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Abstract. Let {Xn,j , 1 6 j 6 m(n), n > 1} be an array of rowwise pairwise negative
quadrant dependent mean 0 random variables and let 0 < bn → ∞. Conditions are given

for
∑m(n)

j=1 Xn,j/bn → 0 completely and for max16k6m(n)

∣

∣

∣

∑k
j=1Xn,j

∣

∣

∣
/bn → 0 completely.

As an application of these results, we obtain a complete convergence theorem for the row

sums
∑m(n)

j=1 X∗

n,j of the dependent bootstrap samples {{X
∗

n,j , 1 6 j 6 m(n)}, n > 1}

arising from a sequence of i.i.d. random variables {Xn, n > 1}.

Keywords: array of rowwise pairwise negative quadrant dependent random variables;
complete convergence; dependent bootstrap; sequence of i.i.d. random variables
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1. Introduction and preliminaries

The concept of the complete convergence was introduced by Hsu and Robbins [8].

A sequence of random variables {Un, n > 1} is said to converge completely to a real

number c if
∞∑

n=1
P (|Un − c| > ε) < ∞ for all ε > 0. This of course implies by the

Borel-Cantelli lemma that Un → c almost surely (a.s.). The converse is true if the

random variables Un, n > 1, are independent. Hsu and Robbins [8] proved that the

sequence of arithmetic means
{

n−1
n∑

i=1

Xi, n > 1
}

of independent and identically
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distributed (i.i.d.) random variables {Xn, n > 1} converges completely to EX1

if VarX1 < ∞. Erdős [6] proved the converse. The Hsu-Robbins-Erdős result is

precisely stated as follows.

Theorem 1.1 (Hsu and Robbins [8], Erdős [6]). For a sequence of i.i.d. random

variables {Xn, n > 1},
n∑

i=1

Xi/n converges completely to 0 if and only if EX1 = 0

and EX2
1 < ∞.

In Theorems 2.1 and 2.2, the main results of the current work, we establish com-

plete convergence theorems for normed row sums from an array of rowwise pairwise

negative quadrant dependent random variables. This concept of dependence was

introduced by Lehmann [12] and will be defined below.

In many stochastic models, an independence assumption among the random vari-

ables in the model is not a reasonable one, since the random variables in the model

may be “repelling” in the sense that small values of any of the random variables

increase the probability that the other random variables are large. Thus an assump-

tion of some type of negative dependence is often more suitable than the classical

assumption of independence.

Definition 1.1. A sequence of random variables {Xn, n > 1} is said to be

pairwise negative quadrant dependent (PNQD) if for all i, j > 1 (i 6= j) and all

x, y ∈ R,

(1.1) P (Xi 6 x,Xj 6 y) 6 P (Xi 6 x)P (Xj 6 y).

The choice of the adjective “negative” in this definition stems from the fact

that (1.1) implies that

P (Xj > y | Xi 6 x) > P (Xj > y).

It is well known and easy to prove that the sequence {Xn, n > 1} is PNQD if and

only if for all i, j > 1 (i 6= j) and all x, y ∈ R,

P (Xi > x,Xj > y) 6 P (Xi > x)P (Xj > y).

It is of course immediate that if {Xn, n > 1} is a sequence of pairwise independent

(a fortiori, independent) random variables, then {Xn, n > 1} is PNQD.

The concept of a finite set of random variables being PNQD is defined in a man-

ner completely analogous to the definition provided by Definition 1.1. An array of

random variables {Xn,j, 1 6 j 6 m(n), n > 1} is said to be rowwise PNQD if for

each n > 1, the finite set of random variables {Xn,j, 1 6 j 6 m(n)} is PNQD.
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A collection of m PNQD random variables arises by sampling without replacement

from a set of m real numbers (see, e.g., Bozorgnia, Patterson, and Taylor [2]). Li,

Rosalsky, and Volodin [13] showed that for every sequence of continuous distribution

functions {Fn, n > 1}, there exists a PNQD sequence of random variables {Xn,

n > 1} such that the distribution function of Xn is Fn, n > 1 and such that for all

k > 1, {Xn, n > k} is not a sequence of independent random variables.

