:

‖u(·, t)‖L∞(Ω) 6 K0 +K1

(

sup
t∈[0,T ]

‖u(·, t)‖L∞(Ω)

)β

+K2

(

sup
t∈[0,T ]

‖u(·, t)‖L∞(Ω)

)1−p/q

for some K0,K1,K2 > 0. Since β, 1− p/q ∈ (0, 1), we obtain the desired inequality.

�

We are now in a position to prove the main result.
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P r o o f of Theorem 1.1. As stated in Section 1, by a similar way as in [3] we can

show that there exist Tmax 6 ∞ (depending only on ‖u0‖L∞(Ω)) and exactly one

pair (u, v) of nonnegative functions u ∈ C2,1(Ω × (0, Tmax)) ∩ C0([0, Tmax);C
0(Ω)),

and v ∈ C2,0(Ω × (0, Tmax)) ∩ C0((0, Tmax);C
0(Ω)) that solves (1.1) in the classical

sense. According to the condition for k and χ0, by Proposition 3.3 we can find some

p > n/2 and Mp > 0 such that ‖u(·, t)‖Lp 6 Mp for all t ∈ (0, Tmax). Therefore

Proposition 3.4 completes the proof. �

R em a r k 3.1. The local-in-time existence of classical solutions to (1.1) can be

provided under the only lower condition: λ1 − µ1s 6 f(s). Moreover, if the growth

term f satisfies the relaxed condition: λ1 − µ1s 6 f(s) 6 λ2 + µ2s, then we have

the upper mass estimate depending on time t similarly, and so the global existence

of solutions without uniform boundedness is proved.
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