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DUNKL-GABOR TRANSFORM AND TIME-FREQUENCY

CONCENTRATION
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Abstract. The aim of this paper is to prove two new uncertainty principles for the Dunkl-
Gabor transform. The first of these results is a new version of Heisenberg’s uncertainty
inequality which states that the Dunkl-Gabor transform of a nonzero function with respect
to a nonzero radial window function cannot be time and frequency concentrated around
zero. The second result is an analogue of Benedicks’ uncertainty principle which states
that the Dunkl-Gabor transform of a nonzero function with respect to a particular win-
dow function cannot be time-frequency concentrated in a subset of the form S × B(0, b)

in the time-frequency plane R
d
× R̂

d. As a side result we generalize a related result of
Donoho and Stark on stable recovery of a signal which has been truncated and corrupted
by noise.
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1. Introduction

Heisenberg’s uncertainty principle is usually understood as a relation between

the simultaneous spreadings of a function and its Fourier transform. As well as

its well-known original interpretation in quantum theory, it also has relevance to

signal processing, as it gives a restriction on how well the instantaneous frequency

of a signal can be measured. To be more precise, let d > 1 be the dimension,

and let us denote by 〈·, ·〉 the scalar product and by |·| the Euclidean norm on

R
d. Then Heisenberg’s uncertainty inequality can be stated in the following ver-

sion:

(1.1) ‖|x|f‖L2(Rd) ‖|ξ|F(f)‖L2(Rd) > c(d)‖f‖2L2(Rd),
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where the Fourier transform is defined for f ∈ L1(Rd) ∩ L2(Rd) by

F(f)(ξ) = (2π)−d/2

∫

Rd

f(x)E−i〈x,ξ〉 dx,

and it is extended from L1(Rd) ∩ L2(Rd) to L2(Rd) in the usual way.

In order to describe our results, we first need to introduce some notation (further

details can be found in Section 2.1). In this paper we consider the Dunkl opera-

tors (see [6]) Tj ; j = 1, . . . , d associated with an arbitrary finite reflection group G

and a nonnegative multiplicity function k. These are differential-difference oper-

ators generalizing the usual partial derivatives and they play a useful role in the

algebraic description of exactly solvable quantum many body systems of Calogero-

Moser-Sutherland type; among the broad literature, we refer to [12] and [15].

The Dunkl kernel K on R
d × R

d associated with G and k has been introduced

by C. F.Dunkl in [5], [6]. It generalizes the usual exponential function (k = 0) and

can be characterized as the solution of a joint eigenvalue problem for the associated

Dunkl operators. This kernel is especially of interest as it gives rise to a corresponding

integral transform on Rd. The Dunkl transform FD associated with G and k involves

a weight function wk and is defined for an integrable function f on R
d with respect

to the measure dµk(x) = wk(x) dx by

FD(f)(ξ) := ck

∫

Rd

K(−iξ, x)f(x) dµk(x), ξ ∈ R
d

and extended to L2
k(R

d) by a Parseval-type relation with ck being a suitable constant.

Here, for 1 6 p < ∞, we denote by Lp
k(R

d) the Banach space consisting of measurable

functions f on R
d equipped with the norms

‖f‖Lp

k
=

(∫

Rd

|f(x)|
p
dµk(x)

)1/p
.

This transformation generalizes the classical Fourier transform F , to which it

reduces in the case k = 0. Therefore Heisenberg’s inequality (1.1) for the Dunkl

transform leads to (see [16], [18])

(1.2) ‖|x|f‖L2
k
‖|ξ| FD(f)‖L2

k
> (γ(k) + d/2)‖f‖2L2

k
,

where γ(k) is the index of k given by (2.1).

One way one may hope to overcome the lack of localization is to use the windowed

Fourier transform, also known as the (continuous) Gabor transform, or the short-

time Fourier transform. To be more precise, fix g ∈ L2(Rd), a nonzero window
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function, and define for f ∈ L2(Rd) its windowed Fourier transform with respect to

the window g as

(1.3) Fg(f)(x, ξ) = F [f g(· − x)](ξ) = (2π)−d/2

∫

Rd

f(t)g(t− x)E i〈t,ξ〉 dt.

