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Abstract. We give sufficient conditions for the existence of integral solutions for a class
of neutral functional differential inclusions. The assumptions on the generator are reduced
by considering nondensely defined Hille-Yosida operators. Existence and controllability
results are established by combining the theory of addmissible multivalued contractions
and Frigon’s fixed point theorem. These results are applied to a neutral partial differential
inclusion with diffusion.
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1. Introduction

The aim of this paper is to establish several results on the existence of integral

solutions of the partial neutral functional differential inclusion

(1.1)





d

dt
[y(t)− f(t, yt)]−A[y(t)− f(t, yt)] ∈ F (t, yt) for a.e. t ∈ J = [0, a],

y0 = ϕ ∈ C = C([−r, 0];E),

and on the controllability of the partial neutral functional differential inclusion

(1.2)






d

dt
[y(t)− f(t, yt)]−A[y(t)− f(t, yt)] ∈ F (t, yt) +Bu(t) for a.e. t ∈ J,

y0 = ϕ ∈ C,

where A is a nondensely defined linear operator on a Banach space E, C is the space

of continuous functions from [−r, 0] to E endowed with the uniform norm topology.
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For t > 0, as usual, the function yt ∈ C is defined by

yt(θ) = y(t+ θ) for θ ∈ [−r, 0].

F : J × C → P(E) is a multivalued map with compact values, f : J × C → E is

a continuous function, B is a bounded linear operator defined from a Banach space

U into E and u(·) ∈ L2(J,U).

In the literature, there has been much current interest in studying neutral partial

functional differential equations either if A satisfies all the conditions of the Hille-

Yosida Theorem or A is not necessarily densely defined. When A is the infinitesimal

generator of a strongly continuous semigroup on X, we refer for instance to [20], [21],

[19], [13], [17], [16], [18] while when A is a Hille-Yosida operator, we refer for instance

to [3] and [4].

For semilinear functional differential inclusions, Benchohra and Ouahab [9] used

Frigon’s fixed point theorem [12] to study the controllability of the neutral functional

differential inclusion

(1.3)





d

dt
[y(t)− f(t, yt)]−Ay(t) ∈ F (t, yt) +Bu(t) for a.e. t ∈ [0,∞),

y0 = ϕ ∈ C,

where A is the infinitesimal generator of a strongly continuous semigroup (T (t))t>0

of bounded linear operators on E and F , u, B are as in (1.2) with J = [0,∞).

We note that the existence and controllability results obtained in [9] rely on some

assumptions on the semigroup (T (t))t>0 and its generator A which imply that A is

a bounded operator and E is a finite dimensional space (see [15]).

For partial functional differential inclusions with nondensely defined operators, we

refer to the work of Henderson and Ouahab [14] in which the authors studied the

existence of integral solutions for the semilinear functional differential inclusion

{
y′(t)−Ay(t) ∈ F (t, yt) for a.e. t ∈ [0,∞),

y0 = ϕ ∈ C,

and discussed the existence of integral solutions of the problem

{
y′(t)−Ay(t) ∈ F (t, yt) +Bu(t) for a.e. t ∈ [0,∞),

y0 = ϕ.

More recently, it has been shown that the density condition is not necessary for

dealing with the existence of integral solutions and the controllability for many classes
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of both the functional differential equations (see [7], [5], [8]) and the semilinear

functional differential inclusions (see [1], [2], [6]).

The purpose of this work is to show that the boundedness of the operator A and

the density of its domain are not needed to get results on the existence of integral

solutions and controllability even if we work with neutral and multivalued partial

functional differential inclusions.

It should be pointed out that in [14], the authors assumed that the operator B

takes values in D(A), and then the linear operatorW defined on L2([0, n];U) (n > 0)

by

Wu =

∫ n

0

T0(n− s)Bu(s) ds

is forced to take values in D(A). Without assuming those conditions on B and W ,

we give a generalization to partial neutral functional differential inclusions.

This work is organized as follows. In Section 2, we recall some preliminary results

on multivalued analysis. In Section 3, we extend the existence result obtained in [14]

to partial neutral functional differential inclusions with Hille-Yosida operators of the

form (1.1). In Section 4, we study the controllability of (1.2). The last section is

devoted to the study of some reaction-diffusion inclusions.

2. Preliminary results on multivalued mappings

In this section, we recall some results on multivalued functions and on the non-

linear alternative for multivalued admissible contractions in Fréchet spaces due to

Frigon [12].

