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Global existence and energy decay of solutions

to a Bresse system with delay terms

ABBES BENAISSA, MOSTEFA MILOUDI, MOKHTAR MOKHTARI

Abstract. We consider the Bresse system in bounded domain with delay terms in
the internal feedbacks and prove the global existence of its solutions in Sobolev
spaces by means of semigroup theory under a condition between the weight of
the delay terms in the feedbacks and the weight of the terms without delay.
Furthermore, we study the asymptotic behavior of solutions using multiplier
method.

Keywords: Bresse system; delay terms; decay rate; multiplier method

Classification: 35B40, 35L70

1. Introduction

In this paper we investigate the existence and decay properties of solutions for
the initial boundary value problem of the linear Bresse system of the type
(P)
p1ow — Gh(pe + ¥ + lw)y — IER(wy — lp) + p1ps + popi(z,t —711) =0
P2t — Elyy + Gh(py + 9 +1w) + pathe + pahi(z,t —m2) = 0
pwp — Eh(wy — @), + IGh(pr + ¢ + lw) + ﬁwt + ;:L;wt(:r, t—713)=0

where (z,t) € (0,L) x (0,+00),7 >0 (i = 1,2, 3) is a time delay, ui, po, 11, fz,
141, p2 are positive real numbers. This system is subject to the Dirichlet boundary
conditions

@(Oa t) = @(Lat) = 1/1((), t) = "/)(La t) = W(O,t) = W(La t) =0, t>0
and to the initial conditions

(p(.%‘,O) = (PO(x)a got(:c,O) = <P1(1')7 ’(/J(.Z',O) = wo(fﬂ),
’L/)t(l‘,()) = 7/11(93)7 w(z,O) - WO(

)
(pt(l‘,thl):é)(l‘,thl), in (OvL) X [077_1]
Pi(x,t — 1) = Jio(x,t —T72), in (0,L) x [0, 2]
wi(x,t —73) = fo(x,t —13), in (0,L) x [0, 73]
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where the initial data (@0, 1, 0, %1, wo, w1, fo, fg, fo) belong to a suitable Sobolev
space. By w, % and ¢ we are denoting the longitudinal, vertical and shear angle
displacements. The original Bresse system is given by the following equations

(see [1]) :

P11t = Qo + IN + Fy,
P2 = My — Q + Fy,
P1Wit = N:n - ZQ+F3a

where we use N,(Q and M to denote the axial force, the shear force and the
bending moment respectively. These forces are stress-strain relations for elastic
behavior and given by

N = Eh(wy — lg), Q= Gh(p, +% +1lw), and M = El,,

where G, E,I and h are positive constants. Finally, by the terms F; we are
denoting external forces. -

The Bresse system without delay (i.e. pa = p2 = pz = 0) is more general than
the well-known Timoshenko system where the longitudinal displacement w is not
considered [ = 0. There are a number of publications concerning the stabilization
of Timoshenko system with different kinds of damping (see [2], [3], [4] and [5]).
Raposo et al. [6] proved the exponential decay of the solution for the following
linear system of Timoshenko-type beam equations with linear frictional dissipative
terms:

p1ote — Gh(pe + 1 + W) — IER(we — 1) + p1pr = 0
p2ie — Elps + Gh(pe + 9 + lw) + 1y =0

Messaoudi and Mustafa [3] (see also [5]) considered the stabilization for the
following Timoshenko system with nonlinear internal feedbacks:

p1ew — Gh(py + ¢ + lw)y — IER(w, — L) + g1(¢) =0
p21/)tt - El¢zz + Gh(@z + 1/} + lw) + g?(’l/)t) =0

Recently, Park and Kang [5] considered the stabilization of the Timoshenko system
with weakly nonlinear internal feedbacks.