Theorems 2.1 and 2.2 extend, improve, or relate to various other complete conver-

gence results in the literature; see Hu, Móricz, and Taylor [9], Bozorgnia, Patterson,

and Taylor [1], Bozorgnia, Patterson, and Taylor [3], Hu and Taylor [11], Taylor,

Patterson, and Bozorgnia [20], Gan and Chen [7], Wu and Zhu [24], and Wu and

Wang [23]. We gratefully acknowledge that the statement of Theorems 2.1 and 2.2

and their proofs owe much to some of these earlier results.

The following two lemmas are used in the proof of Theorem 2.1; the first lemma

is also used in the proofs of Corollary 2.1, Theorem 2.2, and Corollary 2.2.

Lemma 1.1 follows from Lemma 1 of Lehmann [12]; a more direct proof of it was

provided by Matu la [14].

Lemma 1.1 (Lehmann [12], Matu la [14]). Let {Xn, n > 1} be a sequence of

PNQD random variables and let {fn, n > 1} be a sequence of functions from R

to R. If the sequence {fn, n > 1} consists of only nondecreasing functions or only

nonincreasing functions, then {fn(Xn), n > 1} is a sequence of PNQD random

variables.

The next lemma is well known (see, e.g., Patterson and Taylor [16]) but we are not

able to track down its origin. In any event, its proof is immediate from Lemmas 1

and 3 of Lehmann [12].

Lemma 1.2. If {X1, . . . , Xn} is a set of n > 2 PNQD integrable random variables,

then

Var

( n∑

j=1

Xj

)

6

n∑

j=1

VarXj .

The following lemma provides a maximal inequality for a sequence of PNQD

mean 0 random variables and is used in the proof of Theorem 2.2. Throughout

this paper, for x > 1 we let log x denote loge(max{e, x}).

Lemma 1.3 (Wu [22]). There exists a universal constant C < ∞ such that for

every sequence {Xn, n > 1} of PNQD mean 0 random variables,

E

(

max
16k6n

( k∑

j=1

Xj

)2)

6 C(log n)2
n∑

j=1

EX2
j ∀n > 1.
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Theorems 2.1 and 2.2 and their corollaries will be stated and proved in Section 2.

In Section 3, we will apply the results in Section 2 to obtain a complete convergence

theorem (Theorem 3.1) for the row sums of the dependent bootstrap samples aris-

ing from a sequence of i.i.d. random variables. The notion of dependent bootstrap

samples will be reviewed in Section 3.

We close this section by remarking that a major survey article concerning a gen-

eral “theory of negative dependence” was prepared by Pematle [17]. That article

discusses the relationship between various definitions of “negative dependence”, out-

lines some possible directions that the theory can take, and provides some interesting

conjectures.

2. The main results

With the preliminaries accounted for, the main results may now be stated and

proved. We note that the condition (2.2) is in the spririt of a condition of Chung [4]

for a sequence of independent random variables to obey a general strong law of large

numbers (SLLN).

Theorem 2.1. Let {m(n), n > 1} be a sequence of positive integers, let {Xn,j, 1 6

j 6 m(n), n > 1} be an array of rowwise PNQD mean 0 random variables, and

let {bn, n > 1} be a sequence of positive real numbers with lim
n→∞

bn = ∞. Let

{Ψn,j, 1 6 j 6 m(n), n > 1} be an array of functions defined on [0,∞) such that for

all n > 1 and all 1 6 j 6 m(n),

(2.1) Ψn,j(0) = 0 <
Ψn,j(t)

t
↑ and

Ψn,j(t)

t2
↓ as 0 < t ↑ .

If

(2.2)
∞∑

n=1

m(n)
∑

j=1

EΨn,j(|Xn,j|)

Ψn,j(bn)
< ∞,

then

(2.3)

m(n)
∑

j=1

Xn,j/bn −→ 0 completely.

P r o o f. For n > 1 and 1 6 j 6 m(n), let

Yn,j = −bnI(Xn,j < −bn) +Xn,jI(|Xn,j | 6 bn) + bnI(Xn,j > bn)
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and

Zn,j = (Xn,j + bn)I(Xn,j < −bn) + (Xn,j − bn)I(Xn,j > bn).

Then

(2.4) Yn,j + Zn,j = Xn,j , 1 6 j 6 m(n), n > 1

and so to prove (2.3) it suffices to show

m(n)
∑

j=1

Zn,j

/
bn −→ 0 completely,(2.5)

m(n)
∑

j=1

(Yn,j − EYn,j)
/
bn −→ 0 completely,(2.6)

and

(2.7)

m(n)
∑

j=1

EYn,j/bn −→ 0.