Given a space X , a directed set Λ, and a metrics dα, α ∈ Λ on X , define

P(X) = {Y ⊂ X : Y 6= ∅},

Pcl(X) = {Y ∈ P(X) : Y closed},

Pcp(X) = {Y ∈ P(X) : Y compact},

and denote by Dα, α ∈ Λ the Hausdorff pseudometric induced by dα:

Dα(A,B) = inf{ε > 0: for all x ∈ A, y ∈ B, there exist x ∈ A, y ∈ B

such that dα(x, y) 6 ε, dα(x, y) 6 ε}

with inf ∅ = 1.

Definition 2.1. A multivalued map F : X → P(E) is called an admissible con-

traction with constants {kα}α∈Λ if for each α ∈ Λ there exists kα ∈ (0, 1) such

that
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(i) Dα(F (x), F (y)) 6 kαdα(x, y) for all x, y ∈ X,

(ii) for every x ∈ X and every ε ∈ (0,∞)Λ there exists y ∈ F (x) such that

dα(x, y) 6 dα(x, F (x)) + εα for all α ∈ Λ.

The following result gives sufficient conditions for the existence of a fixed point

for admissible multivalued contractions.

Theorem 2.2 ([12]). Let X be a Fréchet space and V an open neighborhood with

its origin in X and let N : V → P (X) be an admissible multivalued contraction.

Assume that N is bounded, then one of the following statements holds:

(C1) N has a fixed point,

(C2) there exists λ ∈ [0, 1) and x ∈ ∂V such that x ∈ λN(x).

To apply Theorem 2.2, we consider Hd : P(E)× P(E) → R+ ∪ {∞} given by

Hd(A,B) = max
(
sup
a∈A

d(a,B), sup
b∈B

d(A, b)
)
,

where d(A, b) = inf
a∈A

d(a, b) and d(a,B) = inf
b∈B

d(a, b).

Then the space (Pcl(X), Hd) is a generalized metric space.

For compact valued measurable multifunctions, we have the following result.

Proposition 2.3 ([10]). If Γ1 and Γ2 are compact valued measurable multifunc-

tions then the multifunction t→ Γ1(t) ∩ Γ2(t) is measurable.

Theorem 2.4 ([10]). LetX be a separable metric space, (T, T ) a mesurable space,

Γ a multifunction from T to complete nonempty subsets of X. If for each open set

V in X, Γ−(V ) = {t : Γ(t) ∩ V 6= ∅} belongs to T , then Γ admits a measurable

selection.

3. Integral solutions

In this section, we establish sufficient conditions for the existence of integral solu-

tions for problem (1.1). We assume that A satisfies the following hypothesis:

(H1) A is a Hille-Yosida operator, namely, there exist M0 > 0 and ω ∈ R such

that (ω,∞) ⊂ ̺(A) and

‖(λ−A)−n‖ 6
M0

(λ− ω)n
for n ∈ N and λ > ω,

where ̺(A) is the resolvent set of A.
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In the sequel, we introduce the part A0 of A in D(A) defined as

D(A0) = {x ∈ D(A), Ax ∈ D(A)},

A0x = Ax for x ∈ D(A0).

It is well known that A0 generates a strongly continuous semigroup (T0(t))t>0 on

D(A).

We define now integral solutions of (1.1).

Definition 3.1. A continuous function y : [−r, a] → E is called an integral so-

lution of (1.1) if there exists a function g ∈ SF,y = {g ∈ L1(J,E) : g(t) ∈ F (t, yt) for

a.e. t ∈ J} such that

(i)
∫ t

0
(y(s)− f(s, ys)) ds ∈ D(A),

(ii) y(t) = f(t, yt) + (ϕ(0) − f(0, ϕ)) + A
∫ t

0 (y(s) − f(s, ys)) ds +
∫ t

0 g(s) ds for 0 6

t 6 a,

(iii) y0 = ϕ.

R em a r k 3.2. One can observe that if y is an integral solution of (1.1) then for

all t ∈ [0, a], y(t) − f(t, yt) ∈ D(A). In fact, t−1
∫ t

0 (y(s) − f(s, ys)) ds ∈ D(A) and

t−1
∫ t

0
(y(s) − f(s, ys)) ds goes to y(t) − f(t, yt) as t goes to 0. In particular, we get

ϕ(0)− f(0, ϕ) ∈ D(A).

Under additional conditions, we will show that ϕ(0) − f(0, ϕ) ∈ D(A) is also

sufficient for obtaining the existence of at least one integral solution of (1.1).

If an integral solution of (1.1) exists, then it is given as in [4] by

y(t) = f(t, yt) + T0(t)(ϕ(0) − f(0, ϕ))

+ lim
λ→∞

∫ t

0

T0(t− s)Aλf(s, ys) ds

+ lim
λ→∞

∫ t

0

T0(t− s)Aλg(s) ds,

where Aλ = λ(λ−A)−1.