In quantum mechanics and in signal analysis, uncertainty principles for the win-

dowed Fourier transform are often discussed for simultaneous time-frequency repre-

sentations on R
d × R̂

d (the so-called phase space or time-frequency plane), see for

example [1], [3], [9], [19] and the references therein. The most famous of them is the

following sharp Heisenberg type uncertainty inequality (see [1], Theorem 5.1):

(1.4) ‖|x|Fg(f)‖L2(Rd×R̂d) ‖|ξ|Fg(f)‖L2(Rd×R̂d) > C(d)‖g‖2L2(Rd)‖f‖
2
L2(Rd).

In the present paper we are interested in proving an analogue of Heisenberg’s in-

equality (1.4) for the Dunkl-Gabor transform introduced in [13], [14]. Precisely, we

define the translation operator by

(1.5) τxf = F−1
D [K(ix, ·)FD(f)]

and the modulation operator by

(1.6) Mξg := FD

(√
τξ|g|2

)
.

Then for any nonzero radial window function g ∈ L2
k(R

d), the Dunkl-Gabor trans-

form of any signal f ∈ L2
k(R

d) with respect to the window g is given by

(1.7) GD
g (f)(x, ξ) =

∫

Rd

f(s)τ−xMξg(s) dµk(s), (x, ξ) ∈ R
d × R̂

d.

Let us now be more precise and describe our results. To do so, we need to introduce

some other notation. Throughout this paper, L2
k,rad(R

d) will be the subspace of radial

functions of L2
k(R

d) and for 1 6 p < ∞, we denote by Lp
k(R

d× R̂
d) the Banach space

consisting of measurable functions F on R
d × R̂

d equipped with the norms

‖F‖Lp

k
(Rd×R̂d) =

(∫∫

Rd×R̂d

|F (x, ξ)|p dνk(x, ξ)

)1/p
,

where dνk(x, ξ) = dµk(x) dµk(ξ).

Our main concern here is an uncertainty inequality like (1.4), which states in

particular that if one concentrates GD
g (f) in time (with respect to the x-variable),

then one looses concentration in frequency (with respect to the ξ-variable). In other

words, we are interested in the following adaptation of a well-known notion from

Fourier analysis:
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Definition 1.1. Let 0 < ε < 1 and s > 0. Let f ∈ L2
k(R

d), g ∈ L2
k,rad(R

d) be

two nonzero functions and Σ a measurable subset of Rd × R̂
d. Then:

(1) We say that GD
g (f) is ε-time-concentrated of magnitude s around x = 0, if

(1.8) ‖|x|s GD
g (f)‖L2

k
(Rd×R̂d) 6 ε‖f‖L2

k
‖g‖L2

k
.

(2) We say that GD
g (f) is ε-frequency-concentrated of magnitude s around ξ = 0, if

(1.9) ‖|ξ|s GD
g (f)‖L2

k
(Rd×R̂d) 6 ε‖f‖L2

k
‖g‖L2

k
.

(3) We say that GD
g (f) is ε-time-frequency-concentrated of magnitude s around

(x, ξ) = (0, 0), if

(1.10) ‖|(x, ξ)|s GD
g (f)‖L2

k
(Rd×R̂d) 6 ε‖f‖L2

k
‖g‖L2

k
.

(4) We say that GD
g (f) is ε-time-frequency-concentrated on Σ, if

(1.11) ‖GD
g (f)‖

L2(Σc,νk)
6 ε‖f‖L2

k
‖g‖L2

k
,

where Σc = (Rd × R̂
d) \ Σ.

If we take ε = 0 in inequality (1.11), then Σ will be the exact support of GD
g (f),

so that when 0 < ε < 1, inequality (1.11) means that GD
g (f) is “practically zero”

outside Σ. Indeed Σ may be viewed as the “essential” support of GD
g (f).

Our main result will be the following Heisenberg-type uncertainty inequality for

the Dunkl-Gabor transform:

Theorem A. Let s > 0. Then there is a constant c(k, s) such that, for every

f ∈ L2
k(R

d) and g ∈ L2
k,rad(R

d),

(1.12) ‖|x|s GD
g (f)‖L2

k
(Rd×R̂d) ‖|ξ|

s GD
g (f)‖L2

k
(Rd×R̂d) > c(k, s)‖f‖

2
L2

k
‖g‖

2
L2

k
.