In [7], Liu and Rao considered a thermoelastic Bresse system that consists of
three wave equations and two heat equations coupled in certain way. The two
wave equations for the longitudinal displacement and the shear angle displacement
are effectively globally damped by the dissipation from the two heat equations.
The wave equation about the vertical displacement is subject to a weak thermal
damping and indirectly damped through the coupling. They establish exponential
energy decay rate when the vertical and the longitudinal waves have the same
speed of propagation. Otherwise, a polynomial-type decay is established.
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Time delay is the property of a physical system by which the response to an
applied force is delayed in its effect (see [8]). Whenever material, information or
energy is physically transmitted from one place to another, there is a delay asso-
ciated with the transmission. In recent years, the PDEs with time delay effects
have become an active area of research and arise in many pratical problems (see
for example [9], [10]). The presence of delay may be a source of instability. For
example, it was proved in [11] that an arbitrarily small delay may destabilize a
system which is uniformly asymptotically stable in the absence of delay. To sta-
bilize a hyperbolic system involving input delay terms, additional control terms
will be necessary (see [12] and [13]). For instance, in [12] the authors studied
the wave equation with a linear internal damping term with constant delay and
determined suitable relations between py and po, for which the stability or al-
ternatively instability takes place. More precisely, they showed that the energy
is exponentially stable if us < pp and they found a sequence of delays for which
the solution will be instable if po > p1. The main approach used in [12], is an
observability inequality obtained with a Carleman estimate. The same results
were showed if both the damping and the delay act in the boundary domain. We
also recall the result by Xu, Yung and Li [13], where the authors proved the same
result as in [12] for the one space dimension by adopting the spectral analysis
approach.

Our purpose in this paper is to give a global solvability in Sobolev spaces and
energy decay estimates of the solutions to the problem (P) for linear damping
and delay terms. To obtain global solutions to the problem (P), we use the
argument combining the semigroup theory (see [12] and [14]) with the energy
estimate method. To prove decay estimates, we use a multiplier method.

2. Preliminaries and main results
First assume the following hypotheses:

(H1)

(1) el < s |p2l < g, |pe] < .
We first state some lemmas which will be needed later.

Lemma 1 (Sobolev-Poincaré’s inequality). Let ¢ be a number with 2 < ¢ < +o0.
Then there is a constant ¢, = ¢,((0,1),q) such that

19llq < cullvella for 4 € Hy((0,1)).

Lemma 2 ([15], [16]). Let £ : Ry — Ry be a non increasing function and assume
that there are two constants o > —1 and w > 0 such that

—+oo
@) / £ (1) dt < 550(0)5(5), 0< S < +o0,
S

171
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then we have

3) S =0 W> ifl()a)' if —1<o<0,
1 ra

@) &) < £(0) (1 :w‘;t) Vi >0, it o0,

(5) E(t) < E(0)e' ™t vt >0, if o=0.

We introduce, as in [12], the new variables

Zl(xapa t) d)t(xat - Tlp)a T € (OﬂL)ﬂ pE (Oﬂ 1)7 t>0,
(6) ZQ(xapa t) = "l}t(l‘at - 7-2/))7 MRS (OaL)a pE (O’ 1)) > 07
zz(z, p,t) = wi(x,t —13p), 2 € (0,L), pe€ (0,1), t>0.

Then, we have
(1)  7izie(z,p,t) + zip(z, p,t) =0, in (0,L) x (0,1) x (0,4+00) for i =1,2,3.
Therefore, problem (P) takes the form:

p1ou(x,t) = Gh(ps + ¢ + lw)a(2,t) — IER(we — lp)(z, t)
+rpe(@,t) + poz(z,1,t) =0,

11216 (2, p, t) + 21,(, p,t) =0,

P21t (7, 1) — Elq(x,t) + Ghipy + ¢ + lw)(2,t) + e (z, 1)

(8) +pzza(z,1,t) = 0,

Tozot(T, p, t) + 22p(x, p,t) = 0,

prww(z, 1) — Eh(wy — 19)e (2, 1) + IGh(py + ¥ + lw) (2, 1) + firw; (2, 1)
Hrizzs(z,1,1) =0,

T323¢ (2, p, t) + 23,(, p,t) = 0.

The above system subjected to the following initial and boundary conditions

©(0,1) = (L, t) = (0,t) = (L, t) = w(0,t) = w(L, 1), t>0,
z1(2,0,t) = p(x,t), z2(x,0,t) = Y(x,t), 23(x,0,t) = wi(x, ),
€ (0,L), t >0,

@(x,0) = w0, i(r,0) = 1,9 (x,0) = Yo, Pi(,0) = 91,
w(z,0) = wo,wi(z,0) =wy, z€(0,L),
z1(z,1,t) = fi(z,t —71) in (0,L) x (0,71),
20(z,1,t) = fa(x,t —72) in (0, L) x (0,72),

(z,1,t) = fs(z,t —713) in (0,L) x (0,73).
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Let &1, & and &3 be positive constants such that

T1lpal < &1 < (201 — [p2l),
(10) Tolta] < &2 < To(2u1 — |p2l),
T3lua| < & < 13(2u1 — |H2]),

thanks to hypothesis (H1). We define the energy associated to the solution of the
problem (8) by the following formula:

i P2 o EI Gh
E(t) = 7”%”3 + 3”%”3 + 7”0‘%”3 + 7”%”3 + TH% + v +lwl|3

(11) 3 1
Eh &
+ o= 1o+ 305 [ st 0l de
=1

We have the following theorem.