In the sequel, we assume that the function F : J × C → P(E) is a Carathéodory

function, namely,

(i) t→ F (t, ϕ) is measurable for each ϕ ∈ C,

(ii) ϕ→ F (t, ϕ) is continuous for almost all t ∈ [0, a],

(iii) for each q > 0, there exists hq ∈ L1([0, a];R+) such that

‖F (t, ϕ)‖ = sup{‖g‖, g ∈ F (t, ϕ)} 6 hq(t)

for all ‖ϕ‖ < q and for almost all t ∈ [0, a].
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To study the existence of integral solutions, we add the following assumptions:

(H2) There exists K1 < 1 such that

‖f(t, ϕ1)− f(t, ϕ2)‖ 6 K1‖ϕ1 − ϕ2‖ for t ∈ [0, a] and ϕ1, ϕ2 ∈ C.

(H3) There exist ψ : [0,∞) → (0,∞) continuous and nondecreasing and p ∈

L1([0, a];R+) such that

‖F (t, ϕ)‖ 6 p(t)ψ(‖ϕ‖) for a.e. t ∈ [0, a] and ϕ ∈ C with

∫
∞

1

ds

s+ ψ(s)
= ∞.

(H4) There exists la ∈ L1([0, a];R+) such that

Hd(F (t, ϕ1), F (t, ϕ2)) 6 la(t)‖ϕ1 − ϕ2‖ for t ∈ [0, a] and ϕ1, ϕ2 ∈ C,

and

d(0, F (t, 0)) 6 la(t) for a.e. t ∈ [0, a].

R em a r k 3.3. As an immediate consequence of assumption (H2), we have the

estimate

(3.1) ‖f(t, ϕ)‖ 6 K1‖ϕ‖+K2 for all t ∈ [0, a] and ϕ ∈ C,

where K2 = sup
t∈[0,a]

‖f(t, 0)‖.

We give now our main existence result.

Theorem 3.4. Assume that (H1)–(H4) are satisfied and let ϕ be such that ϕ(0)−

f(0, ϕ) ∈ D(A). Then problem (1.1) has at least one integral solution on [0, a].

P r o o f. To prove Theorem 3.4, we consider the operator N : C([−r, a];E) →

P(C([−r, a];E)) defined as

(3.2)

N(y)(t) =





ϕ(t) for t ∈ [−r, 0]

f(t, yt) + T0(t)(ϕ(0) − f(0, ϕ)) + lim
λ→∞

∫ t

0

T0(t− s)Aλf(s, ys) ds

+ lim
λ→∞

∫ t

0

T0(t− s)Aλg(s) ds for t ∈ [0, a],

where g ∈ SF,y = {g ∈ L1(J,E) : g(t) ∈ F (t, yt) for a.e. t ∈ J}.

We will show that N has a fixed point which is then an integral solution of (1.1).
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Claim 1 : Let y be a solution of (1.1). Then there exists c1 > 0 such that ‖y‖ 6 c1.

Indeed, there exists g ∈ SF,y such that for each t ∈ [0, a],

(3.3) y(t) = f(t, yt) + T0(t)(ϕ(0) − f(0, ϕ))

+ lim
λ→∞

∫ t

0

T0(t− s)Aλf(s, ys) ds

+ lim
λ→∞

∫ t

0

T0(t− s)Aλg(s) ds.

Without loss of generality, we assume that M0 = 1 and ω > 0. Then

(3.4) ‖T0(t)‖ 6 eωt for t > 0.

By using (3.1), (3.4) and assumption (H3), we get

(3.5) ‖y(t)‖ 6 (K1‖yt‖+K2) + eωt((1 +K1)‖ϕ‖+K2)

+ eωt

∫ t

0

e−ωs(K1‖ys‖+K2) ds

+ eωt

∫ t

0

e−ωsp(s)ψ(‖ys‖) ds.

Hence, for all t ∈ [0, a], we have

(1 −K1)‖y(t)‖ 6 K2 + eωt

{
(1 +K1)‖ϕ‖+K2 +K1

∫ t

0

e−ωs‖ys‖ ds+ aK2

+

∫ t

0

e−ωsp(s)ψ(‖ys‖) ds

}
.

