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Abstract. R.Deville and J. Rodríguez proved that, for every Hilbert generated space X,
every Pettis integrable function f : [0, 1] → X is McShane integrable. R.Avilés, G. Pleba-
nek, and J.Rodríguez constructed a weakly compactly generated Banach space X and
a scalarly null (hence Pettis integrable) function from [0, 1] into X, which was not McShane
integrable. We study here the mechanism behind the McShane integrability of scalarly
negligible functions from [0, 1] (mostly) into C(K) spaces. We focus in more detail on the
behavior of several concrete Eberlein (Corson) compact spaces K, that are not uniform
Eberlein, with respect to the integrability of some natural scalarly negligible functions from
[0, 1] into C(K) in McShane sense.
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1. Introduction

The so far largest known class of Banach spaces where Pettis integrability of

vector valued functions coincides with McShane integrability is that of (subspaces) of

Hilbert generated spaces. This is a result of Deville and Rodríguez [8]. On the other

hand, Avilés, Plebanek and Rodríguez constructed a weakly compactly generated

Banach space X and a scalarly negligible, hence Pettis integrable, vector function,

with values in X , which is not McShane integrable [4]. A natural question is if this
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of Sciences of Czech Republic No. RVO: 67985840.
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is a general phenomenon for all weakly compactly generated Banach spaces which

are not subspaces of Hilbert generated spaces. A bit weaker question is if, for every

Eberlein compact space K, which is not uniform Eberlein, there exists a scalarly

negligible vector function, with values in C(K), which is not McShane integrable.

We do not know an answer. Just we should note that in the questions above, it is

wise to require the validity of the continuum hypothesis (CH). Indeed, under Martin’s

axiom [20] and the negation of (CH), every subset of R of cardinality less than c is

Lebesgue null. Thus, assuming this, every scalarly null vector function from [0, 1]

into a Banach space X of density ω1 is Lebesgue negligible, and hence even Bochner

integrable, thus also McShane integrable [14], 1K theorem. If, in addition, such an

X is weakly Lindelöf determined, then every Pettis integrable vector function from

[0, 1] into X is McShane integrable, see Theorem 11. In particular, this applies to X

of form C(K) where K is a Corson compact spaces of density ω1 and is such that

every regular Borel measure on it has a separable support.

In this paper, we study the mechanism behind the McShane integrability of scalarly

negligible vector functions from [0, 1] into C(K) spaces and also to general Banach

spaces. Then, we focus in more detail on the behavior of several concrete Eberlein

(Corson) compact spaces, that are not uniform Eberlein, with respect to the integra-

bility of some natural scalarly negligible vector functions in McShane sense. Thus,

we believe that the questions raised above will be elucidated a bit.

2. Terminology and notation

Let λ and λ∗ denote the Lebesgue measure and the outer Lebesgue measure. Let

(X, ‖·‖) be a Banach space and let f : [0, 1] → X be a vector valued function. We

say that f is Pettis integrable if the compound function x∗ ◦ f is Lebesgue integrable

for every x∗ ∈ X∗, and for every Lebesgue measurable set E ⊂ [0, 1] there is a vector

xE ∈ X such that
∫
E
x∗(f(t)) dλ(t) = x∗(xE) for all x

∗ ∈ X∗. We say that f

is McShane integrable if there exists an x ∈ X such that for every ε > 0 there is

a gauge function δ(·) assigning to every t ∈ [0, 1] an open subset t ∈ δ(t) ⊂ R such

that: for every sequence of points t1, t2, . . . in [0, 1], and for every sequence of pairwise

disjoint Lebesgue measurable subsets E1, E2, . . . of [0, 1] such that
∞∑
j=1

λ(Ej) = 1, and

δ(tj) ⊃ Ej , j = 1, 2 . . ., we have
∥∥∥

r∑
j=1

λ(Ej)f(tj) − x
∥∥∥ < ε for all large r ∈ N; this

x is then called the McShane integral of f . We recall that a predecessor of this

concept—the Henstock-Kurzweil integrability—works with finitely many Ej ’s, each

being an interval and satisfying Ej ∋ tj for every j; see for instance [21]. According

to Fremlin, a vector valued function from [0, 1] into X is McShane integrable if
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and only if it is simultaneously Pettis integrable and Henstock-Kurzweil integrable,

see [21], Theorem 6.2.6. It is also well known that, for functions from [0, 1] into R,

the McShane integrability coincides with the Lebesgue integrability [14], 10 Theorem,

and the Henstock-Kurzweil integrability coincides with the Perron integrability, see

[18], Section 25. The vector function f : [0, 1] → X is called scalarly negligible if the

composition x∗ ◦ f is a Lebesgue negligible function for every x∗ ∈ X∗.

Abusing the language a bit, given a nonempty set A, by an A-partition we under-

stand any formula like M =
⋃

α∈A

Mα where the Mα’s are pairwise disjoint subsets

of M . If A is countable, we say just partition. Given a (rather uncountable) set Γ

and a nonempty set S, we put Σ(SΓ) = {x ∈ SΓ : #{γ ∈ Γ: x(γ) 6= 0} 6 ω} and

endow it with the topology inherited from the product topology of SΓ. Instead of

Σ({0, 1}Γ) we sometimes write Γ6ω and consider then the elements of the latter as

just at most countable subsets of Γ. Also Γ<ω means the family of all finite subsets

of Γ. Sometimes we have to add an empty set of summands. Then we put
∑

∅ = 0.

Given a set Γ and a subset A ⊂ Γ, the characteristic function 1A on Γ is defined

by 1A(γ) = 1 if γ ∈ A and 1A(γ) = 0 if γ ∈ Γ \ A. For any set S, a function

ϕ : [0, 1] → S is called Lebesgue injection if λ(ϕ−1(s)) = 0 for every s ∈ S. It should

be noted that this concept says nothing about possible measurability of ϕ. Indeed,

every one to one function ϕ : [0, 1] → [0, 1] is a Lebesgue injection.

3. Compact space setting

A compact space is called Eberlein (uniform Eberlein) if it is homeomorphic to

a weakly compact subset of a Banach space (Hilbert space). We recall that a com-

pact space K is Eberlein (uniform Eberlein) if and only if the Banach space C(K) is

weakly compactly generated (Hilbert generated), see [11], Theorems 14.9 and 14.15.

Also, a Banach space is a subspace of a Hilbert generated space if and only if its

dual unit ball provided with the weak∗ topology is a uniform Eberlein compact space,

see [11], Theorem 14.15. We recall the following result due to Farmaki [12], Theo-

rem 2.10, [10], Theorem 10 (a): Given a (rather uncountable) set Γ, then a compact

set K sitting in Σ(RΓ) is a uniform Eberlein compact space if and only if for every

ε > 0 there is a partition Γ =
∞⋃
n=1

Γn of Γ such that for every k ∈ K and for every

n ∈ N we have #{γ ∈ Γn : |k(γ)| > ε} < n. In the sequel, we shall frequently use

a special case of this statement for compact sets sitting in Σ({0, 1}Γ) (= Γ6ω), due

to Leiderman and Sokolov [16], Theorem 4.9:

Proposition 1. Let Γ be an uncountable set and let F ⊂ Γ6ω be a family such

that the corresponding space KF := {1A : A ∈ F} is compact. Then KF is uniform
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Eberlein compact if and only if there exists a partition Γ =
∞⋃

n=1
Γn such that for every

A ∈ F and for every n ∈ N we have #(A ∩ Γn) < n.

Of some importance for us is the following proposition providing nontrivial scalarly

negligible vector functions.

Proposition 2. Assume that a compact subsetK of Σ(R[0,1]) is Eberlein, or more

generally, is such that every regular Borel measure on it has a separable support. Let

ϕ : [0, 1] → [0, 1] be any Lebesgue injection and let a : [0, 1] → R be any function.

Then the vector function g : [0, 1] → C(K) defined by g(t)(k) = a(t)k(ϕ(t)), t ∈ [0, 1],

k ∈ K, is scalarly negligible.

P r o o f. Fix any k ∈ K. Let {t1, t2, . . .} denote the set {t ∈ [0, 1] : k(t) 6= 0}.