This theorem implies in particular that, if GD
g (f) is ε-time-concentrated around

x = 0, then GD
g (f) cannot be ε-frequency-concentrated around ξ = 0.

As a side result we prove the following Benedicks-type uncertainty principle for

the Dunkl-Gabor transform:
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Theorem B. Let a, b > 0. Let g ∈ L2
k(R

d)∩L∞(Rd) be a nonzero radial window

function such that supp g ⊂ B(0, a) and let Σ = S×B(0, b) ⊂ R
d× R̂

d be a subset of

finite measure 0 < νk(Σ) < ∞. Then there exists a constant Ck(Σ) > 0 such that,

for all functions f ∈ L2
k(R

d)

(1.13) ‖f‖L2
k
‖g‖L2

k
6 Ck(Σ)‖G

D
g (f)‖

L2(Σc,νk)
.

In particular, if suppGD
g (f) is supported in Σ, then f is necessarily the zero

function.

The rest of the paper is organized as follows. The next section is devoted to some

preliminaries on the Dunkl-Gabor transform. In Section 3, we prove the Heisenberg

uncertainty inequality for the Dunkl-Gabor transform and in Section 4 we prove our

Benedicks-type uncertainty principle.

2. Preliminaries

2.1. The Dunkl transform and Dunkl translation. Let us fix some notation

and present some necessary material on the Dunkl transform. Let G be a finite

reflection group on R
d, associated with a root system R and the positive subsystem

R+ of R (see [2], [5], [17]). We denote by k a nonnegative multiplicity function

defined on R with the property that k is G-invariant. We associate with k the index

(2.1) γ := γ(k) =
∑

ξ∈R+

k(ξ) > 0

and the weight function wk defined by

wk(x) =
∏

ξ∈R+

|〈ξ, x〉|2k(ξ).

Further we introduce the Mehta-type constant ck by

ck =

(∫

Rd

E−|x|2/2 dµk(x)

)−1

.

Moreover, ∫

Sd−1

wk(x) dσ(x) =
c−1
k

2γ+d/2−1Γ(γ + d/2)
= dk.
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By using the homogeneity of wk it is shown in [17] that for a radial function

f ∈ L1(Rd, µk) the function f̃ defined on R
+ by f(x) = f̃(|x|) for all x ∈ R

d is

integrable with respect to the measure r2γ+d−1 dr. More precisely,

(2.2)

∫

Rd

f(x)wk(x) dx =

∫

R+

(∫

Sd−1

wk(ry) dσ(y)

)
f̃(r)rd−1 dr

= dk

∫

R+

f̃(r)r2γ+d−1 dr.

Introduced by C.F. Dunkl in [6], the Dunkl operators Tj, 1 6 j 6 d on R
d associ-

ated with the reflection group G and the multiplicity function k are the first-order

differential-difference operators given by

Tjf(x) =
∂f

∂xj
+

∑

ξ∈R+

k(ξ)ξj
f(x)− f(σξ(x))

〈ξ, x〉
, x ∈ R

d,

where f is an infinitely differentiable function on R
d, ξj = 〈ξ, ej〉, (e1, . . . , ed) being

the canonical basis of Rd, and σξ denotes the reflection with respect to the hyperplane

orthogonal to ξ.

The Dunkl kernel K on R
d × R

d has been introduced by C.F. Dunkl in [5]. For

ξ ∈ R
d the function x 7→ K(x, ξ) can be viewed as the solution on R

d of the initial

problem

Tju(x, ξ) = ξju(x, ξ), 1 6 j 6 d; u(0, ξ) = 1.

Therefore, for all λ ∈ C, z, z′ ∈ C
d and x, ξ ∈ R

d

K(z, z′) = K(z′, z), K(λz, z′) = K(z, λz′), K(−iξ, x) = K(iξ, x), |K(−iξ, x)| 6 1.