The last inequality along with the fact that

‖y(s)‖ 6 ‖ϕ‖ for all s ∈ [−r, 0]

implies that

sup
−r6s6t

‖y(s)‖ 6 eωtv(t),

where v is defined by

(3.6) v(t) =
1

1−K1

{
K2e

−ωt + (1 +K1)‖ϕ‖+K2(1 + a)

+K1

∫ t

0

e−ωs‖ys‖ ds+

∫ t

0

e−ωsp(s)ψ(‖ys‖) ds

}
for t ∈ [0, a].
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Furthermore, v(0) = 1/(1−K1){(1 +K1)‖ϕ‖ +K2(2 + a)},

(eωtv(t))′ 6 ωeωtv(t) +
K1

1−K1
eωtv(t) +

p(t)

1−K1
ψ(eωtv(t))

6 m(t)(eωtv(t) + ψ(eωtv(t))),

where m(t) = max{ω +K1/(1−K1), p(t)/(1−K1)}.

Hence,

∫ eωtv(t)

v(0)

ds

s+ ψ(s)
=

∫ t

0

(eωsv(s))′

eωsv(s) + ψ(eωsv(s)
ds 6

∫ t

0

m(s) ds <∞.

By (H3), the last inequality implies that (e
ωtv(t)) is bounded uniformly with respect

to v and we deduce that there exists a constant c̃1 such that e
ωtv(t) 6 c̃1 for t ∈ [0, a].

Let c1 = max{‖ϕ‖, c̃1}. Then we have

sup
−r6s6t

‖y(s)‖ 6 c1 for all t ∈ [0, a].

This implies that

‖y‖ 6 c1.

Set

U1 =
{
y ∈ C([−r, a];E) : sup

t∈[0,a]

‖y(t)‖ < c1 + 1
}
.

We can see that N is bounded. We have to show that the operator N : U1 →

P(C([−r, a];E)) is an admissible contraction. Let us introduce on C([−r, a];E) a new

norm ‖·‖a by

‖y‖a = sup
t∈[0,a]

e−(ωt+τL(t))‖y(t)‖,

where τ will be chosen sufficiently large, and the functions L and l are given by

L(t) =

∫ t

0

l(s) ds,

and

l(t) = max{K1, la(t)}.

Claim 2 : N is a contraction, which means that there exists δ < 1 such that

Hd(N(y), N(y)) 6 δ‖y − y‖a for y, y ∈ C([−r, a];E).
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Let y, y ∈ C([−r, a];E). Then for each t ∈ [0, a] and h ∈ N(y), there exists g ∈ SF,y

such that

h(t) = f(t, yt) + T0(t)(ϕ(0) − f(0, ϕ))

+ lim
λ→∞

∫ t

0

T0(t− s)Aλf(s, ys) ds

+ lim
λ→∞

∫ t

0

T0(t− s)Aλg(s) ds.

Assumption (H4) implies that

Hd(F (t, y(t)), F (t, y(t))) 6 la(t)‖yt − yt‖.

Hence, there exists x ∈ F (t, yt) such that

‖g(t)− x‖ 6 la(t)‖yt − yt‖ for t ∈ [0, a].

Let U∗ : [0, a] → P(E) be given by

U∗(t) = {x ∈ E : ‖g(t)− x‖ 6 la(t)‖yt − yt‖}.

It follows from Proposition 2.3 that the multivalued operator V∗(t) = U∗(t)∩F (t, yt)

is measurable. Then V∗ admits a measurable selection g.

Hence, g(t) ∈ F (t, yt) and

‖g(t)− g(t)‖ 6 la(t)‖yt − yt‖ for t ∈ [0, a].

Let h ∈ N(y) be defined for t ∈ [0, a] by

h(t) = f(t, yt) + T0(t)(ϕ(0) − f(0, ϕ))

+ lim
λ→∞

∫ t

0

T0(t− s)Aλf(s, ys) ds

+ lim
λ→∞

∫ t

0

T0(t− s)Aλg(s) ds.

Then

(3.7) ‖h(t)− h(t)‖ 6 ‖f(t, yt)− f(t, yt)‖

+

∥∥∥∥ lim
λ→∞

∫ t

0

T0(t− s)Aλ(f(s, ys)− f(s, ys)) ds

∥∥∥∥

+

∥∥∥∥ lim
λ→∞

∫ t

0

T0(t− s)Aλ(g(s)− g(s)) ds

∥∥∥∥

6

(
K1 +

2

τ

)
eωt+τL(t)‖y − y‖a.
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In fact, assumption (H2) yields that

(3.8) ‖f(t, yt)− f(t, yt)‖ 6 K1‖yt − yt‖

6 K1e
ωt+τL(t)e−(ωt+τL(t))‖y − y‖

6 K1e
ωt+τL(t)‖y − y‖a.

On the other hand, by virtue of (H1), (H2), we get

(3.9)

∥∥∥∥ lim
λ→∞

∫ t

0

T0(t− s)Aλ(f(s, ys)− f(s, ys)) ds

∥∥∥∥

6 eωt

∫ t

0

e−ωs‖f(s, ys)− f(s, ys)‖ ds

6 eωt

∫ t

0

e−ωsK1‖ys − ys‖ ds

6 eωt

∫ t

0

l(s)eτL(s)e−τL(s)e−ωs‖y − y‖ ds

= eωt

∫ t

0

l(s)eτL(s)‖y − y‖a ds

=
eωt

τ

∫ t

0

(τL(s))′eτL(s) ds‖y − y‖a

=
1

τ
eωt+τL(t)‖y − y‖a.