Then

{t ∈ [0, 1]: g(t)(k) 6= 0} = {t ∈ [0, 1] : a(t)k(ϕ(t) 6= 0}

⊂ {t ∈ [0, 1] : k(ϕ(t) 6= 0}

=

∞⋃

n=1

{t ∈ [0, 1] : ϕ(t) = tn} =

∞⋃

n=1

ϕ−1(tn),

and the latter set is Lebesgue negligible by the assumption. We proved that the

assignment [0, 1] ∋ t 7→ 〈δk, g(t)〉 is a Lebesgue negligible function; here and below

δk means the Dirac measure. It is well known that the absolute convex hull of the

set {δk : k ∈ K} is weak∗ dense in BC(K)∗ . Now, the properties of K guarantee that

the dual unit ball (BC(K)∗ , w
∗) is a Corson compact space by [11], Theorems 14.9

and 13.20, and [3], Theorem 3.5. Therefore, the set of all finite “rational” linear

combinations of all δk, k ∈ K, is weak∗ sequentially dense in the whole dual C(K)∗.

It then follows that g is scalarly negligible. �

It seems that, behind the non-McShane integrability of (scalarly negligible) vector

functions defined in the proposition above, there is a concept of the so called MC-

filling family.

Definition 3. A family F of subsets of [0, 1] is called MC-filling if there exists

ε ∈ (0, 1) such that for every partition [0, 1] =
∞⋃

m=1
Ωm there is A ∈ F so that

λ∗
(⋃

{Ωm : m ∈ N and A ∩ Ωm 6= ∅}
)
> ε. More generally, a subset K of R[0,1] is

called MC-filling if there exists an ε ∈ (0, 1) such that for every partition [0, 1] =
∞⋃

m=1
Ωm there is k ∈ K such that

(1) λ∗
(⋃

{Ωm : m ∈ N and |k(t)| > ε for some t ∈ Ωm}
)
> ε;

compare with [4], Definition 1.1.
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Clearly, a family F of subsets of [0, 1] is MC-filling if and only if the corresponding

subset {1A : A ∈ F} ⊂ {0, 1}[0,1] is MC-filling.

If K is a uniform Eberlein compact space sitting in Σ(R[0,1]), then it is not difficult

to show that K is not MC-filling. More generally, we have

Proposition 4. Let K be any uniform Eberlein compact subset of Σ(R[0,1])

and let ϕ : [0, 1] → [0, 1] be any Lebesgue injection. Then the (compact) subset

K ◦ ϕ := {k ◦ ϕ : k ∈ K} of R[0,1] is (also uniform Eberlein and moreover it is) not

MC-filling.

P r o o f. The mapping K ∋ k 7→ k ◦ ϕ ∈ K ◦ ϕ is obviously continuous. Hence,

by the Benyamini-Rudin-Wage theorem (see also [10], page 422), K ◦ϕ is a uniform

Eberlein compact space. (If ϕ is surjective, this mapping is a homeomorphism and

K ◦ ϕ is then automatically a uniform Eberlein compact space.)

It remains to prove the rest. Fix any ε ∈ (0, 1). From Farmaki’s criterion, find

a partition [0, 1] =
∞⋃

n=1
Γn such that for every n ∈ N and every k ∈ K we have

#{s ∈ Γn : |k(s)| > ε} < n. For every n ∈ N and every s ∈ Γn find an open set

ϕ−1(s) ⊂ Gs ⊂ R such that λ(Gs) < ε/(n2n). Let I1, I2, . . . be an enumeration of

all open intervals in R with “rational” endpoints. For every t ∈ [0, 1] find (a unique)

n ∈ N such that ϕ(t) ∈ Γn, and then find m ∈ N such that t ∈ Im ⊂ Gϕ(t); finally

denote this Im by δ(t). (Note that δ(·) will be a gauge function.) Clearly,

[0, 1] =

∞⋃

n=1

∞⋃

m=1

ϕ−1(Γn) ∩ δ
−1({Im})

and this is a partition. We shall show that this partition “works”. Put, for simplicity

Ωn,m = ϕ−1(Γn) ∩ δ
−1({Im}), n,m ∈ N.

Fix any k ∈ K. For n ∈ N put Fn = {s ∈ Γn : |k(s)| > ε}; thus #Fn < n. We are

ready to estimate

λ∗
(⋃

{Ωn,m : n,m ∈ N and |k ◦ ϕ(t)| > ε for some t ∈ Ωn,m}
)

6

∞∑

n=1

λ∗
(⋃

{Ωn,m : m ∈ N and |k ◦ ϕ(t)| > ε for some t ∈ Ωn,m}
)

=

∞∑

n=1

λ∗
(⋃{⋃

{Ωn,m : m ∈ N and ϕ−1(s) ∩ δ−1({Im}) 6= ∅} : s ∈ Fn

})

6

∞∑

n=1

∑

s∈Fn

λ∗
(⋃

{Ωn,m : m ∈ N and ϕ−1(s) ∩ δ−1({Im}) 6= ∅}
)
=: (∗).
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Fix for a while any n ∈ N and then any s ∈ Fn. Consider anym ∈ N such that the set

ϕ−1(s) ∩ δ−1({Im}) is nonempty. Pick some t in it. Then δ(t) = Im ⊂ Gϕ(t) = Gs.

Thus

Ωn,m ⊂ δ−1({Im}) ⊂ Im ⊂ Gs, whenever m ∈ N and ϕ−1(s) ∩ δ−1({Im}) 6= ∅.

Now, we are ready to finalize our estimate

(∗) 6
∞∑

n=1

∑

s∈Fn

λ(Gs) 6

∞∑

n=1

#Fn

ε

n2n
<

∞∑

n=1

ε

2n
= ε.

�

It should be noted that Proposition 4 can be proved indirectly as follows: If K ◦ϕ

were MC-filling, Proposition 6 below would guarantee that the mapping f therein is

not McShane integrable. And this contradicts to [8], Lemma 3.3.

Question 1 (Main). Is Proposition 4 an equivalence? More explicitly: Assume

that a compact set K ⊂ Σ(R[0,1]) is (Eberlein and) such that for every Lebesgue

injection ϕ : [0, 1] → [0, 1] the set K ◦ϕ := {k ◦ϕ : k ∈ K} is not MC-filling. Is then

K necessarily a uniform Eberlein compact space? Under the validity of Martin’s

axiom and simultaneously the non-validity of the continuum hypothesis (CH), there

exists an Eberlein compact space H which is not uniform Eberlein and yet H ◦ϕ :=

{h ◦ ϕ : h ∈ H} is not MC-filling for every Lebesgue injection ϕ : [0, 1] → [0, 1], see

the end of Example 16. Hence, we have to add in the question raised above some set-

theoretical axioms, like (CH). If the answer were then affirmative, this would indicate

that the coincidence of Pettis and McShane integrability for vector functions from

[0, 1] into C(K) means that the space K is uniform Eberlein, see Proposition 6. If

it were negative for some Eberlein compact subset K ⊂ Σ(R[0,1]), we would be able

to construct a non-separable subspace X of the WCG (but not Hilbert-generated)

space C(K) such that all Pettis integrable vector functions from [0, 1] into X are

McShane integrable, see Remark 12.

Lemma 5. Given any ε > 0 and any sequence of sets Ω1,Ω2, . . . in [0, 1], then for

every m ∈ N there exist countably many pairwise disjoint open intervals Im1 , I
m
2 , . . .

in R such that
∞⋃
i=1

Imi ⊃ Ωm and that

(2) λ
(⋃

{Imi : m ∈ J, i ∈ N}
)
< λ∗

( ⋃

m∈J

Ωm

)
+ ε for every finite J ⊂ N.
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P r o o f. For every J ∈ N
<ω find BJ ∈ L so that BJ ⊃

⋃
m∈J

Ωm and λ(BJ ) <

λ∗
( ⋃
m∈J

Ωm

)
+ ε/2. For m ∈ N put then Am =

⋂
{BJ : J ∈ N

<ω, J ∋ m}. Clearly,

Ωm ⊂ Am ∈ L for every m ∈ N. Now, for every J ∈ N
<ω we have

⋃
m∈J

Am ⊂ BJ ,

and hence λ
( ⋃
m∈J

Am

)
6 λ(BJ ) < λ∗

( ⋃
m∈J

Ωm

)
+ε/2. For every m ∈ N find an open

set Am ⊂ Gm ⊂ [0, 1] such that λ(Gm \Am) < 2−m(ε/2). We observe that for every

J ∈ N
<ω we have

⋃
m∈J

Gm \
⋃

m∈J

Am ⊂
⋃

m∈J

(Gm \Am), and hence

λ

( ⋃

m∈J

Gm

)
6 λ

( ⋃

m∈J

Am

)
+

∑

m∈J

λ(Gm \Am)(3)

< λ

( ⋃

m∈J

Am

)
+
ε

2
< λ∗

( ⋃

m∈J

Ωm

)
+ ε.