Theorem 1. Let (9005 P1s fl (" ) 7/10, ?/11, f2( ) Wo, Wi, f3( )) €
(HL(0,L) x L?(0,L) x L?((0,L) x (0, 1)))3. Assume that the hypothes1s (H1)
holds. Then problem (P) admits a unique solution

p € C((0,+00); Hy (0, L)) N C*([0, +00); L*(0, L)),
Y € C([0,+00); Hy (0, L)) N CH([0, +00); L*(0, L))
w € O([0,4+00); H} (0, L)) N C* ([0, +00); L*(0, L)),
21, 22, 23 € C([0, +00); L*((0, L) x (0,1))).
In addition, we have the following decay estimate:
(12) E(t) < cE(0)e v, vVt >0,

where ¢ and w are positive constants, independent of the initial data.

We finish this section by giving an explicit upper bound for the derivative of
the energy.

Lemma 3. Let (p,,w, 21, 22, 23) be a solution of the problem (8). Then, the
energy functional defined by (11) satisfies

et <= (- o= - L) oy - (71— 2 - B2 o
(13) - <’“‘:1 - 2573 - %) Jlorllz - (% - |“—22|) lo1(2, 1,1)]3

& il , (& il )
— (22 - Loz - (=2 - £ 1,4)|2.
(2 - ) heator 0 - (52 - 22 ) paate 1,0
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ProOOF: Multiplying the first equation in (8) by ¢y, the third equation by ), the
fifth equation by wy, integrating over (0, L) and using integration by parts, we get

1 d L L
sl =G [ o+ ot o)aprds — 1B [ (o = p)ouda + o}
0 0

L
+ :LLQ/ Zl(xa Lt)%dﬂf = 07
0

d o  EI 2 t — 2
Sl + S+ Gh [ (o 0+ Lo)nde + Rl
0

L
+ﬁ5/ Zl(xalat)wtzoa
0
L

1 d L —
9 w2 = Eh/ (W — lp)wrda + th/ (0o + 0 + lw)wrdz + 7|2
0 0

2" at
__ L
+ U2 z3(x, 1, t)widz = 0.
0
Then
(14)
d p2 P1 EI Gh
& (Sl + G201 + Sl + SO0 + S ln + 0+ 1013

05l = 161) gl + T + 7

L L L
+ ﬁg/ z1(z, 1, )hdx + po / z1(x, 1,t)prde + ﬁg/ z3(x, 1, H)widz = 0.
0 0 0

Multiplying the equation in (7) by & z; and integrating over (0, L) x (0, 1), obtain:

d (Lot
&25/0 /Ozf(ac,p,t)dpdx T1/ / 2iZipdp dx
(15) - 271/0 (22(2,0,8) — 22(z, 1,1)) da
gz [”Z

(2,0, )13 = llzi(2, 1,1)lI3] ,
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where z1(z,0,t) = @i(x,t), 2z2(x,0,t) = ¢P(x,t) and z3(x,0,t) = w(z, ). From
(11), (14), (15) and using Young inequality we get

£(t) = - (m ~ ) b = (75 = o2 ) ol - (7 - 22 ) el

L
(16) —Z (e L3 - p / o1 (@ 1, ) da
0

L

L —~
fﬁ;/ z1(x, 1, ) doe — g z3(z, 1, t)w; dx.
0 0

Due to Young’s inequality, we have

L
1 1
[ a1t L 0p@ ) do < Sl + 5l 1,13
0
L 1 , 1 )
a7) 2l 1, el 1) de < 3 e, D13+ 3 e 1,013
0
L 1 2 1 2
z3(w, 1, hwe(z,t) do < §Hwt($at)”2 + 5”23(1‘5 L)z
0

Inserting (17) into (16), we obtain

s [~ & 1@\
el - (7 - 2 - B2 i

= & |l i 2
-2 - - 1

<M1 273 9 || ||2 2 ||Zl('ra at)||2

&
27
(-5 bt 1.0l - ( "“‘2>||z$<x,1,t>||%.