Similarly, by using (H1), (H4), we obtain

(3.10)

∥∥∥∥ lim
λ→∞

∫ t

0

T0(t− s)Aλ(g(s)− g(s)) ds

∥∥∥∥ 6 eωt

∫ t

0

e−ωs‖g(s)− g(s)‖ ds

6 eωt

∫ t

0

e−ωsla(s)‖ys − ys‖ ds

6 eωt

∫ t

0

l(s)eτL(s)‖y − y‖a ds

=
1

τ
eωt+τL(t)‖y − y‖a.

Therefore, inequality (3.7) holds and consequently, we get

‖h− h‖a 6

(
K1 +

2

τ

)
‖y − y‖a,

and we deduce by interchanging the roles of y and y that

Hd(N(y), N(y)) 6
(
K1 +

2

τ

)
‖y − y‖a.
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By choosing τ large enough such that K1 +2/τ < 1, we deduce that N is a contrac-

tion.

Claim 3 : N is an admissible multivalued map.

Let y ∈ C([−r, a];E) and define N : C([−r, a];E) → Pcl(C([−r, a];E)) by

N(y)(t) =





ϕ(t) for t ∈ [−r, 0],

f(t, yt) + T0(t)(ϕ(0) − f(0, ϕ)) + lim
λ→∞

∫ t

0

T0(t− s)Aλf(s, ys) ds,

+ lim
λ→∞

∫ t

0

T0(t− s)Aλg(s) ds for t ∈ [0, a],

where g ∈ SF,y.

Since F is a multivalued map with compact values, we can prove as in [9], [14]

that for every y ∈ C([−r, a];E) we have N(y) ∈ Pcp(C([−r, a];E)) and there exists

y∗ ∈ C([−r, a];E) such that y∗ ∈ N(y∗).

Let y ∈ U1, ε > 0.

If y∗ ∈ N(y), then ‖y∗ −N(y)‖ = 0 and we have

‖y − y∗‖ 6 ‖y −Ny‖+ ‖y∗ − h‖.

Let h ∈ C([−r, a];E) be such that ‖h− y∗‖a 6 ε, then

‖y − y∗‖a 6 ‖y −Ny‖a + ‖y∗ − h‖a 6 ‖y −Ny‖a + ε.

If y∗ /∈ N(y) then ‖y∗ − N(y)‖ 6= 0. Since N(y) is compact, there exists x ∈ N(y)

such that ‖y∗ −N(y)‖ = ‖y∗ − x‖ .

Let h ∈ C([−r, a];E) be such that ‖x− h‖a 6 ε. Since x ∈ N(y), we get

‖y − x‖ 6 ‖y −Ny‖+ ‖x− h‖,

which leads to

‖y − x‖a 6 ‖y −Ny‖a + ε.

Hence, N is an admissible multifunction. Moreover, due to the choice of U1, there is

no y ∈ ∂U1 such that y ∈ λN(y) for some λ ∈ [0, 1). We deduce from Theorem 2.2

that N has at least one fixed point which is an integral solution of (1.1). �
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4. Controllability

In this section, we are concerned with the controllability of problem (1.2). We

start by introducing the following definitions.

Definition 4.1. A continuous function y : [−r, a] → E is called an integral so-

lution of (1.2) if there exists g ∈ SF,y such that

(i)
∫ t

0 (y(s)− f(s, ys)) ds ∈ D(A),

(ii) y(t) = f(t, yt)+(ϕ(0)−f(0, ϕ))+A
∫ t

0 (y(s)−f(s, ys)) ds+
∫ t

0 g(s) ds+
∫ t

0 Bu(s) ds

for t ∈ [0, a],

(iii) y0 = ϕ.

If y is an integral solution of (1.2), then it is given as in [4] by the formula

(4.1) y(t) = f(t, yt) + T0(t)(ϕ(0)− f(0, ϕ)) + lim
λ→∞

∫ t

0

T0(t− s)Aλf(s, ys) ds

+ lim
λ→∞

∫ t

0

T0(t− s)Aλg(s) ds+ lim
λ→∞

∫ t

0

T0(t− s)AλBu(s) ds,

where Aλ = λ(λ−A)−1.