We realize that for every m ∈ N there are pairwise disjoint open intervals Imi , i ∈ N,

(we assume that ∅ is also an open interval) such that Gm =
∞⋃
i=1

Imi . Hence the

conclusion follows. �

The equivalence that follows is in the spirit of [4], Proposition 3.3 (ii).

Proposition 6. Let K be a compact subset of [−1, 1][0,1]. Then the following

statements are mutually equivalent:

(i) K is not MC-filling;

(ii) given any function a : [0, 1] → [−1, 1], the McShane integral of the vector func-

tion fa : [0, 1] → C(K) defined by fa(t)(k) = a(t)k(t), k ∈ K, t ∈ [0, 1], is equal

to 0.

P r o o f. (i) ⇒ (ii). Fix any ε > 0. From Definition 3, find a partition [0, 1] =
∞⋃

m=1
Ωm such that for every k ∈ K

(4) λ∗
(⋃

{Ωm : m ∈ N and |k(t)| > ε for some t ∈ Ωm}
)
6 ε.

To these Ωm’s find, by Lemma 5, the corresponding open intervals I
m
i ’s. Further,

for every m, i ∈ N we put Ĩmi = ∅ if Imi = ∅ and Ĩmi = (a − 2−m−iε, b + 2−m−iε) if

Imi = (a, b) and a < b. Then λ(Ĩmi ) 6 λ(Imi )+ 2ε2−m−i. Now, for every finite J ⊂ N

we have λ
( ⋃
m∈J

∞⋃
i=1

(Ĩmi \Imi )
)
6

∑
m∈J

∞∑
i=1

2ε2−m−i < 2ε and
⋃

m∈J

∞⋃
i=1

Ĩmi \
⋃

m∈J

∞⋃
i=1

Imi ⊂
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⋃
m∈J

∞⋃
i=1

(Ĩmi \ Imi ); hence

λ

( ⋃

m∈J

∞⋃

i=1

Ĩmi

)
< λ

( ⋃

m∈J

∞⋃

i=1

Imi

)
+ 2ε,

and using (2),

(5) λ

( ⋃

m∈J

∞⋃

i=1

Ĩmi

)
< λ∗

( ⋃

m∈J

Ωm

)
+ 3ε.

Now we are ready to integrate fa in the McShane sense. We define a gauge function

δ(·) as follows. Fix any t ∈ [0, 1]. Find a (unique) m ∈ N such that Ωm ∋ t. Find

a (unique) i ∈ N such that Imi ∋ t. Put then δ(t) = (t − ε2−m−i, t + ε2−m−i).

Now, let t1, t2, . . . ∈ [0, 1], and E1, E2, . . . ⊂ [0, 1] be any sequences considered in the

definition of McShane integrability. Fix any r ∈ N. Fix any k ∈ K. We shall show

that
∣∣∣
( r∑
j=1

λ(Ej)fa(tj)
)
(k)− 0

∣∣∣ < 5ε. Put J = {j ∈ {1, . . . , r} : |k(tj)| > ε}. Then

(6)

∣∣∣∣
( r∑

j=1

λ(Ej)fa(tj)

)
(k)− 0

∣∣∣∣ 6
r∑

j=1

λ(Ej)|k(tj)| 6 ε+
∑

j∈J

λ(Ej).

For every j ∈ J find an mj ∈ N such that Ωmj
∋ tj (note that the mj ’s may not be

necessarily pairwise distinct) and then find ij ∈ N so that I
mj

ij
∋ tj ; thus

Ej ⊂ δ(tj) = (tj − ε2−mj−ij , tj + ε2−mj−ij ) = {tj}+ (−ε2−mj−ij , ε2−mj−ij )

⊂ I
mj

ij
+ (−ε2−mj−ij , ε2−mj−ij ) = Ĩ

mj

ij
.

Then
⋃
j∈J

Ej ⊂
⋃
j∈J

∞⋃
i=1

Ĩ
mj

i , and (6), (5) yield

∣∣∣∣
( r∑

j=1

λ(Ej)fa(tj)

)
(k)

∣∣∣∣ 6 ε+ λ

(⋃

j∈J

Ej

)
6 ε+ λ

(⋃

j∈J

∞⋃

i=1

Ĩ
mj

i

)

< ε+ λ∗
(⋃

j∈J

Ωmj

)
+ 3ε.

But (4) says that λ∗
( ⋃
j∈J

Ωmj

)
6 ε. Therefore

∣∣∣
( r∑
j=1

λ(Ej)fa(tj)
)
(k)

∣∣∣ < 5ε, and

so
∥∥∥

r∑
j=1

λ(Ej)fa(tj) − 0
∥∥∥ 6 5ε. This holds for every r ∈ N. We proved that fh is

McShane integrable, with McShane integral equal to 0.
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¬(i)⇒ ¬(ii). Let ε > 0 witness for the MC-filling of K. Define f : [0, 1] → C(K)

by f(t)(k) = |k(t)|, t ∈ [0, 1], k ∈ K. Fix any gauge function δ : [0, 1] → {open

subsets of R}, with δ(t) ∋ t for every t ∈ [0, 1]. It is enough to find points t1, t2 . . . ∈

[0, 1], and pairwise disjoint Lebesgue measurable subsets E1, E2, . . . of [0, 1] such that
∞∑
j=1

λ(Ej) = 1, δ(tj) ⊃ Ej for every j ∈ N, and
∥∥∥

r∑
j=1

λ(Ej)f(tj)
∥∥∥ > ε2 for infinitely

many r ∈ N. Let U1, U2, . . . be a countable base for the standard topology of R. For

every t ∈ [0, 1] findm ∈ N such that t ∈ Um ⊂ δ(t) and put then δ̃(t) = Um. For every

m ∈ N put Ωm = {t ∈ [0, 1] : δ̃(t) = Um}. (Note that these sets may not be Lebesgue

measurable.) Clearly, Ωm ⊂ Um for every m ∈ N and [0, 1] =
∞⋃

m=1
Ωm is a partition

of [0, 1]. Find k ∈ K so that (1) holds. Denote J = {m ∈ N : |k(t)| > ε for some

t ∈ Ωm}. Then there exist l ∈ N and pairwise distinct numbers m(1), . . . ,m(l) ∈ J

so that λ∗(Ωm(1)∪. . .∪Ωm(l)) > ε. Indeed, if J is finite, it is enough to enumerate the

elements of J ; otherwise, we profit from the inequality λ∗
( ⋃
m∈J

Ωm

)
> ε. Enumerate

the set N \ {m(1), . . . ,m(l)} as {m(l+ 1),m(l + 2), . . .}. Define then

E1 = Um(1), E2 = Um(2) \ Um(1), E3 = Um(3) \ (Um(1) ∪ Um(2)), . . . ;

these sets are Lebesgue measurable and
∞∑
j=1

λ(Ej) = 1. For j ∈ {1, . . . , l} find

tj ∈ Ωm(j) so that |k(tj)| > ε, and for j ∈ {l + 1, l + 2, . . .} pick some tj ∈ Ωm(j).

Then

δ(tj) ⊃ δ̃(tj) = Um(j) ⊃ Ej for every j ∈ N.

Now, for r ∈ N, with r > l, we are ready to estimate

∥∥∥∥
r∑

j=1

λ(Ej)f(tj)− 0

∥∥∥∥ >

( r∑

j=1

λ(Ej)f(tj)

)
(k) =

r∑

j=1

λ(Ej)|k(tj)|

> ε
l∑

j=1

λ(Ej) = ελ(E1 ∪ . . . ∪El)

= ελ(Um(1) ∪ . . . ∪ Um(l)) > ελ∗(Ωm(1) ∪ . . . ∪ Ωm(l)) > ε2.

We proved that 0 cannot be the McShane integral of the vector function f . �

Remark 7. Assume that the compact space K in Proposition 6 sits even in

Σ([−1, 1][0,1]) and is Eberlein, or more generally, is such that every regular Borel

measure on it has a countable support. Then the vector function fa considered in

(ii) is scalarly negligible by Proposition 2, and hence, the only candidate for the

McShane integral of fa is 0.
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Proposition 8. Let K ⊂ Σ([−1, 1][0,1]) be any uniform Eberlein compact subset,

let ϕ : [0, 1] → [0, 1] be any Lebesgue injection, and let a : [0, 1] → R be any function.

Then the vector function g : [0, 1] → C(K) defined by g(t)(k) = a(t)k(ϕ(t)), k ∈ K,

t ∈ [0, 1], is scalarly negligible and McShane integrable.

