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Abstract. Let

A =

[

1 2

0 1

]

, Bλ =

[

1 0

λ 1

]

.

We call a complex number λ “semigroup free” if the semigroup generated by A and Bλ is
free and “free” if the group generated by A and Bλ is free.

First families of semigroup free λ’s were described by J. L. Brenner, A. Charnow (1978).
In this paper we enlarge the set of known semigroup free λ’s. To do it, we use a new version
of “Ping-Pong Lemma” for semigroups embeddable in groups. At the end we present most
of the known results related to semigroup free and free numbers in a common picture.
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1. Introduction

Let λ be any complex number and let

A =

[

1 2

0 1

]

, Bλ =

[

1 0

λ 1

]

, Cλ =

[

1 λ

0 1

]

, J =

[

0 1

1 0

]

.

Let X be a subset of any group. By gp(X) we mean a group generated by X and

by sgp(X) a semigroup generated by X .

In many papers (for example, [2], [4], [7]–[9], [11], [14]) authors found the values

of λ’s for which the group gp(A,Bλ) is free. The problem “when the semigroup

sgp(A,Bλ) is free” is similar to “when the group gp(A,Bλ) is free” but the knowledge

in this field is relatively poor.

A number λ is called free if gp(A,Bλ) is free (otherwise it is called nonfree). If

sgp(A,Bλ) is a free semigroup then λ is called semigroup free (otherwise it is called

semigroup nonfree).
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Any complex number λ can be viewed as a point in the plane. J. L. Brenner and

A.Charnow in [3] found a set of semigroup free λ’s (Figure 1).
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Figure 1. Points outside the grey area are free.

The authors also found some families of semigroup nonfree λ’s; for example, they

proved that the set of semigroup nonfree λ’s is dense on the interval (−2, 0) and that

semigroup nonfree λ’s are arbitrarily close to 1/2.

2. Propositions

We start with some facts:

Proposition 2.1.

(i) Let A1, A2, . . . be any square matrices of the same order over the same ring. If

the group gp(A1, A2, . . . ) is free, then the semigroup sgp(A1, A2, . . . ) is free.

(ii) Let 2λ = νµ. Then the semigroup sgp(A,Bλ) is free if and only if sgp(Bµ, Cν)

is free.

(iii) The semigroup sgp(Bλ, Cλ) is free if and only if sgp(Bλ, J) is a free product of

cyclic semigroups generated by Bλ and J .

(iv) Every transcendental λ is free.

Note. (ii) and (iii) will be true if we write “group” instead of “semigroup”.

P r o o f. (i) is trivial. For the proof of (ii) we note that if S :=
[ ν/2 0

0 1

]

, then

S−1CνS = A and S−1BµS = Bλ. (iii) easily follows from the equality Bλ = JCλJ .

(iv) was proved in [6]. �

It is known that homographic functions f(z) = (az + b)/(cz + d), a, b, c, d ∈ C;

ad − cb 6= 0; z ∈ C ∪ {∞}, which map C ∪ {∞} into C ∪ {∞} form a group under
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superposition (f1 ◦ f2)(z) = f1(f2(z)) [12], which is isomorphic to PSL(2,C); it

means that there exists an epimorphism ϕ of GL(2,C) onto the group of homographic

functions such that

ϕ
([ a b

c d

])

=
(

z 7→ az + b

cz + d

)

.

Let α = (x 7→ x+ 2), βλ = (x 7→ x/(λx + 1)), γλ = (x 7→ x+ λ), ι = (x 7→ 1/x).

Then ϕ(A) = α, ϕ(Bλ) = βλ, ϕ(Cλ) = γλ, ϕ(J) = ι.

As was mentioned in [15], gp(A,Bλ) is free if and only if gp(α, βλ) is free. It

remains true if we write “sgp” instead of “gp”.

In the following text we will consider homographic functions instead of matrices.

Now let us write down some properties of homographic functions.

Proposition 2.2. Let a1, a2, b1, b2 ∈ R, b1 6= 0 and b2 6= 0. If

z = a1 + a2i + (b1 + b2i)t, t ∈ R

is the parametric equation of a line in the complex plane C, not including the origin,

then the transformation ι : z 7→ 1/z maps this line into a circumference (which

includes origin) defined as

∣

∣

∣
z +

b2 + b1i

2(a2b1 − a1b2)

∣

∣

∣
=

|b1 + b2i|
2|a2b1 − a1b2|

.

P r o o f. The transformation ι : z 7→ 1/z maps any line not including origin into

a circle [13]. We will find its centre and radius.