Definition 4.2. We say that problem (1.2) is controllable on [0, a] if for any

continuous function ϕ on [−r, 0] satisfying ϕ(0)−f(0, ϕ) ∈ D(A) and for any x1 ∈ E

there exists a control u ∈ L2([0, a];U) such that the integral solution y of (1.2)

satisfies y(a) = x1.

In addition to (H1)–(H4), we assume the following assumption:

(H5) The operator W : L2([0, a];U) → E defined by

Wu = lim
λ→∞

∫ a

0

T0(a− s)AλBu(s) ds

induces a bounded inverse W−1 defined on L2([0, a];U) \KerW .

Let M1, M2 be positive constants such that

‖B‖ 6M1 and ‖W−1‖ 6M2.

We are now in position to state our controllability result.
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Theorem 4.3. Assume that (H1)–(H5) are verified and let ϕ be such that ϕ(0)−

f(0, ϕ) ∈ D(A). If (1 + aM1M2e
ωa)K1 < 1 then problem (1.2) is controllable on

[0, a].

P r o o f. According to (H5), we define for each y(·) and g ∈ SF,y the control

(4.2) uy(t) =W−1

[
y(a)− f(a, ya)− T0(a)(ϕ(0) − f(0, ϕ))

− lim
λ→∞

∫ a

0

T0(a− s)Aλf(s, ys) ds− lim
λ→∞

∫ a

0

T0(a− s)Aλg(s) ds

]
.

Define an operator N : C([−r, a];E) → P(C([−r, a];E)) by

N(y)(t) =






ϕ(t) for t ∈ [−r, 0],

f(t, yt) + T0(t)(ϕ(0) − f(0, ϕ))

+ lim
λ→∞

∫ t

0

T0(t− s)Aλf(s, ys) ds+ lim
λ→∞

∫ t

0

T0(t− s)Aλg(s) ds

+ lim
λ→∞

∫ t

0

T0(t− s)Aλ(Buy)(s) ds for t ∈ [0, a].

Clearly, the fixed points of N are integral solutions of (1.2).

Claim 1 : Let y be a solution of (1.2). Then there exists c2 > 0 such that ‖y‖ 6 c2.

Indeed, there exists g ∈ SF,y such that for each t ∈ [0, a],

y(t) = f(t, yt) + T0(t)(ϕ(0) − f(0, ϕ)) + lim
λ→∞

∫ t

0

T0(t− s)Aλf(s, ys) ds

+ lim
λ→∞

∫ t

0

T0(t− s)Aλg(s) ds+ lim
λ→∞

∫ t

0

T0(t− s)Aλ(Buy)(s) ds.

We can see from (3.1), (3.4), and assumption (H3) that

(4.3)

∥∥∥∥f(t, yt) + T0(t)(ϕ(0) − f(0, ϕ))

+ lim
λ→∞

∫ t

0

T0(t− s)Aλf(s, ys) ds+ lim
λ→∞

∫ t

0

T0(t− s)Aλg(s) ds

∥∥∥∥

6 (K1‖yt‖+K2) + eωt((1 +K1)‖ϕ‖ +K2)

+ eωt

∫ t

0

e−ωs(K1‖ys‖+K2) ds+ eωt

∫ t

0

e−ωsp(s)ψ(‖ys‖) ds.
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Moreover, by using (4.2), the same argument as in (4.3) allows us to get the estimate

(4.4)

∥∥∥∥ lim
λ→∞

∫ t

0

T0(t− s)Aλ(Buy)(s) ds

∥∥∥∥

6 aM1M2e
ωt

{
‖x1‖+K1‖ya‖+K2 + eωa((1 +K1)‖ϕ‖+K2)

+ eωa

∫ a

0

e−ωs(K1‖ys‖+K2) ds+ eωa

∫ a

0

e−ωsp(s)ψ(‖ys‖) ds

}
.