P r o o f. Proposition 4 says that the compact subset K ◦ ϕ := {k ◦ ϕ : k ∈ K}

in [−1, 1][0,1] is not MC-filling. Proposition 6 then says that the vector function

g : [0, 1] → C(K ◦ ϕ) defined by

g(t)(k ◦ ϕ) = a(t)(k ◦ ϕ)(t) (= g(t)(k)), k ∈ K, t ∈ [0, 1],

is McShane integrable. But C(K ◦ϕ) is isometrical with a subspace of C(K). There-

fore, g : [0, 1] → C(K) is also McShane integrable. That g is scalarly negligible

follows from Remark 7. �

4. Banach space setting

Let X be a Banach space. We say that a set ∆ ⊂ X countably supports x∗ ∈ X∗ if

the set {x ∈ ∆: x∗(x) 6= 0} is at most countable. The utility of this concept (for us)

can be demonstrated by a simple observation that if g : [0, 1] → X is any Lebesgue

injection such that the image g([0, 1]) countably supports every x∗ ∈ X∗, then g

is scalarly negligible (and hence Pettis integrable). Indeed, given a fixed x∗ ∈ X∗,

put ∆0 = {x ∈ g([0, 1]) : x∗(x) 6= 0}; this is an at most countable set. Then

λ({t ∈ [0, 1]: x∗ ◦ g(t) 6= 0}) =
∑

x∈∆0

λ(g−1(x)) = 0. Of particular interest (for us)

are then big subsets of X that countably support every x∗ ∈ X∗. If X is a subspace

of a weakly compactly generated space, then there exists a linearly dense set ∆ ⊂ X

that countably supports every x∗ ∈ X∗. We actually have the equivalence: A Banach

space X admits a linearly dense subset that countably supports every x∗ ∈ X∗ if and

only if X is weakly Lindelöf determined, see [10], Theorem 5, for the details.

We have a statement in the spirit of the implication (i)⇒ (ii) in Proposition 6.

Proposition 9. Let X be a Banach space and let g : [0, 1] → BX be a vector

function such that for every ε > 0 there is a partition [0, 1] =
∞⋃

m=1
Ωm such that for

every x∗ ∈ BX∗

(7) λ∗
(⋃

{Ωm : m ∈ N and |x∗(g(t))| > ε for some t ∈ Ωm}
)
< ε.

Then g is McShane integrable with McShane integral equal to 0.
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P r o o f. Let Z denote the closed linear span of f([0, 1]). Define a (continuous

injection) ψ : (BZ∗ , w∗) →֒ [−1, 1][0,1] by ψ(z∗)(t) = z∗(g(t)), t ∈ [0, 1], z∗ ∈ BZ∗ ,

and put K = ψ(BZ∗); this is a compact space. We shall show that K is not MC-

filling. So fix any ε ∈ (0, 1). Let [0, 1] =
∞⋃

m=1
Ωm be a partition such that (7) holds.

Take any k ∈ K. Find z∗ ∈ BZ∗ so that ψ(z∗) = k. Then k(t) = ψ(z∗)(t) = z∗(g(t))

for every t ∈ [0, 1], and hence we have

λ∗
(⋃

{Ωm : m ∈ N and |k(t)| > ε for some t ∈ Ωm}
)

= λ∗
(⋃

{Ωm : m ∈ N and |z∗(g(t))| > ε for some t ∈ Ωm}
)
< ε

by (7). Once we know that K is not MC-filling, Proposition 6 says that the vector

function f : [0, 1] → C(K) defined by f(t)(k) = k(t), t ∈ [0, 1], k ∈ K, is McShane

integrable, with McShane integral equal to 0. Hence, realizing that

∥∥∥∥
r∑

j=1

λ(Ej)g(tj)

∥∥∥∥
X

= sup
z∗∈BZ∗

r∑

j=1

λ(Ej)z
∗(g(tj)) = sup

z∗∈BZ∗

r∑

j=1

λ(Ej)ψ(z
∗)(tj)

= sup
k∈K

r∑

j=1

λ(Ej)k(tj) = sup
k∈K

r∑

j=1

λ(Ej)f(tj)(k)

=

∥∥∥∥
r∑

j=1

λ(Ej)f(tj)

∥∥∥∥
C(K)

for any r ∈ N, any points t1, t2, . . . ∈ [0, 1], and any pairwise disjoint Lebesgue mea-

surable sets E1, E2, . . . in [0, 1], we can conclude that g is also McShane integrable,

with McShane integral equal to 0. �

Proposition 10. Let X be a (subspace of a) Hilbert generated space, let a :

[0, 1] → R be any function and let g : [0, 1] → BX be any vector function such that

the image g([0, 1]) countably supports every x∗ ∈ X∗ and that λ(g−1(x)\a−1(0)) = 0

for every x ∈ BX . Then the vector function f : [0, 1] → X defined by f(·) = a(·)g(·)

is scalarly negligible, and is McShane integrable.

P r o o f. Fix any 0 6= x∗ ∈ X∗. The set S := {x ∈ g([0, 1]) : x∗(x) 6= 0} is at

most countable. Thus the set {t ∈ [0, 1]: x∗ ◦ f(t) 6= 0} =
⋃
x∈S

(g−1(x) \ a−1(0)) is

Lebesgue null, and hence x∗ ◦ f is a negligible function. We have proved that f is

scalarly negligible.

Assume first that a is bounded. Put c = sup{|a(t)| : t ∈ [0, 1]}. Fix any ε ∈ (0, 1).

We shall verify (7) by imitating the proof of Proposition 4. From [10], Theorem 6,
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find a partition g([0, 1]) =
∞⋃
n=1

Γn such that for every n ∈ N and every x∗ ∈ BX∗

we have that #{x ∈ Γn : |x∗(x)| > ε} < n. For every n ∈ N and every x ∈ Γn find

an open set g−1(x) \ a−1(0) ⊂ Gx ⊂ R such that λ(Gx) < ε/(n2n). Let I1, I2, . . .

be an enumeration of all open intervals in R with “rational” endpoints. For every

t ∈ [0, 1] find (a unique) n ∈ N such that g(t) ∈ Γn, and then find m ∈ N such that

t ∈ Im ⊂ Gg(t); finally denote this Im by δ(t). Clearly,

[0, 1] =

∞⋃

n=1

∞⋃

m=1

(g−1(Γn) \ a
−1(0)) ∩ δ−1({Im}) ∪ h−1(0)

and this is a partition. We shall show that this partition “works”. For n,m ∈ N

put Ωn,m = (g−1(Γn) \ a−1(0)) ∩ δ−1({Im}). Fix any x∗ ∈ BX∗ . For n ∈ N put

Fn = {x ∈ Γn : |x∗(x)| > ε}; thus #Fn < n. We are ready to estimate

λ∗
(⋃{

Ωn,m : n,m ∈ N and
∣∣∣x∗

(1
c
f(t)

)∣∣∣ > ε for some t ∈ Ωn,m

})

6 λ∗
(⋃

{Ωn,m : n,m ∈ N and |x∗(g(t))| > ε for some t ∈ Ωn,m}
)

6

∞∑

n=1

λ∗
(⋃

{Ωn,m : m ∈ N and |x∗(g(t))| > ε for some t ∈ Ωn,m}
)

=

∞∑

n=1

λ∗
(⋃{⋃

{Ωn,m : m ∈ N and (g−1(x) \ a−1(0)) ∩ δ−1({Im}) 6= ∅} : x ∈ Fn

})

6

∞∑

n=1

∑

x∈Fn

λ∗
(⋃

{Ωn,m : m ∈ N and (g−1(x) \ a−1(0)) ∩ δ−1({Im}) 6= ∅}
)

6

∞∑

n=1

∑

x∈Fn

λ(Gx) 6

∞∑

n=1

#Fn

ε

n2n
<

∞∑

n=1

ε

2n
= ε.

Now it remains to apply Proposition 9. If h is unbounded, we use the “bounded”

case proved above together with [14], 4A Theorem. �

We conclude this section with the following statement taken more or less from [8].

Theorem 11. Given a weakly Lindelöf determined Banach space X , then the

following assertions are mutually equivalent:

(i) Every Pettis integrable vector function f : [0, 1] → X is McShane integrable.

(ii) Every scalarly negligible vector function f : [0, 1] → X is McShane integrable.

(iii) For some strong Markuševič basis {(γ, ξγ) : γ ∈ Γ} in X every scalarly negligible

vector function f : [0, 1] → RΓ is McShane integrable.
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P r o o f. The chain (i) ⇒ (ii) ⇒ (iii) is trivial, see [8]. For (ii) ⇒ (i) see [7],

page 1184, or the proof of [8], Theorem 3.7. (iii) ⇒ (ii) is a combination of [8],

Lemmas 3.4, 3.5, and 3.6. �

Putting together Proposition 10 and Theorem 11 we get [8], Theorem 3.7.