According to [2], [17] we have for all f ∈ L1
k(R

d),

(2.3) ‖FD(f)‖∞ 6 ck‖f‖L1
k
,

where ‖·‖∞ is the usual essential supremum norm and L∞(Rd) denotes the usual

space of essentially bounded functions. Moreover, the Dunkl transform FD extends

uniquely to an isometric isomorphism on L2
k(R

d):

‖FD(f)‖L2
k
= ‖f‖L2

k
and F−1

D (f)(ξ) = FD(f)(−ξ).

The Dunkl translation operator f → τxf is defined on L2
k(R

d) by

(2.4) τxf = F−1
D [K(ix, ·)FD(f)].
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The function τxf belongs to L
2
k(R

d) and we have

‖τxf‖L2
k
6 ‖f‖L2

k
.

Note also that if f is supported in Br ⊂ R
d, the ball of center 0 and radius r, then

τxf is supported in Br+x.

The Dunkl convolution f ∗D g of two functions f and g is defined by

f ∗D g(x) =

∫

Rd

τxf(−t)g(t) dµk(t) = g ∗D f(x), x ∈ R
d.

Let 1 6 p, q, r 6 ∞ be such that 1/p + 1/q − 1 = 1/r. If f ∈ Lp
k(R

d) and g ∈

Lq
k,rad(R

d), then f ∗D g ∈ Lr
k(R

d) and

‖f ∗D g‖Lr
k
6 ‖f‖Lp

k
‖g‖Lq

k
.

In particular, if f ∈ L1
k(R

d) and g ∈ L2
k(R

d), then f ∗D g ∈ L2
k(R

d) and

(2.5) FD(f ∗D g) = FD(f)FD(g).

Moreover, for f, g ∈ L2
k(R

d) the function f ∗D g belongs to L2
k(R

d) if and only if the

function FD(f)FD(g) belongs to L2
k(R

d) and then (2.5) holds.

2.2. The Dunkl-Gabor transform. Following [13], [14] for every radial function

g ∈ L2
k(R

d) the modulation of g by ξ ∈ R̂
d is defined by

(2.6) Mξg := gξ := FD

(√
τξ|g|2

)
.

Then

(2.7) ‖gξ‖L2
k

= ‖g‖L2
k
.

For g ∈ L2
k,rad(R

d), x ∈ R
d and ξ ∈ R̂

d, we consider the family gx,ξ defined by:

gx,ξ = τ−xgξ.

Then, for any function f ∈ L2
k(R

d), we define its Dunkl-Gabor transform with respect

to the “window” g by

GD
g (f)(x, ξ) =

∫

Rd

f(s)gx,ξ(s) dµk(s), (x, ξ) ∈ R
d × R̂

d,

which can also be written in the form

(2.8) GD
g (f)(x, ξ) = f ∗D F−1

D

(√
τξ|g|2

)
(x).

The Dunkl-Gabor transform possesses the following properties (see [14]).
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Proposition 2.1. Let g ∈ L2
k(R

d) be a nonzero radial function. Then we have:

(1) A Plancherel’s formula: For every f ∈ L2
k(R

d),

(2.9) ‖GD
g (f)‖

L2
k
(Rd×R̂d)

= ‖f‖L2
k
‖g‖L2

k
.

(2) For every f ∈ L2
k(R

d),

(2.10) ‖GD
g (f)‖

∞
6 ‖f‖L2

k
‖g‖L2

k
.

2.3. The dilation operator. For λ > 0, we define the dilation operator δλ on

L2
k(R

d) by

δλf(x) =
1

λγ+d/2
f
(x
λ

)
.

Then we have immediately the following properties:

(1) δ1/λδλf = δλδ1/λf ;

(2) ‖δλf‖L2
k
= ‖f‖L2

k
;

(3) FDδλ = δ1/λFD;

(4) δλ|f |
2 = λγ+d/2|δλf |

2;

(5)
√
δλ|f | = λ2γ+d/4δλ

√
|f |;

(6) τxδλ = δλτx/λ.

From this we deduce the following lemma:

Lemma 2.2. Let λ > 0 and let g ∈ L2
k,rad(R

d) be a nonzero window function.