By virtue of (4.3) and (4.4), we get for t ∈ [0, a]

(1 −K1)‖y(t)‖ 6 K2 + eωt

{
(1 +K1)‖ϕ‖+ (1 + a)K2

+K1

∫ a

0

e−ωs‖ys‖ ds+

∫ t

0

e−ωsp(s)ψ(‖ys‖) ds

}

+ aM1M2e
ωt

{
‖x1‖+K1‖ya‖+K2 + eωa((1 +K1)‖ϕ‖+K2)

+ aK2e
ωa +K1e

ωa

∫ a

0

e−ωs‖ys‖ ds+ eωa

∫ a

0

e−ωsp(s)ψ(‖ys‖) ds

}

which implies that

sup
−r6s6t

‖y(s)‖ 6 eωtδ(t),

where δ is defined by

δ(t) =
1

1−K1

{
K2e

−ωt +

∫ t

0

e−ωsp(s)ψ(‖ys‖) ds+ (1 +K1)‖ϕ‖+ (1 + a)K2

+K1

∫ a

0

e−ωs‖ys‖ ds+ aM1M2

[
‖x1‖+K1‖ya‖+K2 + eωa

(
(1 +K1)‖ϕ‖

+ (1 + a)K2 +K1

∫ a

0

e−ωs‖ys‖ ds+

∫ a

0

e−ωsp(s)ψ(‖ys‖) ds

)]}

with

δ(0) =
1

1−K1

{
K2 + (1 +K1)‖ϕ‖+ (1 + a)K2

+K1

∫ a

0

e−ωs‖ys‖ ds+ aM1M2

[
‖x1‖+K1‖ya‖+K2

+ eωa

(
(1 +K1)‖ϕ‖ + (1 + a)K2

+K1

∫ a

0

e−ωs‖ys‖ ds+

∫ a

0

e−ωsp(s)ψ(‖ys‖) ds

)]}
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and

δ′(t) =
1

1−K1
(−ωK2e

−ωt + e−ωtp(t)ψ(‖yt‖)).

Since ψ is increasing and ω > 0, we deduce that

δ′(t) 6
1

1−K1
e−ωtp(t)ψ(eωtδ(t)),

(eωtδ(t))′ 6 ωeωtδ(t) +
1

1−K1
p(t)ψ(eωtδ(t)) 6 q(t)(eωtδ(t) + ψ(eωtδ(t))),

where q(t) = max{ω, 1/(1−K1)p(t)}.

By (H3) and since

∫ eωtδ(t)

δ(0)

ds

s+ ψ(s)
=

∫ t

0

(eωsδ(s))′

eωsδ(s) + ψ(eωsδ(s))
ds 6

∫ t

0

q(s) ds <∞,

we deduce that there exists a constant c̃2 such that

eωtδ(t) 6 c̃2 for t ∈ [0, a].

This implies that

‖y‖ 6 c̃2 for t ∈ [0, a].

Let c2 = max{‖ϕ‖, c̃2}. Then

‖y‖ 6 c2.

Set

U2 =
{
y ∈ C([−r, a];E) : sup

t∈[0,a]

‖y(t)‖ < c2 + 1
}
.

The space C([−r, a];E) is now endowed with the new norm

‖y‖a = sup
t∈[0,a]

e−(ωt+τL(t))‖y(t)‖,

where the functions L and l̂ are defined as

L(t) =

∫ t

0

l̂(s) ds,

and

(4.5) l̂(t) = max{K1, la(t), aM1M2e
ωaK1, aM1M2e

ωa‖la‖}.
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Claim 2 : The operator N : U2 → P(C([−r, a];E)) is an admissible contraction.

Let us first show that N is a contraction.

Let y, y ∈ C([−r, a];E). Then for each t ∈ [0, a] and h ∈ N(y), there exists

g(t) ∈ F (t, yt) such that

h(t) = f(t, yt) + T0(t)(ϕ(0) − f(0, ϕ)) + lim
λ→∞

∫ t

0

T0(t− s)Aλf(s, ys) ds

+ lim
λ→∞

∫ t

0

T0(t− s)Aλg(s) ds+ lim
λ→∞

∫ t

0

T0(t− s)Aλ(Buy)(s) ds.

The proof of Theorem 3.4 yields that there exists a function g such that g(t) ∈ F (t, yt)

and

‖g(t)− g(t)‖ 6 la(t)‖yt − yt‖ for t ∈ [0, a].

Let h ∈ N(y) be defined for each t ∈ [0, a] by

h(t) = f(t, yt) + T0(t)(ϕ(0) − f(0, ϕ)) + lim
λ→∞

∫ t

0

T0(t− s)Aλf(s, ys) ds

+ lim
λ→∞

∫ t

0

T0(t− s)Aλg(s) ds+ lim
λ→∞

∫ t

0

T0(t− s)Aλ(Buy)(s) ds.

Then

(4.6) ‖h(t)− h(t)‖ 6

(
(1 + aM1M2e

ωa)K1 +
4

τ

)
eωt+τL(t)‖y − y‖a.