The adjective “strong” at Markuševič basis means that every x ∈ X belongs to

the closed linear span of the set {γ ∈ Γ: ξγ(x) 6= 0}. For instance, Schauder bases

in separable Banach spaces and unconditional bases in any Banach spaces (if they

exist) are strong. The existence of a strong Markuševič basis for separable Banach

spaces is a rather deep statement due to Terenzi [15], Theorem 1.36; an extension

of this fact to (nonseparable) weakly Lindelöf determined spaces, can then be done

via a standard transfinite induction argument using projectional resolutions of the

identity; see [15], Corollary 5.2. It should be noted that Proposition 10 easily implies

that (iii) above is satisfied if X is a subspace of a Hilbert generated Banach space,

see also [8].

Remark 12. We mention one situation when we do not need the result of Terenzi;

then we shall be able to apply Theorem 11 more directly. Let K ⊂ Σ([0, 1]
[0,1]

) be

any Eberlein compact set such that for every t ∈ [0, 1] there is k ∈ K such that

k(t) > 0, and that for every Lebesgue injection ϕ : [0, 1] → [0, 1] the (compact) space

K ◦ ϕ := {k ◦ ϕ : k ∈ K} is not MC-filling. Define

HK := {h ∈ [−1, 1][0,1] : |a(·)| 6 k(·) for some k ∈ K};

this is a compact space. For t ∈ [0, 1] and h ∈ HK define πt(h) = h(t); clearly

0 6= πt ∈ C(HK). Let XK ⊂ C(HK) be the closed linear span of all such πt’s.

For every finite set F ⊂ [0, 1] and every at ∈ R, t ∈ F , we have
∥∥∥
∑
t∈F

atπt

∥∥∥ =

max
{∑
t∈F

|at|k(t) : k ∈ K
}
. From this we can conclude that for every x ∈ XK

there exist unique at ∈ R, t ∈ [0, 1], such that x =
∑

t∈[0,1]

atπt; this means that for

every ε > 0 there is a finite set F ⊂ [0, 1] such that
∥∥∥x −

∑
t∈J

atπt

∥∥∥ < ε whenever

F ⊂ J ⊂ [0, 1] is a finite set. For suggestions how to get this, see the proof of [17],

Proposition 1.a.3. Now, for every s ∈ [0, 1] and every x =
∑

t∈[0,1]

atπt ∈ XK we put

ξs(x) = as. It is easy to show that this ξs is an element of the dual XK
∗. Then,

clearly {(πt, ξt) : t ∈ [0, 1]} is a strong Markuševič basis in XK
∗.

It remains to verify that (iii) in Theorem 11 holds for this basis. Consider any

scalarly negligible vector function f : [0, 1] → R{πs : s ∈ [0, 1]}. For t ∈ f−1(0) put

a(t) := 0 ∈ R and ϕ(t) := t. For t ∈ [0, 1]\f−1(0) find a(t) ∈ R and ϕ(t) ∈ [0, 1] such

that f(t) = a(t)πϕ(t). Then f(t) = a(t)πϕ(t) for every t ∈ [0, 1]. Fix any s ∈ [0, 1].
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Find k ∈ K so that k(s) > 0. Define h(s) = k(s) and h(t) = 0 for t ∈ [0, 1] \ {s}.

Note that h ∈ HK . Since f is scalarly negligible, the function [0, 1] ∋ t 7→ f(t)(h) is

Lebesgue negligible. Hence

0 = λ({t ∈ [0, 1]: f(t)(h) 6= 0})

= λ({t ∈ [0, 1]: a(t) 6= 0 and πϕ(t)(h) 6= 0})

= λ({t ∈ [0, 1] \ a−1(0) : s = ϕ(t)}) = λ(ϕ−1(s) \ a−1(0)).

Also ϕ−1(s) ∩ a−1(0) ⊂ {s}. Therefore λ(ϕ−1(s)) = 0. We proved that our ϕ :

[0, 1] → [0, 1] is a Lebesgue injection.

Since K is not MC-filling, the compact space HK is not MC-filing as well. Propo-

sition 6 says that the vector function f : [0, 1] → C(HK ◦ ϕ) defined by

f(t)(h ◦ ϕ) = a(t)(h ◦ ϕ)(t) (= f(t)(h)), h ∈ HK , t ∈ [0, 1],

is McShane integrable. But C(HK ◦ ϕ) is isometrical with a subspace of C(HK).

Therefore, f : [0, 1] → C(HK) is also McShane integrable. We thus verified (iii).

Now, Theorem 11 guarantees that every Pettis integrable vector function f : [0, 1] →

XK is McShane integrable.

We can perform the reasoning above if K is a uniform Eberlein compact space,

see Proposition 4. However, if there exists a non-uniform Eberlein compact space

K ⊂ Σ([0, 1]
[0,1]

) which is Eberlein (more generally, which is such that every regular

Borel measure on the corresponding HK has a separable support) and is such that

K ◦ϕ is not MC-filling for every Lebesgue injection ϕ : [0, 1] → [0, 1] (so far we do not

know if such a K exists), then we would have that the corresponding Banach space

XK constructed above is a space where Pettis and McShane integrability coincide

and yet XK is not a subspace of a Hilbert generated space. Let us check the latter

statement. Assume that XK is a subspace of a Hilbert generated space. We observe

that the set {πt : t ∈ [0, 1]} countably supports all elements of the dual XK
∗. This is

so since the dual unit ball of this space endowed with the weak∗ topology is a Corson

compact space. Now, for every ε > 0 [10], Theorem 6, yields a partition [0, 1] =
∞⋃
n=1

T ε
n such that for every n ∈ N and every h ∈ HK the set {t ∈ T ε

n : |πt(h)| > ε}

has cardinality less than n. But then [10], Theorem 10 (a), would yield that the

compact space HK , hence also K, were uniformly Eberlein; a contradiction.
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5. Examples

In this section, we inspect how several known compact spaces behave with respect

to the concept of MC-filling.

Example 13. This example is a formal variant of the compact space of

Benyamini-Starbird [5], simplified a bit by Argyros-Farmaki [2], Example 1.10: Here,

instead of the “triangle” {1}×{1, 2}×{1, 2, 3}×. . . used in [5] and [2], we shall prefer

working with the interval [0, 1]. For n ∈ N put Sn = {s ∈ {1, 2, . . . , n}n : s(1) = 1,

s(2) 6 2, . . . , s(n) 6 n}; thus #Sn = n!. Put then S = S1 ∪ S2 ∪ . . .. For

n ∈ N and s ∈ Sn we put |s| = n and further ŝ j = (s(1), s(2), . . . , s(n), j) for

j ∈ {1, 2, . . . , n, n + 1}. For s ∈ S we shall construct intervals Ts ⊂ [0, 1), of

form [a, b), as follows. Put T(1) = [0, 1). Now, let n ∈ N be fixed for a while

and assume that we have already constructed Ts, s ∈ Sn. Fix for a while any

s ∈ Sn. Thus Ts = [a, b) where 0 6 a < b 6 1. Insert “equidistantly” numbers

a = c0 < c1 < c2 < . . . < cn < cn+1 = b and define then Tŝ j = [cj−1, cj),

j = 1, . . . , n+1. Do so for every s ∈ Sn. This way, we defined Ts for every s ∈ Sn+1.

Do so for every n ∈ N. This way we defined Ts for every s ∈ S. We observe that

λ(Ts) = 1/|s|! for every s ∈ S. Also, we can easily observe that if t, s ∈ S and

|t| > |s|, then either Tt ⊂ Ts or Tt ∩ Ts = ∅. Moreover, [0, 1] =
⋃
{Ts : s ∈ Sn} ∪ {1}

is a (finite) partition for every n ∈ N.

Now, for any “handle” h ∈ S let Bh be the family consisting of all “brooms”

B ⊂ [0, 1) such that B ⊂ Th and that #(B ∩ Th ĵ) 6 1 for every j = 1, . . . , |h|+ 1;

thus #B 6 |h| + 1. Put then B =
⋃
{Bh : h ∈ S}; this is an adequate family on

[0, 1), i.e., B contains all singletons, if A ⊂ B ∈ B, then A ∈ B, and a set B ⊂ [0, 1)

belongs to B whenever A ∈ B for every finite A ⊂ B. Define KB = {1B : B ∈ B}.