This completes the proof of the lemma. (I

3. Global existence

In this section we will give well-posedness results for problem (8) and (9) using
semigroup theory. Let us introduce the semigroup representation of the Bresse
system (8) and (9). Let U = (¢, v, 21,9, 1, 22, w,wy, 23)T and rewrite (8) and
(9) as

(18) = AU,
U(0) = (vo, 1, f1(., —71), %0, ¥1, f2(., —.72),wo, w1, f3(., —.73)),
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where the operator A is defined by

U
Gh IEh
¥ _(@z+¢+lw)z+—(wz*l@)fﬂu—&zl(.,l)
u P1 P1 P1 P1
—(1/m1)z1,
z1 v
L EI Gh T
Al v = —1/)1»9: (909:4"(/)4’[0))*&’07&22(,1)
P2 P2 P2 P2
2 —(1/72)22,
w @
w ~ ~
Eh IGh -
23 2wy = 19)e — 2y + b+ Iw) — B2 — B2 1)
P1 p1 P1 p1
—(1/73)z3p

with domain

D(A) = {(cp,u,zl,w,v,ZQ,w,&,23)T in H:u=2z(,0),

(19) v = 22(.,0),0 = 23(.,0), in (0, L)},

where
H = (H*(0,L)Nn Hy(0,L) x Hy(0,L) x L*(0, L, H*(0,1)))*.
Now, the energy space H is defined as

H = Hy(0,L) x L*(0,L) x L*((0, L) x (0,1)).

For U = (p,u,21,%,v, 22,w,®,23)7, U = (@,7,%1,,7,%2,0,0,%3)" and for &
positive constants satisfying (10), we define the following inner product in H

L
(U0 = / (muﬂ + P20l + p1@w + EIpy ),
0
+ Gh(py + 1 + 1w) (@, + ¢ + D)

+ Eh(ws — 1)@, — 17) +Z@/ zzzldp)

We show that the operator A generates a Cp-semigroup in H. In this step, we
prove that the operator A is dissipative. Let U = (¢, u, 21,%,v, 22,w,, 23)T.
Using (18), (13) and the fact that

(20) £(t) = 51013
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we get

L L L
<AU,U>H:7u1/ u2d:cfﬁf/ dexfﬁI/ o? dx
0 0 0

L L L
—,ug/ zl(x,l)uda:—ﬁi/ @(m,l)vdm—ﬁi/ zz(x, )@ dx
0 0 0

3 & L p1

—Z—’/ /zi(x,p)zip(x,p)dpdx-
— TiJo Jo

<0

Consequently, the operator A is dissipative. Now, we will prove that the operator
A — A is surjective for A > 0. For this purpose, let (f1, fa, f3, f1, f5, f6» f7, fs5 fo)©
€ H, we seek U = (¢, u, 21,%,v, 22, w,0, 23)T € D(A) solution of the following
system of equations

(21)

>‘90 —Uu= fla
Gh lEh
M——(pe + Y+ 1lw)y — —(we —lp) + ﬂu + &zl(., 1) = fo,
P1 P1 P1 P1
A1+ (1/71)z1p = f3,
>"¢) —Uv= f4a
Gh I
(22) - —wm O et i) P 2 1) = £,
P2 P2 P2
Azg + (1/72 225 = fo,
Aw — a = f7,
.  FEh IGh
3= 1)+ I o ) P 2y = g,
P1 P1 p1 P1
)\23 + (1/7’3)ng = fg.

Suppose that we have found ¢, and w. Therefore, the first, the fourth and the
seventh equation in (22) give

uz)‘saffla
(23) ’U:)\’l/}_f4)
(:):)\w—f7.

It is clear that uw € H}(0,L),v € H}(0,L) and w € H}(0,L). Furthermore, by
(22) we can find z; (i = 1,2,3) as

(24) z1(x,0) = u(z), 22(x,0) = v(x), 23(x,0) = @(z), for =€ (0,L).