Three points i(a2b1 − a1b2)/b1, −(a2b1 − a1b2)/b2 and ∞ belong to the line z =

a1 + a2i + (b1 + b2i)t. Observe that ι(i(a2b1 − a1b2)/b1) = −b1i/(a2b1 − a1b2),

ι(−(a2b1 − a1b2)/b2) = −b2/(a2b1 − a1b2) and ι(∞) = 0. Thus the centre of the

circle is − 1

2
(b2 + b1i)/(a2b1 − a1b2) and its radius is

1

2
|b1 + b2i|/|a2b1 − a1b2|. �

Proposition 2.3. Let

|z − a| = r, |a| > r, a ∈ C, r ∈ R+

be the equation of a circle in the complex plane C. Then the transformation ι : z 7→
1/z maps this circle into the circle

∣

∣

∣
z − a

|a|2 − r2

∣

∣

∣
=

r

|a|2 − r2
.

P r o o f. The transformation ι : z 7→ 1/z maps the circle |z − a| = r, |a| > r, into

a circle [13]. We denote this circle by C.
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A line passing through the origin and a includes two points of the circle |z−a| = r,

namely a+ ra/|a| and a− ra/|a|. They are the ends of the diameter. Their images
by ι are a/(|a|(|a|+ r)) and a/(|a|(|a| − r)), respectively, and they are the ends of

the diameter of C. It gives us the radius of C:

1

2

∣

∣

∣

a

|a|(|a|+ r)
− a

|a|(|a| − r)

∣

∣

∣
=

r

|a|2 − r2

and its center
1

2

( a

|a|(|a|+ r)
+

a

|a|(|a| − r)

)

=
a

|a|2 − r2
.

�

In [5] a version of “Ping-Pong Lemma” for semigroups was presented. If we as-

sume that semigroups occurring in this lemma are cyclic or torsion, then this lemma

remains valid even if one of the assumptions is omitted.

Lemma 2.4. Let H1, H2 be both cyclic or torsion subsemigroups of the group G.

Then every nontrivial relation satisfied in sgp(H1, H2) implies a relation w1 = w2

with the property: let i ∈ {1, 2}. If any of the words w1 or w2 starts (ends) with

the element from the semigroup Hi then the second word starts (ends, respectively)

with the element from H3−i.

P r o o f. Let h1, h
′

1 ∈ H1, h, h
′ ∈ sgp(H1, H2) be any nontrivial elements.

If H1 is cyclic and a > b then any relation of the form ha
1h = hb

1h
′ implies

ha−b
1 h = h′ and if H1 is torsion then any relation of the form h1h = h′

1h implies

(h′

1)
n−1h1h = h′ for some n ∈ N.

Therefore h1h = h′

1h
′ implies one of the relations in sgp(H1, H2):

h1h
′′ = h2, h1h

′′ = h2h
′′′, h1 = h2h

′′′

for some h′′, h′′′ ∈ sgp(H1, H2), h2, h
′

2 ∈ H2.

Similarly, if h2, h
′

2 ∈ H2, h, h
′ ∈ sgp(H1, H2) then any relation hh2 = h′h′

2 implies

one of the h′′h2 = h1, h
′′h2 = h′′′h1, h2 = h′′′h1 for some h

′′, h′′′ ∈ sgp(H1, H2),

h1, h
′

1 ∈ H1. �

Lemma 2.5 (A version of “Ping-Pong Lemma” for semigroups embeddable in

groups.). Let G be a group which acts on the set X and let H1, H2 be both cyclic or

both torsion subsemigroups of the group G. Let X1, X2 be two nonempty disjoint

subsets of the set X such that

(i) for every h1 ∈ H1, h1(X1 ∪X2) ⊂ X2,

(ii) for every h2 ∈ H2, h2(X2) ⊂ X1.

Then the semigroup generated by H1 and H2 is a free product of H1 and H2.
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P r o o f. Let h1, h
′

1 ∈ H1, h2, h
′

2 ∈ H2, h, h
′ ∈ sgp(H1, H2) be nontrivial elements.

We consider seven cancelled relations:

(i) h1 = 1,

(ii) h2 = 1,

(iii) h1hh2 = 1,

(iv) h1hh2 = h′

2h
′h′

1,

(v) h1hh
′

1 = h2,

(vi) h2hh
′

2 = h1,

(vii) h2hh
′

2 = h1h
′h′

1.

Thanks to Lemma 2.4, it suffices to show that none of these relations can be

satisfied.