Since B ⊂ [0, 1]
<ω
, it follows that KB is a weakly compact subset of c0([0, 1]) and

so is an Eberlein compact space. Assume for a while that KB is a uniform Eberlein

compact space. By Proposition 1, there is a partition [0, 1] =
∞⋃
n=1

Γn such that

for every B ∈ B and for every n ∈ N we have #(B ∩ Γn) 6 n. Baire’s theorem

yields n ∈ N such that int Γn 6= ∅. Find s ∈ S so that Ts ⊂ Γn. We may and do

assume that |s| > n. For every j = 1, . . . , n + 1 we have Tŝ j ⊂ Ts ⊂ Γn, hence

there is tj ∈ Tŝ j ∩ Γn. Putting then B = {t1, . . . , tn+1}, we have B ∈ Bs and

#B ∩Γn = n+1, a contradiction. Therefore, KB is not a uniform Eberlein compact

space.

Yet the compact space KB, equivalently, the family B, is not MC-filling! In order

to prove this, let ε ∈ (0, 1) be any fixed number. Find n ∈ N so big that (n−1)! > 1/ε.

We shall show that the (even finite) partition [0, 1] =
⋃
{Ts : s ∈ Sn} ∪ {1} “works”.

Indeed, take any broom B ∈ B. Let h be the handle of B, i.e., B ∈ Bh. First, assume
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that |h| < n. Then

λ
(⋃

{Ts : s ∈ Sn, B ∩ Ts 6= ∅}
)
6

∑
{λ(Ts) : s ∈ Sn, B ∩ Ts 6= ∅}

6 #B ·
1

n!
6

|h|+ 1

n!
6

n

n!
=

1

(n− 1)!
< ε.

Second, assume |h| > n. Then a moment’s reflection yields that B ⊂ Tu for some

u ∈ Sn. Hence

λ
(⋃

{Ts : s ∈ Sn, B ∩ Ts 6= ∅}
)
= λ(Tu) =

1

|u|!
=

1

n!
< ε.

�

Example 14 (Marciszewski [19]). Instead of {0, 1}ω used in [19], we shall work

with [0, 1). Consider “dyadic” intervals Ts, s ∈ {0, 1}<ω, in [0, 1), that is, put

T(0) = [0, 1/2), T(1) = [1/2, 1), T(0,0) = [0, 1/4), T(0,1) = [1/4, 1/2),

T(1,0) = [1/2, 3/4), T(1,1) = [3/4, 1), T(0,0,0) = [0, 1/8), . . . .

For any “handle” h ∈ {0, 1}<ω let Bh consist of all “brooms” B ⊂ Th with #B 6 |h|.

Put then B =
⋃
{Bh : h ∈ {0, 1}<ω}. It is easy to check that this family is adequate

on [0, 1). Indeed, let A ⊂ [0, 1) be a set such that B ∈ B for every finite subset

B ⊂ A. If A is finite, then clearly A ∈ B. So, assume A is infinite. Find a pairwise

distinct sequence t1, t2, . . . in A. For every m ∈ N, m > 1, we (already) know that

{t1, . . . , tm} ∈ B; find then hm ∈ {0, 1}<ω, of maximal possible length |hm|, such that

{t1, . . . , tm} ⊂ Thm
. Then, necessarily, |h2| > |h3| > . . .. Hence, there must exist

m ∈ N such that m > |hm|, which is impossible because each element of Bhm
has

cardinality at most |hm|. It follows that A must be finite. Thus KB := {1B : B ∈ B}

is an (Eberlein) compact space. That KB is not uniform Eberlein can be seen as in

Example 13. That KB is not MC-filling either, can also be seen as in Example 13.

Indeed, given any ε ∈ (0, 1), find n ∈ N so large that n2−n < ε; then the finite

partition [0, 1] =
⋃
{Ts : s ∈ {0, 1}<ω and |s| = n} ∪ {1} “works”. �

Example 15 (Talagrand [22], Théorème 4.3). This construction is based on an

(adequate) family sitting on the whole Baire space NN (instead of just the “triangle”

{1} × {1, 2} × {1, 2, 3} × . . . considered in Example 13). Again, instead of NN, we

shall be working in [0, 1]. For s ∈ N
<ω we shall construct intervals Ts ⊂ (0, 1] as

follows. Put T∅ = (0, 1]. Further we proceed by induction. Assume that s ∈ N
<ω

is fixed and that we already defined Ts of the form (a, b]. Then we define Tŝ j =

(a + 2−j(b − a), a + 2−j+1(b − a)], j ∈ N. This way we define Ts for every s ∈ S.
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We observe that λ(Ts) = 2−s(1)−...−s(n) for every n ∈ N and every s ∈ N
n. Also, we

can easily check that, if t, s ∈ S and |t| > |s|, then either Tt ⊂ Ts or Tt ∩ Ts = ∅.

Moreover, [0, 1] =
⋃
{Ts : s ∈ N

n} ∪ {0} is a (countable) partition.

Now, for any handle h ∈ N
<ω let Bh be the family consisting of all brooms B ⊂

(0, 1] such that B ⊂ Th and that #(B ∩ Tt̂ j) 6 1 for every j ∈ N; thus B is at most

countable. Put then B =
⋃
{Bh : h ∈ N

<ω}; this is again an adequate family on (0, 1].

Define KB = {1B : B ∈ B}; then KB →֒ Σ({0, 1}[0,1]) (= [0, 1]
6ω

) continuously and

so KB is a Corson compact space. More specifically, we can say that this KB is

a Talagrand (hence Gul’ko) compact space [22], Théorème 4.1. Using a criterion

of Talagrand’s, see [16], Theorem 4.8, together with a Baire category argument, we

can check that KB is not an Eberlein compact space; hence, a fortiori, KB is not

a uniform Eberlein compact space.

Yet the space KB, equivalently, the family B, is not MC-filling! In order to prove

this, let ε > 0 be any fixed number. Find n ∈ N so large that 2−n+1 < ε. We shall

show that the countable partition [0, 1] =
⋃
{Ts : s ∈ N

n} ∪ {0} “works”. Indeed,

take any B ∈ B. Let h be the handle of B. First, assume that |h| < n. Find mutually

disjoint s1, s2, . . . ∈ N
n such that B ⊂

∞⋃
j=1

Tsj and that #(B ∩ Tsj ) 6 1 for every

j ∈ N. Then

λ
(⋃

{Ts : s ∈ N
n, B ∩ Ts 6= ∅}

)
6

∞∑

j=1

λ(Tsj )

=

∞∑

j=1

2−h(1)−...−h(|h|)−sj(|h|+1)−...−sj(n)

< 2−(n−1)
∞∑

j=1

2−j = 2−(n−1) < ε.

Second, assume |h| > n. Then a moment’s reflexion yields that B ⊂ Tu for some

u ∈ Sn, and hence

λ
(⋃

{Ts : s ∈ N
n, B ∩ Ts 6= ∅}

)
= λ(Tu) 6 2−n < ε.

�

Question 2. Does there exist a Lebesgue injection ϕ : [0, 1] → [0, 1] such that

the family {ϕ−1(B) : B ∈ B}, where B is from Example 13, 14, or 15, would be

MC-filling? If the answer were affirmative, then we would have, by Proposition 6,

a scalarly negligible vector function from [0, 1] into C(KB) which is not McShane

integrable, and thus Question 1 would remain open. If the answer were negative for
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some B, we would be able to construct, using Remark 12, a Banach space XB which

is not a subspace of a Hilbert generated space and yet every Pettis integrable vector

function f : [0, 1] → XB would be McShane integrable; thus we would get beyond [8],

Theorem 3.7. The negative answer to Question 2 would imply the negative answer

to Question 1.

Example 16 (Siberian [16], Example 5.2). Let ω1 denote the first uncountable

ordinal. Consider the family F of all A ⊂ ω1
2 such that whenever (α, β), (α′, β′)

are distinct elements of A, then either α < α′ and β > β′, or α > α′ and β < β′.

This is an adequate family consisting of finite (!) sets. Hence the corresponding

KF := {1A : A ∈ F} is an Eberlein compact space. Using Proposition 1, we can

check that KF is not uniform Eberlein. We shall show that, assuming the continuum

hypothesis (CH), this KF , after a suitable continuous injection into Σ({0, 1}[0,1])

(= [0, 1]
6ω

), is MC-filling.

Below, we were partially inspired by the proof of [4], Theorem 3.5. Fix (even any)

ε ∈ (0, 1) and any partition [0, 1] =
∞⋃

m=1
Ωm. According to [13], 419I, there exists

an ω1-partition [0, 1] =
⋃

α<ω1

Zα such that λ
∗(Zα) = 1 for every α ∈ Ω1. Clearly,

each Zα must be uncountable. Using (CH), for every α < ω1, we enumerate the set

Zα as {tαβ : β < ω1}. Now, define κ : ω1
2 → [0, 1] by ω1

2 ∋ (α, β) 7→ tαβ ; this is an

injective surjection. Define then κ̃ : KF → {0, 1}<ω1
2

by K ∋ 1A 7→ 1κ(A); this is

a continuous injection. Now, for every α < ω1 we have λ
∗(Zα) = 1; hence there is

s(α) ∈ N such that λ∗
(
Zα∩

s(α)⋃
m=1

Ωm

)
> ε. For n ∈ N put Γn = {α < ω1 : s(α) = n}.