177
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Following the same approach as in [12], we obtain, by using equations for z;
n (22),

P
z1(x, p) = u(x)e P 4 e AP / fala,s)er™ ds,
0
P
z2(z, p) = v(@)e NP + Tze_m”/ fo(w,5)e ™" ds,
0

P
z3(z, p) = D(x)e AP + 7'36_/\7—3’)/ fo(z, 5)e ™% ds.
0

From (23), we obtain

P
z1(x,p) = Ap(x)e P — fre AP 4 Tle*””’/ f3(z,8)e™s ds,
0]
p
(25) ZQ(:]C’p) = Alb(z)e*A”p _ f4€7)\7-2p + 7-267)\7'2p\/ f6(x7 S)ex\Tzs dS,
o
23(.1',,0) = )\w(x)e—/\‘rsp _ f7e—/\‘rsp + 7'36_’\7—3/’/ fg(m, S)eATL"S ds.
0

By using (23) and (22) the functions ¢, 1) and w satisfying the following system
(26)

Gh IEh
AN — —(pr + 0 +1w)y — — (wy — lp) + —ulu—i— —le(., 1) = fo+ Ay,
P P1 P1 P1

Gh e
>\21/1*—1/1m+—(50z+1/)+M) ‘/jlw‘; 2(, 1) = f5 + M,
2 2/ _
Eh lGh - 2
Nw— —(wgy = 1p)y + — (0 + ¥ + lw) + “1w+—23( 1) = fs + Afr.
P1 P1 P1 p1

Solving system (26) is equivalent to finding (¢, v, w) € (H*NHJ (0, L)) such that
(27)

(p1 N2 ow 4+ Gh(py + ¢ + lw)w, — IEh(wy — lo)w + pruw + poz (., 1)w) do

o\
h
h

/ p1(fe + Af1)w dz,
0

L
(p2 XX + Ela e + Gh(pg + 9 + lw)x + fiivox + fizz2(., 1)x) d

S—

L
/ pa(fs + M)y de,

LO

(1 N2wC + Eh(wy — 19)Ca + IGh(0q + 1 + lw)C + @ + pazs(., 1)C) d
L
p1(fs + Af7)Cdx

S—

I
S—
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for all (w, x,¢) € Hj(0,L) x H}(0,L) x Hj(0,L). From (25), we have

21(2,1) = dp(z)e ™ — fre ™ + e / f3(z,8)er™ ds,
29(x,1) = Mp(2)e A2 — fre™ 2 4 e / fo(z,5)er™* ds,

23(w,1) = Mw(z)e ™ — fre AT +T3€_/\T3'/ fo(z, s)e AT8S (g,

Consequently, problem (27) is equivalent to the problem

(28) a((@vwaw)v(wa)ﬁ()) - L(waX7<)

where the bilinear form a : [H, ( ,L) x Hl(O, L) x H}(0,L)]*> — R and the linear
form L : H}(0,L) x H}(0,L) x H}(0,L) — R are defined by

L
al(, 1, @), (w0, %, ) = /O (P X0w + Ch(gs + 6 + 1)(ws + X + 1)) da

L L
+/ (p2A*x + ETtpaXa) da +/ (M A°wC + Bh(we —19) (G — lw) dz
0 0

L
+/ Ap(p + poe” " w dz
0
L L __ __
b [ el + e wds [ Ao+ e da
0 0

and

L

L
L(W,X7C):/O (u1f1fu2M1)wdz+/O (p1fa — p2Ms)x dx

L _ . L
+ /0 (i fr — FaMy)C das + /0 pr(fo + AfiJwde
L

L
+ / pa(fs + Afa)x da + / p1(fs + Mr)C de.
0 0

It is easy to verify that @ is continuous and coercive, and L is continuous. So
applying the Lax-Milgram theorem, we deduce that for all (w, x,¢) € H}(0, L) x
H}(0,L) x H}(0, L) problem (28) admits a unique solution (p,v,w) € H}(0,L) x
H(0,L)x H}(0, L). Applying the classical elliptic regularity, it follows from (27)
that (¢, %, w) € H%(0, L) x H*(0, L) x H*(0, L). Therefore, the operator AI — A is
surjective for any A > 0. Consequently, the existence result of Theorem 1 follows
from the Hille-Yosida theorem. (I
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4. Asymptotic behavior

First we state and prove a lemma that will be needed to establish the asymp-
totic behavior.

Lemma 4. There exists a positive constant C' such that the following inequality
holds for every (p,%,w) € (H}(0,L))?

L
(20) / (ial? + [l + ) da

L
< C’/ (EIYs* + Ghlps + 9 + lw|? + Eh|w, — lp*) de < E(t).
0

PROOF: We will argue by contradiction. Indeed, let us suppose that (29) is not
true. So, we can find a sequence {(p,, ¥y, w,)}hven in (Hg(0, L))? satisfying

L

1

(30) / (EIlpval® + Ghlus + 1 + lw > + Ehlwys — 1oy |*) do < —

0
and
L
(31) / (lpwel? + [Yvel® + [wpal?) dz = 1.
0

From (31), the sequence {(¢., ¥, wy)}en is bounded in (H} (0, L))3. Since the
embedding Hg (0, L) — L*(0, L) is compact, then the sequence { (., %y, w,)}ven
converges strongly in (L?(0,L))3.