We consider a relation in each form and show that it leads to a contradiction.

(i) h1(X1) ⊂ X2 and 1(X1) = X1 6= h1(X1).

(ii) h2(X2) ⊂ X1 and 1(X2) = X2 6= h2(X2).

Now let h′′

1 ∈ H1, h
′′

2 ∈ H2 be nontrivial elements. If h = h′′

2h
′′

1h
′′ for some

h′′ ∈ sgp(H1, H2) then h1hh2(X2) = h1h
′′

2h
′′

1h
′′h2(X2) ⊂ h′′

2h
′′

1h
′′h2(X2) ⊂ X1. We

see now that

(iii) 1(X2) = X2 6= h1hh2(X2);

(iv) h′

2h
′h′

1(X2) ⊂ X2 is not equal to h1hh2(X2);

(v) h1hh
′

1(X2) ⊂ X2 is not equal to h2(X2);

(vi) h2hh
′

2(X2) ⊂ X1 is not equal to h1(X2);

(vii) h2hh
′

2(X2) ⊂ X1 while h1hh
′

1(X2) ⊂ X2. �

Based on the proof we have an immediate corollary:

Corollary 2.6. If H1 andH2 are infinite cyclic semigroups satisfying assumptions

of Lemma 2.5, then the semigroup generated by H1 and H2 is free.

Now we recall Theorem 2.4 from [3] and prove it using Lemma 2.5:

Proposition 2.7. If Re(λ) > 0 and |λ| > 1

2
, then the semigroup generated by A,

Bλ is free (that is λ is semigroup free).

P r o o f. Let

X1 = {z : 0 < Re(z) 6 2}, X2 = {z : 2 < Re(z)}, H1 = gp 〈α〉 , H2 = gp 〈βλ〉 .

Then for every natural m, n:

αmX1 = {z : 2m < Re(z) 6 2m+ 2} ⊂ X2,

so it is a vertical strip of width 2; αmX2 ⊂ X2 and β
n
λX2 is a circle (included in X1),

so by Corollary 2.6 the subsemigroup generated by H1 and H2 is free. �
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3. Main theorem

We will show now that the set of semigroup free λ’s, described by inequalities

Re(λ) > 0 and |λ| > 1

2
, can be enlarged.

We consider λ′ = ελ, where 0 < ε < 1, Re(λ) > 0 and |λ| = 1

2
. Without loss of

generality, we assume that Im(λ) > 0.

We use the construction similar to that used in [8].

We will find βn
λ′(X2) (note that β

n
λ′ = ιγn

λ′ι). By Proposition 2.2, ι(X2) is the circle

defined by |z− 1

4
| < 1

4
. For each natural n, ιγn

λ′(X2) is the circle of radius
1

4
and with

the centre lying on the line z = 1

4
+ λt, t ∈ R (which is parallel to the line including

the origin and λ). Two lines tangent to all these circles are k : z = 1

4
+ 1

2
iλ + λt,

t ∈ R and j : z = 1

4
− 1

2
iλ+ λt, t ∈ R (see Figure 2).

1 2

i

−i

Re z

Im z

λ′

X1 X2

ι(X2)

ιγ(X2)

ιγ2(X2)

ιγ3(X2) jk

Figure 2.

Let Re(λ) = λ1, Im(λ) = λ2. By Proposition 2.2, k
′ = ι(k) is the circle defined by

∣

∣

∣
z +

4(λ2 + λ1i)

1− 2λ2

∣

∣

∣
<

2

1− 2λ2

and j′ = ι(j) is a circle, too.

By Proposition 2.3, for any natural n, the images ιγn
λ′ι(X2) = βn

λ′(X2) are circles

tangent to the circles k′ and j′. Because ε < 1, β(X2)λ′ ⊂ X1 fails.
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We define βλ′(X2) as the circle obtained from βλ′(X2) by translation by the vector

[−2, 0] and let

X ′

1 =
X1 ∪ βλ′(X2)

βλ′(X2)
, X ′

2 =
X2

βλ′(X2)

(see Figure 3).

Now for any natural n, we have αn(X ′

1 ∪X ′

2) ⊂ X ′

2. To use Lemma 2.5, we need

only βn
λ′(X ′

2) ⊂ X ′

1 to be satisfied for any natural n. To prove that, we can observe

first that this inclusion is satisfied if the circle βλ′(X2) is inside the circle k
′, that

means, if

r(k′)− r(βλ′ (X2)) > |s(k′)− s(βλ′(X2))|

where s(C) is the center and r(C) is the radius of the circle C.