Then ω1 =
∞⋃
n=1

Γn is a partition of ω1. Find an n ∈ N so that Γn is infinite. Thus

we have λ∗
(
Zα ∩

n⋃
m=1

Ωm

)
> ε for every α ∈ Γn. Pick some mutually distinct

α1, α2, . . . , αn ∈ Γn. We may and do assume that α1 > α2 > . . . > αn. Thus we

have

λ∗
(
Zαj

∩
n⋃

m=1

Ωm

)
> ε for every j = 1, . . . , n.

Hence, there exists m(1) ∈ {1, . . . , n} so that λ∗(Zα1
∩Ωm(1)) > 0. If λ∗(Ωm(1)) > ε,

put r = 1 and stop the process. Further assume the opposite. Then

ε < λ∗
(
Zα2

∩
n⋃

m=1

Ωm

)
6 λ∗(Zα2

∩ Ωm(1)) + λ∗
(
Zα2

∩
n⋃

m 6=m(1)

Ωm

)

6 ε+ λ∗
(
Zα2

∩
n⋃

m 6=m(1)

Ωm

)
.
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Hence, there exists m(2) ∈ {1, . . . , n} \ {m(1)} such that λ∗(Zα2
∩ Ωm(2)) > 0. If

λ∗(Ωm(1)∪Ωm(2)) > ε, put r = 2 and stop the process. If not, then a similar reasoning

yields m(3) ∈ {1, . . . , n} \ {m(1),m(2)} such that λ∗(Zα3
∩ Ωm(3)) > 0. Proceeding

on in an obvious way, our process must once stop, at the latest when r = n, since

we know that λ∗
( n⋃
m=1

Ωm

)
> ε. Now, pick some β1 < ω1 so that t

α1

β1
∈ Ωm(1). Pick

then some β1 < β2 < ω1 such that t
α2

β2
∈ Ωm(2); here we used (CH). Similarly, the

(CH) enables us to choose subsequently β3 < ω1 so that t
α3

β3
∈ Ωm(3), with β3 > β2,

etc., until βr < ω1 with t
αr

βr
∈ Ωm(r) and βr > βr−1 > . . . > β2 > β1. Finally, putting

A = {(α1, β1), (α2, β2), . . . , (αr, βr)}, we get that A ∈ F and that

λ∗
(⋃

{Ωm : m ∈ N and |1κ(A)(t)| > ε for some t ∈ Ωm}
)

= λ∗
(⋃

{Ωm : m ∈ N and κ(A) ∩ Ωm 6= ∅}
)
> λ∗

( r⋃

i=1

Ωm(i)

)
> ε.

We proved that the set κ̃(KF ) is MC-filling, i.e., that the family {κ(A) : A ∈ F}

is MC-filling. Thus, by Proposition 6 and its proof, the vector function f : [0, 1] →

C(κ̃(KF )) defined by f(t)(l) = l(t), t ∈ [0, 1], l ∈ κ̃(KF), does not have 0 as its

McShane integral. On the other hand, by Proposition 2, f is scalarly negligible.

Hence, f cannot be McShane integrable.

Denote H = {κ(A) : A ∈ F}. We shall find an injective surjection π : [0, 1] →

[0, 1] such that the space {1π(B) : B ∈ H} is not MC-filling, that is, the family

{π(B) : B ∈ H} is not MC-filling. Let C denote the Cantor set; note that #C = c

and that λ(C) = 0. Find any injecton π : [0, 1] → [0, 1] that maps Z1 onto [0, 1] \ C

and
⋃

1<α<ω1

Zα onto C. Now, fix any ε > 0. Pick s ∈ N so that s > 1/ε + 1 and

put Ωm = [0, 1] ∩ [mε− ε,mε) \ C, m = 1, . . . , s − 1 and Ωs = C. Then λ(Ωs) = 0

and [0, 1] =
s⋃

m=1
Ωm is a partition of [0, 1]. Take any B ∈ H. Assume there is m ∈

{1, . . . , s− 1} so that π(B) ∩ Ωm 6= ∅. Then B must be of form {tα1

β1
, tα2

β2
, . . . , t

αn−1

βn−1
,

t1βn
} where n ∈ N, α1 > α2 > . . . > αn−1 > 1 and β1 < . . . < βn, and we have

π(B)∩Ωm = {π(t1βn
)}. Clearly, π(B)∩Ωm′ = ∅ for every m′ ∈ {1, . . . , s− 1} \ {m}.

Therefore, λ
(⋃

{Ωm : m ∈ {1, . . . , s} and π(B) ∩ Ωm 6= ∅}
)
6 ε. We have proved

that {π(B) : B ∈ H} is not MC-filling. Put ϕ = π−1, this is clearly a (Lebesgue)

injection from [0, 1] into [0, 1]. Then the compact space

κ̃(KF ) ◦ ϕ := {1κ(A) ◦ ϕ : A ∈ F} = {1ϕ−1(κ(A)) : A ∈ F} = {1π(B) : B ∈ H}

is not MC-filling.

If Martin’s axiom [20] holds and simultaneously (CH) does not hold, then for any

mapping κ : ω1
2 → [0, 1] the set κ̃(KF) is not MC-filling. Indeed, in this case κ(ω1

2)
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is a Lebesgue null set, and hence the 2-partition [0, 1] = κ(ω1
2) ∪ ([0, 1] \ κ(ω1

2))

demonstrates this. More generally, if ϕ : [0, 1] → [0, 1] is any Lebesgue injection,

then the 2-partition [0, 1] = ϕ−1(κ(ω1
2))∪ ([0, 1]\ϕ−1(κ(ω1

2))) shows that the space

κ̃(KF) ◦ ϕ is not MC-filling.

Variants of this example work also under other set-theoretical axioms. In particu-

lar, assume that Martin’s axiom [20] holds; then every subset of [0, 1] of cardinality

less than c is Lebesgue null. Hence, if our family F is built of subsets of ω1×c (instead

of ω1
2), we get that the space κ̃(KF) is MC-filling for our injection κ : ω1×c → [0, 1].

We thank O.Kalenda for telling us these two remarks related to set-theoretical ax-

ioms.

6. Adequate inflations

The technology developed in the proof of [4], Theorem 3.5, can be used for con-

structing, from a given compact set K ⊂ Σ(RΓ) which is not uniform Eberlein,

a compact overspace K ⊂ H ⊂ Σ(R[0,1]) which will be MC-filling (provided that

#Γ 6 c).

Let Γ be a fixed uncountable set with #Γ 6 c. Let [0, 1] =
⋃
γ∈Γ

Zγ be a fixed Γ-

partition of the interval [0, 1] such that λ∗(Zγ) = 1 for every γ ∈ Γ, see, for instance,

in [13], 419I.

Consider any k ∈ Σ(RΓ). Take any, possibly empty, set S ⊂ supp k and for every

γ ∈ S pick some tγ ∈ Zγ . Define then h(tγ) = k(γ) if γ ∈ S and h(t) = 0 if

t ∈ [0, 1] \ {tγ : γ ∈ S}; clearly, h is an element of Σ(R[0,1]) and ‖h‖∞ 6 ‖k‖∞. Any

h constructed in this way will be called an adequate extension of k (subordinated to

our Γ-partition). Clearly, every 0 6≡ k ∈ Σ(RΓ) has plenty of adequate extensions.

Define ϕ : [0, 1] → Γ by ϕ|Zγ
≡ γ, γ ∈ Γ.

Now, consider a (rather compact) set K ⊂ Σ(RΓ) and let H denote the set of

all h ∈ Σ(R[0,1]) which are adequate extensions of elements of K. This H will be

called the adequate inflation of K (subordinated to our Γ-partition). Clearly, H is

a norm-bounded set, if so is K. Also, H is adequate, that is, h · 1A ∈ H whenever

h ∈ H and A ⊂ Γ. Moreover, H can be understood as an over-space of K. Indeed,

if for every γ ∈ Γ we pick some tγ ∈ Zγ , and then for every k ∈ K we put

j(k)(tγ) = k(γ) if γ ∈ Γ, and j(k)(t) = 0 if t ∈ [0, 1] \ {tγ : γ ∈ Γ},

then, clearly, j(k) ∈ H and j : K →֒ H will be a homeomorphism into.