From (30)
(32) Yy — 0 strongly in L?(0, L).
Using Poincaré’s inequality we can conclude that

(33) ¥, — 0 strongly in L?(0, L).

Now, setting ¢, — ¢ and w, — w strongly in L?(0, L).
From (30), we have

(34) Yuz + Uy + lw, — 0 strongly in L2(0, L).

Then

(35)  Yuu + ¥+ lwy = puy + 1y + l(wy —w) + lw — 0 strongly in L*(0, L)
which implies that

(36) @uz — —lw strongly in L*(0, L).
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Then, {p, }, is a Cauchy sequence in H*(0, L). Therefore {¢,}, converges to a
function o1 in H'(0, L). Consequently {¢, }, converges to ¢; in L*(0,L). Thus
by the uniqueness of the limit ¢1 = ¢. Moreover p € Hg (0, L).

From (36) we deduce that

(37) vz +lw=0aexze(0,L).

Similarly, we have

(38) wy —lp=0aexze(0,L)

and w € H}(0,L). (37) and (38) provides us ¢ = w = 0, contradicting (31). O
From now on, we denote by ¢ various positive constants which may be different

at different occurrences. Multiplying the first equation in (8) by £%p, the third
equation by £9¢ and the fifth equation by £%w we obtain

T L
0= / Eq/ 0 (p1owe — Gh(py + ¢ +lw)y — IEh(wy — lp)
s 0

Fp1r 4 pozi(z,1,t)) dedt,

L T T / L T
0 = [5%1/ ppidx 7/ p1q€ 5‘1*1/ gpgptd:cdtfpl/ 5q||got|\§dt
0 s 0 s

S
T L T L
—/ Sq/ gowGh(gDI-l-w-i-lw)dxdt—/ Eq/ C(IER)(wy — lp) dx dt
s 0 s 0

T L T L
+u1/ 5‘1/ cptcpdzdtJrug/ 5‘1/ pz1(x, 1,t) dz dt,
S 0 S 0

T L
0= [ & [ 0 lpatin — Bl + Ghlps + 6+ L) + i + izza(e, L,0) dodt,
S 0

T T ) L T
0 41/ Qmeewﬂ/“wwHMdtfp;/ £ |3 dt
S 0 S

S

T T L
+/ EqEI||z/;z||§dt+/ 5‘1/ YGh(ps + 9 + lw)) dz dt
S S 0

L
ﬂm/#%m
0

T L T L
+u1 5‘1/ Yy dacdt—i—ﬁi/ 5‘1/ Yzo(x,1,t) dzx dt,
S 0 S 0

T L
0= / 5‘1/ w(plwtt — Eh(wy — 1)z
S 0

+IGh(ps + ¢ +1lw) + /’Afzwt + /:f;z,'g(ac, 1, t)) dz dt,
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L T T / L
0 = [Eqpl/ wwtdml —/ p1q€ 5’1_1/ wwy dz dt
0 s 0

S

T T L
—pl/ €q||wt|\§dt+/ 5‘1/ Ehwy(w, — lp) d dt
S S 0

T L
+/ 5‘1/ w(Gh)(pz + 1 + lw) dz dt
s 0
— [T L __ pT L
+,EI/ 5‘1/ wtwda:dt—l—ﬁi/ Sq/ wzz(x,1,t) dx dt.
S 0 S 0

Taking their sum, we obtain

+
S

+

L
Ely / wwtdx]
0

T L
- / p1g€ €977 / (Prppr + pahihy + prwwr) da dt
S 0

. T
Elp2 / Yipeda
0

S

L
39) 0= [5%1 / ppda
0

T T T
21 [ el -2 [ EtwnlBar 20 [ el
S S S

T
+/S £ (pullgel2 + pallvel2 + prlwrll? + Ghllge + 1 + w2

+EIa 3 + Ehllws — 19][3)