We first prove (2.5). Let n > 1 and 1 6 j 6 m(n). If Xn,j > bn, then

0 < Zn,j = Xn,j − bn < Xn,j.

If Xn,j < −bn, then

Xn,j < Xn,j + bn = Zn,j < 0.

If |Xn,j | 6 bn, then

|Zn,j | = 0 6 |Xn,j |.

Thus for all n > 1 and 1 6 j 6 m(n),

(2.8) |Zn,j| 6 |Xn,j |I(|Xn,j| > bn).
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Hence, for arbitrary ε > 0,

(2.9)

∞∑

n=1

P

(∣
∣
∣
∣

m(n)
∑

j=1

Zn,j

∣
∣
∣
∣
> bnε

)

6

∞∑

n=1

P

(m(n)
∑

j=1

|Zn,j| > bnε

)

6
1

ε

∞∑

n=1

m(n)
∑

j=1

E|Zn,j|/bn (by the Markov inequality)

6
1

ε

∞∑

n=1

m(n)
∑

j=1

E(|Xn,j |I(|Xn,j | > bn))

bn
(by (2.8))

6
1

ε

∞∑

n=1

m(n)
∑

j=1

EΨn,j(|Xn,j |)

Ψn,j(bn)
(by the first half of (2.1))

< ∞ (by (2.2))

thereby proving (2.5).

Next, we prove (2.6). It follows from Lemma 1.1 that {Yn,j−EYn,j , 1 6 j 6 m(n),

n > 1} is an array of rowwise PNQD random variables. Hence, for arbitrary ε > 0,

∞∑

n=1

P

(∣
∣
∣
∣

m(n)
∑

j=1

(Yn,j − EYn,j)

∣
∣
∣
∣
> bnε

)

6
1

ε2

∞∑

n=1

b−2
n Var

(m(n)
∑

j=1

Yn,j

)

(by Chebyshev’s inequality)

6
1

ε2

∞∑

n=1

b−2
n

m(n)
∑

j=1

VarYn,j (by Lemma 1.2)

6
1

ε2

∞∑

n=1

m(n)
∑

j=1

EY 2
n,j

b2n

6
1

ε2

∞∑

n=1

m(n)
∑

j=1

EΨn,j(|Yn,j |)

Ψn,j(bn)
(by the second half of (2.1))

6
1

ε2

∞∑

n=1

m(n)
∑

j=1

EΨn,j(|Xn,j |)

Ψn,j(bn)
(since |Yn,j | 6 |Xn,j |)

< ∞ (by (2.2))

thereby proving (2.6).
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Finally, we prove (2.7). Note that for all n > 1 and 1 6 j 6 m(n), it follows

from (2.4) and the EXn,j = 0 assumption that EYn,j = −EZn,j and hence

∣
∣
∣
∣

m(n)
∑

j=1

EYn,j

∣
∣
∣
∣

/

bn =

∣
∣
∣
∣

m(n)
∑

j=1

EZn,j

∣
∣
∣
∣

/

bn 6

m(n)
∑

j=1

E|Zn,j |/bn −→ 0,

since
∞∑

n=1

m(n)
∑

j=1

E|Zn,j |/bn < ∞

by (2.9) thereby proving (2.7) and completing the proof of Theorem 2.1. �

R e m a r k 2.1. In Theorem 2.1, if the array {Xn,j, 1 6 j 6 m(n), n > 1}

is comprised of symmetric random variables, then the theorem is true with (2.1)

replaced by the following weaker condition. For some 0 < q 6 1 and all n > 1 and

all 1 6 j 6 m(n),

Ψn,j(0) = 0 <
Ψn,j(t)

tq
↑ and

Ψn,j(t)

t2
↓ as 0 < t ↑ .

The reader can easily verify (2.5), and verification of (2.6) is the same as before.

Symmetry immediately gives (2.7).

In the following corollary, note that there is a trade-off involving p in the conditions

(2.10) and (2.11); the larger p, the stronger is the condition (2.10) but the weaker is

the condition (2.11).