Then for every f ∈ L2
k(R

d) and (x, ξ) ∈ R
d × R̂

d,

(2.11) GD
δ
λ−1g(δλf)(x, ξ) = GD

g (f)
(x
λ
, λξ

)
.

P r o o f. First, we have for every ξ ∈ R̂
d we have

F−1
D

(√
τξ|δλ−1g|2

)
= F−1

D

(√
λ(γ+d/2)τξδλ−1 |g|2

)
= F−1

D

(
λ(2γ+d)/4

√
δλ−1τλξ|g|2

)

= F−1
D

(
δλ−1

√
τλξ|g|2

)
= δλF

−1
D

(√
τλξ|g|2

)
.
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Thus for every (x, ξ) ∈ R
d × R̂

d we have

GD
δ
λ−1g(δλf)(x, ξ) = δλf ∗D F−1

D

(√
τξ|δλ−1g|2

)
(x)

=

∫

Rd

τxδλf(−t)δλF
−1
D

(√
τλξ|g|2

)
(t) dµk(t)

=

∫

Rd

δλτx/λf(−t)δλF
−1
D

(√
τλξ|g|2

)
(t) dµk(t)

=
1

λ2γ+d

∫

Rd

τx/λf
(
−

t

λ

)
F−1

D

(√
τλξ|g|2

)( t

λ

)
dµk(t).

Now by a change of variable t = λs, we get the desired result. �

3. A Heisenberg-type uncertainty inequality for the

Dunkl-Gabor transform

First we will recall the following theorem which limits the concentration of the

Dunkl-Gabor transform in any small set. This result can be found in [14], Theo-

rem 5.1, or [13], Theorem 4.4. Nonetheless, we can deduce this result easily from

(2.9) and (2.10).

Theorem 3.1. Let Σ ⊂ R
d × R̂

d be such that 0 < νk(Σ) < 1. Then for all

f ∈ L2
k(R

d) and g ∈ L2
k,rad(R

d),

(3.1) ‖f‖L2
k
‖g‖L2

k
6

1√
1− νk(Σ)

‖GD
g (f)‖

L2(Σc,νk)
.

P r o o f. From Plancherel’s theorem (2.9) we have

(3.2) ‖f‖2L2
k
‖g‖2L2

k
= ‖GD

g (f)‖
2

L2
k
(Rd×R̂d)

= ‖GD
g (f)‖

2

L2(Σ,νk)
+ ‖GD

g (f)‖
2

L2(Σc,νk)
.

Now by (2.10),

(3.3) ‖GD
g (f)‖

2

L2(Σ,νk)
6 νk(Σ)‖G

D
g (f)‖

2

∞
6 νk(Σ)‖f‖

2
L2

k
‖g‖2L2

k
.

Thus the result follows immediately by integrating (3.3) in (3.2). �

In particular, if GD
g (f) is supported in Σ, then f ≡ 0 or g ≡ 0. On the other hand,

Theorem 3.1 implies the following version of Heisenberg uncertainty inequality for

the Dunkl-Gabor transform.
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Corollary 3.2. Let s > 0. Then there exists a constant ck,s > 0 such that, for

all f ∈ L2
k(R

d) and g ∈ L2
k,rad(R

d),

(3.4) ‖|(x, ξ)|sGD
g (f)‖

L2
k
(Rd×R̂d)

> ck,s‖g‖L2
k
‖f‖L2

k
.

P r o o f. Let 0 < r 6 1 be a real number and Br = {(x, ξ) ∈ R
d×R̂

d : |(x, ξ)| < r}

the ball of center 0 and radius r in R
d × R̂

d. Fix 0 < r0 6 1 small enough such that

νk(Br0) < 1. Therefore by inequality (3.1) we obtain

‖f‖2L2
k
‖g‖2L2

k
6

1

r2s0 (1− νk(Br0))

∫

|(x,ξ)|>r

r2s0 |GD
g (f)(x, ξ)|

2
dνk(x, ξ)

6
1

r2s0 (1− νk(Br0))

∫

|(x,ξ)|>r0

|(x, ξ)|2s |GD
g (f)(x, ξ)|

2
dνk(x, ξ)

6
1

r2s0 (1− νk(Br0))
‖|(x, ξ)|sGD

g (f)‖
2

L2
k
(Rd×R̂d)

.