T L T L
+u1/ 5’1/ gatgod:cdt+u2/ Eq/ wz1(x, 1,t) dx dt
s 0 s 0

T L T L
—|—,EI/ 5‘1/ 1/}1ptdacdt+ﬁ§/ 5‘1/ zo(x,1,t) da dt
s 0 s 0

— [T L __ pT L
er/ Eq/ wtwdazdt+ﬁ§/ 5‘1/ wzgz(z,1,t) dz dt.
s 0 s 0

Similarly, we multiply the equation of (7) by £9¢;e=27iPz;(x, p,t) and get

T L 1
(40) 0= / & / / e~ ¥iPE 2 (Tizis + 2ip) dp d dt
S 0 0

1 L 1 T
= —fiTigq/ / 6_2TipZ,L-2 dpdl‘
2 o Jo s
e T . Lot
— Tl—&/ g€TE / / e 2P 22 dp da dt
2 Js o Jo

T L 1 6—27-ip d )
+/ Eq&/ / —(27) dpdx dt,
s o Jo 2 dp
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1 L /1
0= —@-Tié’q/ / 6_27—”)21-2 dpdzx
2 0o Jo

& [T oLt
- —l/ €TE / / e 2P 22 dp da dt
2 Js o Jo

& [T L iry

+ —1/ 5‘1/ / {— (e7?TiP22) + 21e 27027 | dpdx dt,
2 Js o Jo Ldp

1 L 41 T

—51-71-5‘1/ / 672”’)2142 dpdx]

2 o Jo 5

& [T oLl
- = 1/ qEItE / / e 2P 22 dp da dt
2 Js o Jo

& T L
+ EZ/ Sq/ [e7?T 22 (z,1,t) — 27(2,0,t)] dwdt
s 0

T L gl
+ & / / / e 2P 22 dp da dt.
s Jo Jo

Recalling the definition of £ and from (39), (40), we get

T
S

0=

(41)

T L T
A/ g1t qr < — [plgq/ PPy dx]
s 0 s
L
— [plé’q/ Wwy dm]
0

T
T L
+/ q€ 5(171/ (prp@e + p2hiby + prww,) dx dt
s 0

L T
- [pgsq / wwtdm]
0

S

S

T
vz [ (prllol + pallvul} + prllal3)

s
T L T L
ful/ 5‘1/ cptcpdzdtfug/ 5‘1/ pz1(x, 1,t) dx dt
S 0 S 0
T L T L
—ﬁ{/ Eq/ wwtdxdt—ﬁé/ Eq/ Yzo(x,1,t) dxdt
s 0 5 0

— T L __ pT L
—ﬁ{/ 5‘1/ wtwdmdt—ﬁi/ Eq/ wzz(z,1,t) dz dt
S 0 S 0

1 L 1 T
— =& &1 e~27iP 22 dodx
i ap
i=1 2 o Jo s
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3

T L 1
+ i [ e e~2mP 22 dp da dt
2 Js o Jo o

i=1
3 & T L

—Zi/ 5%‘2”/ 22(x,1,t) da dt
=2 s 0
3 § T

+25 [ etlatwonigar
i=1

where A = 2min{1, 2r e ™, 2me 272, 273¢~ 2™}, Using the Young and Sobolev-
Poincaré inequalities and Lemma (4), we find that

— & wwtdx] =EUS)(S) [ w(S)pe(S)dx —EUT) | o(T)pi(T) dx
) I |

< CETTH(S)

T
< c/ (—&NETdL < cEITY(S),

T L
/ (q5’5q’1)/ (prowe + pabi)y + prwwy) do dt :
0

S

L 1
‘%Smgq/ / e 27022 dx dp| < cE(S)1T Vit > 8,
0 0

T L T
/ gq/ u? dmdtgc/ £1(=&") dt < cETH(S),
S 0 S

T L T
/ Sqfi/ e i (x,1,t) do dt < c/ EU(—E)dt < cETT(S),
s 0 s

1 T L 1 T L
_/ 5‘1&'/ Z?(:L‘,O,t)dzdt: _/ gqgi/ QDIdedt
2Js 0 2 Js 0

< cer1(3),

ne [T Lo T
%/ gETLE / / e TP 2dx dp dt| < c/ (=ENELdL < cE1T(8S),
s o Jo

S




Global existence and energy decay of solutions to a Bresse system with delay terms 185

T L T L
Se/ Eq/ ¢2dzdt+c(5)/ Eq/ 2 dx dt
< EC/ EITdt + c(e / Sq/ ©? dx dt
(42)