1 2

i

−i

Re z

Im z

λ′

X1 X2

ι(X2)

ιγ(X2)

ιγ2(X2)

ιγ3(X2) jk

j′

k′

β(X2) β(X2)

β2(X2)

Figure 3.

This inequality leads to

2

1− 2λ2

− 4

|1 + 4λε|2 − 1
>

∣

∣

∣
−4(λ2 + λ1i)

1− 2λ2

− 4(1 + 4λε)

|1 + 4λε|2 − 1
+ 2

∣

∣

∣
.
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Multiplying by the common denominator and using

|1 + 4λε|2 − 1 = |1 + 4λε|2 − 1 = 4ε2 + 8λ1ε

we have

2(4ε2 + 8λ1ε)− 4(1− 2λ2) > |−4(λ2 + λ1i)(4ε
2 + 8λ1ε)

− 4(1 + 4λε)(1− 2λ2) + 2(1− 2λ2)(4ε
2 + 8λ1ε)|

and finally

2ε2 + 4λ1ε− 1 + 2λ2 > |−8λ2ε
2 − 8λ1λ2ε− 1 + 2λ2 + 2ε2

+ (−4λ1ε
2 − 8λ2

1ε− 8λ2
2ε+ 4λ2ε)i|.

Applying λ2
1 + λ2

2 = 1

4
yields

(−64λ2
2 + 32λ2 − 16λ2

1)ε
4 + (−128λ1λ

2
2 + 64λ1λ2)ε

3

+ (−64λ2
1λ

2
2 + 16λ2

1 + 16λ2
2 − 4)ε2 + (−8λ1 + 32λ1λ

2
2)ε > 0,

and finally we get

(3.1) (3(λ2 − 1

6
)ε3 + 8λ1λ2ε

2 − 2λ2
2(2λ2 + 1)ε− λ1(2λ2 + 1))(1 − 2λ2)ε > 0,

where λ = λ1 + λ2i, λ1, λ2 ∈ R.

In the table below we present positive approximate solutions of inequality (3.1)

for some values of λ:

arg(λ) 20◦ 30◦ 45◦ 60◦ 75◦ 85◦

ε (1.043;∞) (0.866;∞) (0.808;∞) (0.827;∞) (0.891;∞) (0.960;∞)

As we can see, not for every λ (Re(λ) > 0, |λ| > 1

2
) there exists ε ∈ (0; 1) such

that λ′ > ελ is a free point. To evaluate “boundary” values of ε, we substitute 1

for ε in (3.1) and then get

(

λ1 +
1

2

)

(2λ2 − 1 + λ1 + 2λ1λ2) > 0

and hence

λ2 >
1

1 + λ1

− 1

2
.

We are looking now for λ = λ1 + λ2i satisfying

λ2 >
1

1 + λ1

− 1

2
, and λ2

1 + λ2
2 =

1

4
.
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It follows that λ1(λ
3
1 + 2λ2

1 + λ1 − 1) < 0 and

0 < λ1 <
1

3

(

−2 +
3

√

1

2
(29− 3

√
93) +

3

√

1

2
(29 + 3

√
93)

)

.

This condition is equivalent to arg(λ) ∈ (21.41◦; 90◦).

If we solve inequality (3.1) for any other values λ satisfying our assumptions, we

get new free λ’s (see Figure 4).

−2

√

3−4−i

2
−

1

2
i

1

2

Re z

Im z
1

2
i

√

3−4+i

2

Figure 4.

Theorem 3.1. Light grey points in Figure 4 are semigroup free.

For any group G, the set Ω(G) ⊂ C on which the elements form a normal family is

called the regular set of G. The set of λ’s for which Ω(gp(α, βλ))/ gp(α, βλ) is a four

times punctured sphere is called the Riley slice of Schottky space and consists only

of free points [10].

In Figure 5 (due to David Wright, see for example [10]), the Riley slice of Schottky

space is the set outside the dark area.

Figure 5.
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If we combine the figure from [1] and Figures 4 and 5 we obtain Figure 6.

i

−i

−2 2
Re z

Im z

Figure 6.

Corollary 3.2. In Figure 6:

(i) White points outside the grey area and dark area are free.

(ii) White points inside the dark area mark the area where the set of nonfree points

is “almost dense” and this points are semigroup free at the same time. The set

of nonfree points is “almost dense” means that in every pixel in this area there

is a nonfree point [1].

(iii) All points outside the grey area are semigroup free.
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