This allows to conclude with ck,s = rs0(1 − νk(Br))
1/2. �

Corollary 3.3. Let s > 0. Then the following uncertainty inequalities hold.

(1) A Heisenberg-type uncertainty inequality for the Dunkl-Gabor transform:

There exists a constant c(k, s) > 0 such that, for all f ∈ L2
k(R

d) and g ∈

L2
k,rad(R

d)

(3.5) ‖|x|sGD
g (f)‖

L2
k
(Rd×R̂d)

‖|ξ|sGD
g (f)‖

L2
k
(Rd×R̂d)

> c(k, s)‖g‖2L2
k
‖f‖2L2

k
.

(2) A local uncertainty inequality for the Dunkl-Gabor transform:

There exists a constant c(s, k) > 0 such that for every f ∈ L2
k(R

d), g ∈

L2
k,rad(R

d) and every measurable subset Σ of finite measure, 0 < νk(Σ) < ∞

(3.6) ‖GD
g (f)‖

L2(Σ,νk)
6 c(s, k)[νk(Σ)]

1/2‖|(x, ξ)|sGD
g (f)‖

L2
k
(Rd×R̂d)

.

P r o o f. From the fact that |a+b|s 6 2s(|a|s+ |b|s), we deduce by inequality (3.4)

that

‖|x|sGD
g (f)‖

2

L2
k
(Rd×R̂d)

+ ‖|ξ|sGD
g (f)‖

2

L2
k
(Rd×R̂d)

>
c2k,s
22s

‖g‖2L2
k
‖f‖2L2

k
.

Replacing f and g by δλf and δλ−1g, respectively, in the previous inequality, we

obtain by (2.11) and by a suitable change of variables:

λ2s‖|x|sGD
g (f)‖

2

L2
k
(Rd×R̂d)

+ λ−2s‖|ξ|sGD
g (f)‖

2

L2
k
(Rd×R̂d)

>
c2k,s
22s

‖g‖2L2
k
‖f‖2L2

k
.
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Then (3.5) follows by minimizing the left hand side of that inequality over λ > 0.

On the other hand, as

‖GD
g (f)‖

L2(Σ,νk)
6 [νk(Σ)]

1/2‖GD
g (f)‖

∞
,

then from inequality (2.10), we obtain

‖GD
g (f)‖

L2(Σ,νk)
6 [νk(Σ)]

1/2‖g‖L2
k
‖f‖L2

k
.

Thus from inequality (3.4), we deduce the desired result. �

Inequality (3.6) is known as the local uncertainty inequality which extends a re-

sult of Faris [7]. It implies, in particular, that if the Dunkl-Gabor transform is

ε-time-frequency-concentrated of magnitude s around zero, then it cannot be ε-time-

frequency-concentrated in the subset Σ of finite measure but it disperses in Σc.

4. Concentration in sets of finite measures

We introduce a pair of orthogonal projections on L2
k(R

d × R̂
d). The first, denoted

Pg, is the orthogonal projection from L2
k(R

d× R̂
d) onto GD

g [L2
k(R

d)] and the other is

the time-frequency limiting operator defined by

PΣF = FχΣ; F ∈ L2
k(R

d × R̂
d),

where Σ ⊂ R
d × R̂

d is a subset of finite measure 0 < νk(Σ) < ∞ and χΣ denotes the

characteristic function of Σ.

4.1. Benedicks-type uncertainty principle

Definition 4.1. Let Σ a measurable subset of Rd×R̂
d and g ∈ L2

k(R
d) a nonzero

radial window function. Then:

(1) We say that Σ is weakly annihilating, if any function f ∈ L2
k(R

d) vanishes when

its Dunkl-Gabor transform GD
g (f) with respect to the window g is supported

in Σ.

(2) We say that Σ is strongly annihilating, if there exists a constant Ck(Σ) > 0

such that for every function f ∈ L2
k(R

d),

(4.1) ‖f‖L2
k
‖g‖L2

k
6 Ck(Σ)‖G

D
g (f)‖

L2(Σc,νk)
.