Corollary 2.1. Let {m(n), n > 1} be a sequence of positive integers and let

{Xn,j, 1 6 j 6 m(n), n > 1} be an array of rowwise identically distributed PNQD

random variables with

(2.10) E|Xn,1 − EXn,1|
p = O(1)

for some 1 6 p 6 2. Let {bn, n > 1} be a sequence of positive real numbers with

lim
n→∞

bn = ∞. If

(2.11)

∞∑

n=1

m(n)

bpn
< ∞,

then

(2.12) b−1
n

m(n)
∑

j=1

(Xn,j − EXn,j) −→ 0 completely.
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P r o o f. For all n > 1 and all 1 6 j 6 m(n), let

Ψn,j(t) = tp, t > 0.

Then {Ψn,j, 1 6 j 6 m(n), n > 1} satisfies (2.1) and by Lemma 1.1, {Xn,j −EXn,j ,

1 6 j 6 m(n), n > 1} is an array of rowwise PNQD mean 0 random variables. Since

∞∑

n=1

m(n)
∑

j=1

EΨn,j(|Xn,j − EXn,j |)

Ψn,j(bn)
=

∞∑

n=1

m(n)E|Xn,1 − EXn,1|
p

bpn

< ∞ (by (2.10) and (2.11)),

the conclusion (2.12) follows immediately from Theorem 2.1. �

Theorem 2.2. Let {m(n), n > 1} be a sequence of positive integers, let {Xn,j, 1 6

j 6 m(n), n > 1} be an array of rowwise PNQD mean 0 random variables, and

let {bn, n > 1} be a sequence of positive real numbers with lim
n→∞

bn = ∞. Let

{Ψn,j, 1 6 j 6 m(n), n > 1} be an array of functions defined on [0,∞) satisfying

(2.1) for all n > 1 and all 1 6 j 6 m(n). If

(2.13)

∞∑

n=1

(
logm(n)

)2
m(n)
∑

j=1

EΨn,j(|Xn,j |)

Ψn,j(bn)
< ∞,

then

(2.14)
1

bn
max

16k6m(n)

∣
∣
∣
∣

k∑

j=1

Xn,j

∣
∣
∣
∣
−→ 0 completely.

P r o o f. For n > 1 and 1 6 j 6 m(n), define Yn,j and Zn,j as in the proof of

Theorem 2.1. Then (2.4) holds and to prove (2.14) it suffices to show

max
16k6m(n)

∣
∣
∣
∣

k∑

j=1

Zn,j

∣
∣
∣
∣

/

bn −→ 0 completely,

max
16k6m(n)

∣
∣
∣
∣

k∑

j=1

(Yn,j − EYn,j)

∣
∣
∣
∣

/

bn −→ 0 completely,

and

max
16k6m(n)

∣
∣
∣
∣

k∑

j=1

EYn,j

∣
∣
∣
∣

/

bn −→ 0.

These are proved in the same way as (2.5), (2.6), and (2.7) were proved in the proof of

Theorem 2.1, mutatis mutandis. The argument involves using (2.13) and Lemma 1.3

in the same manner as (2.2) and Lemma 1.2 were used in the proof of Theorem 2.1.

The details are left to the reader. �
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The following corollary will only be stated as its proof is virtually identical to that

of Corollary 2.1. Theorem 2.2 is applied instead of Theorem 2.1.

Corollary 2.2. Let {m(n), n > 1} be a sequence of positive integers and let

{Xn,j, 1 6 j 6 m(n), n > 1} be an array of rowwise identically distributed PNQD

random variables satisfying (2.10) for some 1 6 p 6 2. Let {bn, n > 1} be a sequence

of positive real numbers with lim
n→∞

bn = ∞. If

∞∑

n=1

m(n)(logm(n))2

b2n
< ∞,

then

b−1
n max

16k6m(n)

∣
∣
∣
∣

k∑

j=1

(Xn,j − EXn,j)

∣
∣
∣
∣
−→ 0 completely.

3. The dependent bootstrap

The dependent bootstrap was introduced by Smith and Taylor [18] and [19] for

a sequence of i.i.d. random variables as follows. Let {Xn, n > 1} be a sequence of

i.i.d. random variables defined on a probability space (Ω,F , P ). Let {m(n), n > 1}

and {k(n), n > 1} be two sequences of integers such that 1 6 m(n) 6 nk(n), n > 1.