Ssc/o 5q+1dt+c()/s EU—E") dt

ppy dr dt

&4
0

L
< EC/ ETTLdt + c(e)E(S)TH
0

and
T L T L
& wz1(z,1,t)dx dt §51/ Eq/ ¢2dzdt+c(€1)/ 5'1/ 21 (z,1,t)* da dt
0 s 0 s 0
T T L
Sslc/ gatt dt+c(€1)/ Eq/ 21 (2, 1,t)* da dt
s S 0
T T
§510/ gatl dt—i—c(sl)/ EN=ENdt
S S
T
< e / £ dt 4 o(e1)ETH(S).
S
T L T
(44) &4 / Yipydrdt| < e'e / EML dt + c(e)E(S)TH,
s 0 s
T L T
(45) g 5’1/ Yzo(x,1,t) dx dt Ss’lc/ ELdt + c(eh)E(9)H,
0 s
(46) N Y s / £ gt 4 o) E(S)™H,
47 5‘1 wzz(x, 1,t)dzdt| < e 5q+1dt+c eNES)TH.
3 ) 1 )

Choosing ¢,e1,¢’,¢e],¢” and €] small enough, we deduce from (41), (42), (43),
(44), (45), (46) and (47) that

T
/ Il at < c£1TY(9),
S
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where ¢ is a positive constant independent of F(0). We choose ¢ = 0. Hence, we
deduce from Lemma (2) that

E(t) < cE(0)e ", t>0.

This ends the proof of Theorem 1. ([

Acknowledgement. We would like to thank very much the referees for their
important remarks and comments which allow us to correct and improve this

paper.
REFERENCES

[1] Bresse J.A.C., Cours de Méchanique Appliquée, Mallet Bachelier, Paris, 1859.

[2] Kim J.U., Renardy Y., Boundary control of the Timoshenko beam, SIAM J. Control Optim.
25 (1987), 1417-1429.

[3] Messaoudi S.A., Mustapha M.I., On the internal and boundary stabilization of Timoshenko
beams, Nonlinear Differ. Equ. Appl. 15 (2008), 655-671.

[4] Messaoudi S.A., Mustapha M.I., On the stabilization of the Timochenko system by a weak
nonlinear dissipation, Math. Meth. Appl. Sci. 32 (2009), 454—469.

[5] Park J.H., Kang J.R., Energy decay of solutions for Timoshenko beam with a weak non-
linear dissipation, IMA J. Appl. Math. 76 (2011), 340-350.

[6] Raposo C.A., Ferreira J., Santos J., Castro N.N.O., Ezponential stability for the Timo-
shenko system with two weak dampings, Appl. Math. Lett. 18 (2005), no. 5, 535-541.

[7] Liu Z., Rao B., Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math.
Phys. 60 (2009), 54-69.

[8] Shinskey F.G., Process Control Systems, McGraw-Hill Book Company, New York, 1967.

[9] Abdallah C., Dorato P., Benitez-Read J., Byrne R., Delayed Positive Feedback Can Stabilize
Oscillatory System, ACC, San Francisco, (1993), 3106-3107.

[10] Suh I.H., Bien Z., Use of time delay action in the controller design, IEEE Trans. Autom.
Control 25 (1980), 600-603.

[11] Datko R., Lagnese J., Polis M.P., An ezample on the effect of time delays in boundary
feedback stabilization of wave equations, SIAM J. Control Optim. 24 (1986), 152-156.

[12] Nicaise S., Pignotti C., Stability and instability results of the wave equation with a delay
term in the boundary or internal feedbacks SIAM J. Control Optim. 45 (2006), no. 5,
1561-1585.

[13] Xu C.Q., Yung S.P., Li L.K., Stabilization of the wave system with input delay in the
boundary control, ESAIM Control Optim. Calc. Var. 12 (2006), 770-785.

[14] Brézis H., Opérateurs mazimauz monotones et semi-groupes de contractions dans les es-
paces de Hilbert, Notas de Matemética (50), Universidade Federal do Rio de Janeiro and
University of Rochester, North-Holland, Amsterdam, 1973.

[15] Haraux A., Two remarks on hyperbolic dissipative problems, Res. Notes in Math. 122,
Pitman, Boston, MA, 1985, pp. 161-179.

[16] Komornik V., Ezact Controllability and Stabilization. The Multiplier Method, Masson-John

Wiley, Paris, 1994.

LABORATORY OF ANALYSIS AND CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS,
DuiLLALl LIABES UNIVERSITY, P.O.Box 89, Sip1 BEL ABBES 22000, ALGERIA

FE-mail: : benaissa_abbes@yahoo.com

(Received May 9, 2014, revised December 14, 2014)



		webmaster@dml.cz
	2015-09-04T18:16:36+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