Fact 17. The set H ⊂ Σ(R[0,1]) is compact provided that K ⊂ Σ(RΓ) is compact.
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P r o o f. Consider any net (hτ )τ∈T in H . Find a net (kτ )τ∈T in K such that

hτ is an adequate extension of kτ for every τ ∈ T . When going to subnets, we may

and do assume that kτ → k ∈ K and hτ → x ∈ R
[0,1] in the pointwise topologies. If

x ≡ 0, we are done. Assume further that x 6≡ 0. We shall show that x is an adequate

extension of k, which will finish the proof. Fix any t ∈ suppx. Find the (unique)

γ ∈ Γ so that Zγ ∋ t. We observe that for all τ ’s large enough we have hτ (t) 6= 0, and

hence hτ (t) = kτ (γ). Thus x(t) = lim
τ
hτ (t) = lim

τ
kτ (γ) (= k(γ)). We proved that

ϕ(supp x) ⊂ supp k. Further, consider any distinct t, t′ ∈ suppx and find γ, γ′ ∈ Γ

such that t ∈ Zγ and t
′ ∈ Zγ′ . Take a τ ∈ T so big that hτ (t) 6= 0 and hτ (t

′) 6= 0.

Then, necessarily, γ 6= γ′. This all together implies that x is an adequate extension

of k and that x ∈ Σ(R[0,1]). �

Proposition 18. Let Γ be an uncountable set with #Γ 6 c and let [0, 1] =⋃
γ∈Γ

Zγ be a Γ-partition, with λ∗(Zγ) = 1, for every γ ∈ Γ. Let K ⊂ Σ(RΓ) be

a compact set which is not uniform Eberlein. Then any adequate inflation H ⊂

Σ(R[0,1])) of K subordinated to our Γ-partition is MC-filling; moreover, there exists

an injective surjection π : [0, 1] → [0, 1], independent of H , such that the (compact)

space π̃(H) := {h ◦ π−1 : h ∈ H} is not MC-filling.

P r o o f. By Farmaki’s criterion mentioned before Proposition 1, there exists

ε > 0 such that for every partition Γ =
∞⋃
n=1

Γn there are k ∈ K and n ∈ N such that

#{γ ∈ Γn : |k(ω)| > ε} > n. Further, we shall imitate the proof of [4], Theorem 3.5.

Let [0, 1] =
∞⋃

m=1
Ωm be any partition. For every γ ∈ Γ we have λ∗(Zγ) = 1; hence,

there is s(γ) ∈ N such that λ∗
(
Zγ ∩

s(γ)⋃
m=1

Ωm

)
> ε. For n ∈ N put Γn = {γ ∈ Γ:

s(γ) = n}. Then Γ =
∞⋃
n=1

Γn is a partition of Γ. Find pairwise distinct γ1, . . . , γn ∈

Γn such that |k(γj)| > ε for every j = 1, . . . , n. Thus we have that

λ∗
(
Zγj

∩
n⋃

m=1

Ωm

)
> ε for every j = 1, . . . ,m.

Choose m(1) ∈ {1, . . . , n} so that Zγ1
∩ Ωm(1) is a nonempty set. If λ

∗(Ωm(1)) > ε,

put r = 1 and stop the process. Further assume the opposite. Then

ε < λ∗
(
Zγ2

∩
n⋃

m=1

Ωm

)
6 λ∗(Zγ2

∩ Ωm(1)) + λ∗
(
Zγ2

∩
n⋃

m 6=m(1)

Ωm

)

6 ε+ λ∗
(
Zγ2

∩
n⋃

m 6=m(1)

Ωm

)
.

103



Hence, there exists m(2) ∈ {1, . . . , n} \ {m(1)} such that Zγ2
∩ Ωm(2) 6= ∅. If

λ∗(Ωm(1)∪Ωm(2)) > ε, put r = 2 and stop the process. If not, then a similar reasoning

yields m(3) ∈ {1, . . . , n} \ {m(1),m(2)} such that Zγ3
∩Ωm(3) 6= ∅. Proceeding on in

a similar way, our process must once stop, at the latest when r = n, since we know

that λ∗
( n⋃
m=1

Ωm

)
> ε.

We recall that for every j = 1, . . . , r the set Zγj
∩Ωm(j) was nonepmty; pick some

tj in it. Put finally h(tj) = k(γj), j = 1, . . . , r, and h(t) = 0 if t ∈ [0, 1]\ {t1, . . . , tr}.

This h is an adequate extension of k, and hence h ∈ H . Now, we are ready to

estimate

λ∗
(⋃

{Ωm : m ∈ N and |h(t)| > ε for some t ∈ Ωm}
)
= λ∗

( r⋃

j=1

Ωm(j)

)
> ε.

We proved that the overspace space H is MC-filling.

Finally, consider the injective surjection π : [0, 1] → [0, 1] used in Example 16. Let

ε ∈ (0, 1) be arbitrary. Let s ∈ N and the partition [0, 1] =
s⋃

m=1
Ωm be those found

for our ε in the same place. Assume there are distinct m,m′ ∈ {1, . . . , s − 1} such

that |h ◦ π−1(t)| > ε for some t ∈ Ωm and |h ◦ π−1(t′)| > ε for some t′ ∈ Ωm′ . Then

necessarily π−1(t) ∈ Z1, π
−1(t′) ∈ Z1, and hence π

−1(t) = π−1(t′), that is, t = t′, by

the very definition of H . Therefore, λ
(⋃

{Ωm : m ∈ {1, . . . , s} and |h ◦ π−1(t)| > ε

for some t ∈ Ωm}
)
6 ε, which means that the space π̃(H) is not MC-filling. �

Corollary 19. There exists an adequate family H ⊂ [0, 1]
<ω
such that KH :=

{1A : A ∈ H} is (automatically) an Eberlein compact space, KH is not a uniform

Eberlein compact space, KH is MC-filling, and {1π(A) : A ∈ H} is not MC-filling for

a suitable injective surjection π : [0, 1] → [0, 1].

P r o o f. Let F ⊂ [0, 1]
<ω
be any adequate family such that {1A : A ∈ F} is

not a uniform Eberlein compact space, e.g., let F be the family B from Example 13

or 14. Inflate F to an H by Proposition 18. (Under (CH), it is enough to take for H

the family from Example 16, without any further inflation.) �

7. Concluding remarks

1. The (Eberlein) compact space made from the hereditary family constructed

by Fremlin in [4], Lemma 3.4, cannot be uniform Eberlein. This follows easily from

Farmaki’s criterion, or, indirectly, from [8], Theorem 3.7. Propositions 18 and 6 thus

cover, as a special case, the result of Avilés, Plebanek, and Rodríguez [4], Theo-

rem 3.6.
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2. Let Γ be an uncountable set, with #Γ 6 c, and let K be a compact subset of

Σ(RΓ). Let H ⊂ Σ(R[0,1]) be an adequate inflation of K made in Proposition 18.

Using [10], Theorem 10, we can easily verify that K is uniform Eberlein, Eberlein,

Talagrand, or Gul’ko if and only if so is, respectively, H. Moreover, if L is a Gul’ko

compact space, then the dual C(L)∗ injects linearly and weak∗ to pointwise contin-

uously into Σ(R∆) where #∆ is equal to the density of L [9], Theorem 7.2.5. And

it should be noted that there do exist compact spaces which are, say: Gul’ko and

not Talagrand, Talagrand and not Eberlein, and so on; see, for instance, [1], [6], and

the references therein. Thus, using Proposition 6, we get several examples of com-

pact spaces H such that the canonical vector function f : [0, 1] → C(H) is scalarly

negligible and not McShane integrable.

3. Let Γ be an uncountable set, with #Γ 6 c, and let K be any compact subset

of Σ(RΓ); this means that K is Corson. Let H be an adequate inflation of K; then

H ⊂ Σ(R[0,1]). In order to guarantee that the vector function f : [0, 1] → C(H)

defined by f(t)(h) = h(t), h ∈ H , t ∈ [0, 1] is scalarly negligible, we need to know

that (BC(H)∗ , w
∗) is angelic. However this may not be true in general, see [3]. This

is the case if and only if C(H) is weakly Lindelöf determined (WLD), if and only if

every regular Borel measure on H has a separable support, see [3], Theorem 3.5. We

do not know if C(H) is WLD provided that C(K) is such.

Acknowledgement. We thank A.Avilés, O.Kalenda, G. Plebanek, and J. Zaple-

tal for discussing the topic of this paper.
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