For ω ∈ Ω and n > 1, the dependent bootstrap is defined to be the sample of size

m(n), denoted {X
∗(ω)
n,j , 1 6 j 6 m(n)}, drawn at random without replacement from

the collection of nk(n) items comprised of k(n) of each of the n sample observations

X1(ω), . . . , Xn(ω). In other words, {X
∗(ω)
n,j , 1 6 j 6 m(n)} consists of m(n) selections

taken at random without replacement from

X1(ω), . . . , X1(ω)
︸ ︷︷ ︸

k(n) times

, . . . , Xn(ω), . . . , Xn(ω)
︸ ︷︷ ︸

k(n) times

.

Thus for each of the m(n) selections, each Xi(ω) has probability 1/n of being cho-

sen (without conditioning on the other selections). Hence, for ω ∈ Ω and n > 1,

{X
∗(ω)
n,j , 1 6 j 6 m(n)} is a set of m(n) identically distributed dependent random

variables with

P ∗(X
∗(ω)
n,1 = Xi(ω)) =

1

n
, 1 6 i 6 n,

where P ∗ is the (conditional) probability measure (given {Xn, n > 1}) carrying

for each n > 1, the (uniform) distribution on X1(ω), . . . , Xn(ω) of each resampled

259



X
∗(ω)
n,j , 1 6 j 6 m(n). We refer to n as the sample size and to m(n) as the dependent

bootstrap sample size.

Alternatively, for n > 1 and 1 6 i 6 n, let

Yj = Xi for (i− 1)k(n) + 1 6 j 6 ik(n)

and

X∗

n,j = YZ(n,j), 1 6 j 6 m(n),

where the Z(n, j), 1 6 j 6 m(n) are taken at random without replacement from the

finite set {1, . . . , nk(n)} and such that the families of random variables

{Z(n, j), 1 6 j 6 m(n)}, n > 1, {Xn, n > 1}

are independent; we may and do assume without loss of generality that the underlying

probability space (Ω,F , P ) is rich enough to accommodate all of these random vari-

ables. (Of course, for each n > 1, the m(n) random variables Z(n, j), 1 6 j 6 m(n)

are not independent.) Then for each n > 1, X∗

n,1, . . . , X
∗

n,m(n) are conditionally

identically distributed (but not conditionally independent) given (X1, . . . , Xn) with

P (X∗

n,1 = Xi | X1, . . . , Xn) =
1

n
a.s., 1 6 i 6 n.

Smith and Taylor [18] and [19] proposed the dependent bootstrap as a procedure

for reducing variation of estimators and for obtaining better confidence intervals

than those obtained using the traditional Efron [5] nonparametric (or resampling

with replacement) bootstrap. The reader may refer to Smith and Taylor [19] for

details and where simulated confidence intervals are obtained to examine possible

gains in coverage probabilities and reductions in the interval lengths.

Smith and Taylor [18] and [19] established the following important properties of

the dependent bootstrap.

(i) For all n > 1, the set of random variables {X
∗(ω)
n,1 , . . . , X

∗(ω)
n,m(n)} comprising

a dependent bootstrap sample are PNQD.

(ii) Letting E∗ and Var∗ denote, respectively, the operation of taking the expected

value and variance (with respect to P ∗) of real-valued functions of the dependent

bootstrap samples {X
∗(ω)
n,j , 1 6 j 6 m(n)}, n > 1, we have that

(3.1) E∗X
∗(ω)
n,1 = Xn(ω) and Var∗X

∗(ω)
n,1 = S2

n(ω), n > 1,

where Xn = n−1
n∑

i=1

Xi and S2
n = n−1

n∑

i=1

(Xi − Xn)
2, n > 1 are the sample mean

and the biased version of the sample variance, respectively.
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Smith and Taylor [18] established the conditional consistency of the dependent

bootstrap mean

X
∗

n,m(n) =

m(n)
∑

j=1

X∗

n,j

/

m(n),

whereas Patterson, Smith, Taylor, and Bozorgnia [15] established the conditional

asymptotic normality of the dependent bootstrap mean. Hu, Ordóñez Cabrera, and

Volodin [10] found an upper bound for the exact convergence rate (i.e., a law of

the iterated logarithm type result) for dependent bootstrap means. In the following

theorem, we establish a complete convergence theorem for the row sums
m(n)∑

j=1

X∗

n,j

of the dependent bootstrap samples {{X∗

n,j, 1 6 j 6 m(n)}, n > 1}. The only other

results that we are aware of concerning complete convergence of the row sums of

dependent bootstrap samples are those of Volodin, Ordóñez Cabrera, and Hu [21]

but that work and the current work do not entail each other.