The constant Ck(Σ) will be called the annihilation constant of Σ.
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Of course, every strongly annihilating set is also a weakly one and from Theo-

rem 3.1, we see that any set Σ ⊂ R
d×R̂

d with 0 < νk(Σ) < 1 is strongly annihilating.

Now let Σ ⊂ R
d × R̂

d be a subset of finite measure 0 < νk(Σ) < ∞, then from

[13], (33), PΣPg is Hilbert-Schmidt, since

(4.2) ‖PΣPg‖HS 6
√
νk(Σ).

According to [10], I.1.3.2.A, page 90, if PΣPg is compact (in particular if PΣPg is

Hilbert-Schmidt), then if Σ is weakly annihilating, it is also strongly annihilating (see

also [13], Theorem 4.5). Moreover, we will recall the following well-known lemma

(see e.g. [10], page 90, and [11], Proposition 5.1.2).

Lemma 4.2. Let g be a nonzero radial window function. Then:

(1) If ‖PΣPg‖ := ‖PΣPg‖L2
k
(Rd×R̂d)→L2

k
(Rd×R̂d) < 1, then for all f ∈ L2

k(R
d),

(4.3) ‖f‖L2
k
‖g‖L2

k
6

1√
1− ‖PΣPg‖2

‖GD
g (f)‖L2(Σc,νk).

(2) If Σ is strongly annihilating, then ‖PΣPg‖ < 1.

In this section we will prove that any subset Σ of the form Σ = S×BR ⊂ R
d× R̂

d

with 0 < µk(S) < ∞ is weakly annihilating (and then strongly annihilating).

We denote by ImP the range of a linear operator P . Then we have the following

lemma.

Lemma 4.3. Let Σ ⊂ R
d × R̂

d be a subset of finite measure 0 < νk(Σ) < ∞ and

let g ∈ L2
k,rad(R

d) ∩ L∞(Rd) be a nonzero window function. Then

(4.4) dim(ImPg ∩ ImPΣ) 6 [νk(Σ)]
2 < ∞.

P r o o f. This follows from [13], Proposition 4.3, and [19], Lemma 3.1. �

Theorem 4.4 (Benedicks-type uncertainty principle for GD
g ). Let r, R > 0. Let

g ∈ L2
k,rad(R

d) ∩ L∞(Rd) be a nonzero window function such that supp g ⊂ Br and

let Σ = S × BR ⊂ R
d × R̂

d be a subset of finite measure 0 < νk(Σ) < ∞. Then

(4.5) ImPg ∩ ImPΣ = {0},

i.e., Σ is weakly annihilating.
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P r o o f. Let F ∈ ImPg ∩ ImPΣ, then there exists a function f ∈ L2
k(R

d) such

that F = GD
g (f) and suppF ⊂ Σ. Let ξ ∈ B(0, R) and let Φξ, g be the function

defined on R
d by

Φξ, g(t) = FD(f)(−t)
√

τξ|g|2(t).

Then for all (x, ξ) ∈ Σ,

(4.6) F (x, ξ) = FD(Φξ, g)(x).

Thus suppFD(Φξ, g) ⊂ S, with µk(S) < ∞.

On the other hand, as supp g ⊂ B(0, r), we have

suppΦξ, g ⊂ supp τξ|g|
2 ⊂ BR+r.

Hence by the Benedicks theorem for the Dunkl transform [8], Theorem 4.4 (2), we

deduce that Φξ, g ≡ 0, and then F ≡ 0. �

Consequently, we obtain the following improvement.

Corollary 4.5. Let r, R > 0. Let g ∈ L2
k,rad(R

d) ∩ L∞(Rd) be a nonzero window

function such that supp g ⊂ Br and let Σ = S × BR ⊂ R
d × R̂

d be a subset of finite

measure 0 < νk(Σ) < ∞. Then there exists a constant Ck(Σ) > 0 such that, for all

functions f ∈ L2
k(R

d),

(4.7) ‖f‖L2
k
‖g‖L2

k
6 Ck(Σ)‖G

D
g (f)‖

L2(Σc,νk)
.