In fact, by using the same argument as in inequalities (3.8)–(3.10) we get

∥∥∥∥f(t, yt)− f(t, yt) + lim
λ→∞

∫ t

0

T0(t− s)Aλ(f(s, ys)− f(s, ys)) ds

+ lim
λ→∞

∫ t

0

T0(t− s)Aλ(g(s)− g(s)) ds

∥∥∥∥

6

(
K1 +

2

τ

)
eωt+τL(t)‖y − y‖a.
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On the other hand, using (4.2) and (4.5), we have the estimate

(4.7)

∥∥∥∥ lim
λ→∞

∫ t

0

T0(t− s)AλB(uy(s)− uy(s)) ds

∥∥∥∥

6 aM1M2e
ωaK1‖y − y‖+ aM1M2e

ωaeωt

∫ t

0

e−ωsK1‖y − y‖ ds

+ aM1M2e
ωaeωt

∫ t

0

e−ωs‖la‖‖y − y‖ ds

6 aM1M2e
ωaK1e

ωt+τL(t)‖y − y‖a + eωt

∫ t

0

l̂(s)eτL(s)‖y − y‖a ds

+ eωt

∫ t

0

l̂(s)eτL(s)‖y − y‖a ds

6

(
aM1M2e

ωaK1e
ωt+τL(t) +

2

τ
eωt+τL(t)

)
‖y − y‖a.

Hence, inequality (4.6) is verified and we have

‖h− h‖a 6

(
(1 + aM1M2e

ωa)K1 +
4

τ

)
‖y − y‖a.

Consequently, we get

Hd(N(y), N(y)) 6
(
(1 + aM1M2e

ωa)K1 +
4

τ

)
‖y − y‖a.

By choosing τ large enough such that (1+aM1M2e
ωa)K1+4/τ < 1, we deduce that

N is a contraction. Using the same reasoning as in Theorem 3.4, we can show that

N is an admissible multivalued map.

Claim 3 : Problem (1.2) is controllable.

By applying Theorem 2.2 and since there is no y ∈ ∂U2 such that y ∈ λN(y) for

some λ ∈ [0, 1), we conclude that N has at least one fixed point which is an integral

solution of equation (1.2). �
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5. Application

The objective of this section is to apply the controllability results of the previous

section to the reaction-diffusion inclusion of parabolic type

(5.1)






∂

∂t
[y(t, x)− g(yt(·, x))] −∆[y(t, x)− g(yt(·, x))]

∈ Q(t, y(t− r, x)) + (Bu)(t) for t ∈ [0, a], x ∈ [0, π],

y(t, 0) = y(t, π) for t ∈ [0, a],

y(θ, x) = ϕ(θ, x) for θ ∈ [−r, 0], x ∈ [0, π],

where ∆ is the Laplacian operator on [0, π], ϕ ∈ C([−r, 0];C([0, π];R)), g : C([−r, 0];

C([0, π];R)) → C([0, π];R) is Lipshitz continuous, that is, there exists k0 > 0 such

that

‖gϕ− gψ‖ 6 k0‖ϕ− ψ‖ for ϕ, ψ ∈ C([−r, 0];C([0, π];R)),

Q : [0, a]× [0, π] → P(R) is a multivalued map with compact values satisfying

∃k1 > 0: Hd(Q(t, x1), Q(t, x2)) 6 k1‖x1 − x2‖ for t ∈ [0, a] and x1, x2 ∈ [0, π],

and

d(0, Q(t, 0)) 6 k1 for t ∈ [0, a].

B : U → C([0, π];R) is a bounded linear operator defined on a Banach space U and

u ∈ L2([0, a];U).

It is well known from [11] that ∆ possesses the following properties:






D(∆) = {u ∈ C([0, π];R) : u(0) = u(π) = 0},

(0,∞) ⊂ ̺(∆),

‖(λ−∆)−1‖ 6
1

λ
for λ > 0.

Hence, assumption (H1) is verified.

Also, if k0 < 1, then the function g satisfies assumption (H2).

Define on [0, a]× C([−r, 0];C([0, π];R)) a multivalued operator F as

F (t, ϕ)(x) = Q(t, ϕ(−r)(x)).

Then F satisfies (H4).

Let (T0(t))t>0 be the strongly continuous semigroup generated by the part of ∆

in D(∆), define the operator W : L2([0, a];U) → C([0, π];R) as

Wu = lim
λ→∞

∫ a

0

T0(a− s)AλBu(s) ds

and assume that W−1 exists and takes values in L2([0, a];U) \KerW.
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Let M1,M2 > 0 be such that

‖B‖ 6M1 and ‖W−1‖ 6M2.

Theorem 5.1. Let ϕ be such that ϕ(0)− g(ϕ) ∈ D(∆).

If (1 + aM1M2e
ωa)k0 < 1 then the partial neutral functional differential inclu-

sion (5.1) is controllable on [0, a].
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