Theorem 3.1. Let {m(n), n > 1} and {k(n), n > 1} be integer sequences such

that 1 6 m(n) 6 nk(n), n > 1. Let {Xn, n > 1} be a sequence of i.i.d. square

integrable random variables defined on a probability space (Ω,F , P ) and for ω ∈ Ω,

let {{X
∗(ω)
n,j , 1 6 j 6 m(n)}, n > 1} be the corresponding sequence of dependent

bootstrap samples. Let {bn, n > 1} be a sequence of positive real numbers with

lim
n→∞

bn = ∞. Then letting Xn = n−1
n∑

i=1

Xi, n > 1, the dependent bootstrap

samples satisfy the following:

(i) If
∞∑

n=1
m(n)b−2

n < ∞, then for almost every ω ∈ Ω,

b−1
n

m(n)
∑

j=1

(X
∗(ω)
n,j −Xn(ω)) −→ 0 completely;

that is, for almost every ω ∈ Ω,

∞∑

n=1

P ∗

(∣
∣
∣
∣

m(n)
∑

j=1

(X
∗(ω)
n,j −Xn(ω))

∣
∣
∣
∣
> bnε

)

< ∞ ∀ ε > 0.

(ii) If
∞∑

n=1
m(n)(logm(n))2b−2

n < ∞, then for almost every ω ∈ Ω,

b−1
n max

16k6m(n)

∣
∣
∣
∣

k∑

j=1

(X
∗(ω)
n,j −Xn(ω))

∣
∣
∣
∣
−→ 0 completely;
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that is, for almost every ω ∈ Ω,

∞∑

n=1

P ∗

(

max
16k6m(n)

∣
∣
∣
∣

k∑

j=1

(X
∗(ω)
n,j −Xn(ω))

∣
∣
∣
∣
> bnε

)

< ∞ ∀ ε > 0.

P r o o f. (i) We will verify that for almost every ω ∈ Ω, the array {X
∗(ω)
n,j , 1 6

j 6 m(n), n > 1} of rowwise identically distributed PNQD random variables satisfies

the hypotheses of Corollary 2.1 with p = 2. Now recalling (3.1), for almost every

ω ∈ Ω,

E∗(X
∗(ω)
n,1 − E∗X

∗(ω)
n,1 )2 = Var∗ X

∗(ω)
n,1 = S2

n(ω) = O(1),

since

S2
n =

1

n

n∑

i=1

X2
i −

(
1

n

n∑

i=1

Xi

)2

−→ EX2
1 − (EX1)

2 < ∞ a.s.

by the Kolmogorov SLLN. Thus by (3.1) and Corollary 2.1, for almost every ω ∈ Ω,

b−1
n

m(n)
∑

j=1

(X
∗(ω)
n,j −Xn(ω)) = b−1

n

m(n)
∑

j=1

(X
∗(ω)
n,j − E∗X

∗(ω)
n,j ) −→ 0 completely.

(ii) The proof is identical to that of part (i) except that Corollary 2.2 is used

instead of Corollary 2.1. �
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[21] A. Volodin, M. Ordóñez Cabrera, T. C. Hu: Convergence rate of the dependent boot-
strapped means. Theory Probab. Appl. 50 (2006), 337–346; translation from Teor.
Veroyatn. Primen. 50 (2005), 344–352. (In Russian.)

[22] Q. Wu: Convergence properties of pairwise NQD random sequences. Acta Math. Sin. 45

(2002), 617–624. (In Chinese.)
[23] Y. Wu, D. Wang: Convergence properties for arrays of rowwise pairwise negatively quad-

rant dependent random variables. Appl. Math., Praha 57 (2012), 463–476.
[24] Y.-F. Wu, D.-J. Zhu: Convergence properties of partial sums for arrays of rowwise neg-

atively orthant dependent random variables. J. Korean Stat. Soc. 39 (2010), 189–197.

Authors’ addresses: Andrew Rosalsky (corresponding author), Department of Statistics,
University of Florida, Gainesville, FL 32611-8545, U.S.A., e-mail: rosalsky@stat.ufl.edu;
Yongfeng Wu, College of Mathematics and Computer Science, Tongling University, Tongling
244000, P. R. China, e-mail: wyfwyf@126.com.

263


		webmaster@dml.cz
	2020-07-02T14:12:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