4.2. Application: Stable reconstruction from incomplete noisy data

Now we will derive a sufficient condition by means of which one can recover a signal

F ∈ L2
k(R

d × R̂
d) from the knowledge of a truncated version of it, following the

Donoho-Stark criterion [4].

Let g be a nonzero radial window function. A signal F ∈ L2
k(R

d × R̂
d) is trans-

mitted to a receiver who knows that F ∈ GD
g [L2

k(R
d)]. Suppose that the observation

of F is corrupted by a noise n ∈ L2
k(R

d × R̂
d) (which is nonetheless assumed to be

small) and unregistered values on Σ ⊂ R
d × R̂

d. Thus, the observable function r

satisfies

(4.8) r(x) =

{
F (x) + n(x), x ∈ Σc;

0, x ∈ Σ.
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Here we have assumed without loss of generality that n = 0 on Σ. Equivalently,

(4.9) r = (I − PΣ)F + n.

We say that F can be stably reconstructed from r, if there exists a linear operator

KΣ,g : L2
k(R

d × R̂
d) → L2

k(R
d × R̂

d)

and a constant Cg,Σ such that

(4.10) ‖F −KΣ,g r‖L2
k
(Rd×R̂d) 6 CΣ,g‖n‖L2

k
(Rd×R̂d).

The estimate (4.10) shows that the noise n is at most amplified by a factor CΣ,g.

Theorem 4.6. Let g ∈ L2
k,rad(R

d) ∩ L∞(Rd) be a nonzero window function such

that supp g ⊂ Br and let Σ = S × BR ⊂ R
d × R̂

d be a subset of finite measure

0 < νk(Σ) < ∞. Then F can be stably reconstructed from r. The constant CΣ,g in

(4.10) is not larger than (1 − ‖PΣPg‖)
−1.

P r o o f. From Corollary 4.5, Σ is strongly annihilating, hence from Lemma 4.2

we have ‖PΣPg‖ < 1. Therefore I − PΣPg is invertible. Let

Kg,Σ = (I − PΣPg)
−1.

Since F ∈ GD
g [L2

k(R
d)], we have (I − PΣ)F = (I − PΣPg)F . Hence

F −KΣ,g r = F −KΣ,g((I − PΣ)F + n) = F −KΣ,g(I − PΣPg)F −KΣ,gn

= F − (I − PΣPg)
−1(I − PΣPg)F −KΣ,gn = −KΣ,gn.

So

‖F −KΣ,gr‖L2
k
(Rd×R̂d) = ‖KΣ,gn‖L2

k
(Rd×R̂d) 6 ‖(I − PΣPg)

−1‖‖n‖L2
k
(Rd×R̂d)

6

∞∑

k=0

‖PΣPg‖
k‖n‖L2

k
(Rd×R̂d) = (1− ‖PΣPg‖)

−1‖n‖L2
k
(Rd×R̂d),

which allows to conclude the proof. �

Remark 4.7. Since ‖PΣPg‖ 6 ‖PΣPg‖HS , one can deduce from inequality (4.2)

that for any subset Σ with 0 < νk(Σ) < 1, any signal F can be also stably recon-

structed from r, and CΣ,g is not larger than
(
1−

√
νk(Σ)

)−1
.
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Remark 4.8 (An algorithm for computing KΣ,g r). The so-called Neumann series

K =
∞∑
k=0

(PΣPg)
k suggests the following algorithm for computing Kr. Put

F (n) =

n∑

k=0

(PΣPg)
kr,

then

F (0) = r, F (n+1) = r + PΣPgF
(n) and F (n) −→ KΣ,g r as n → ∞.

As F = PgF we deduce that

(4.11) F (n+1) − F = PΣPg(F
(n) − F ).

So that, if Σ is strongly annihilating, then by virtue of (4.11), the following error

estimate holds:

(4.12) ‖F − F (n)‖L2
k
(Rd×R̂d) 6 ‖PΣPg‖

n‖F − r‖L2
k
(Rd×R̂d),

and particularly, if νk(Σ) < 1, then (4.2) yields

(4.13) ‖F − F (n)‖L2
k
(Rd×R̂d) 6 [νk(Σ)]

n/2‖F − r‖L2
k
(Rd×R̂d).
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