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Abstract. We study a linear system of equations arising from fluid motion around a mov-
ing rigid body, where rotation is included. Originally, the coordinate system is attached to
the fluid, which means that the domain is changing with respect to time. To get a prob-
lem in the fixed domain, the problem is rewritten in the coordinate system attached to
the body. The aim of the present paper is the proof of the existence of a strong solution
in a weighted Lebesgue space. In particular, we prove the existence of a global pressure
gradient in L

2.
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1. Mathematical formulation

In the present paper we study the initial-boundary value problem of the motion

of a viscous fluid around a moving rigid body. First we will give the mathematical

formulation of the problem.

Let B denote an open, connected and bounded C2 domain, representing a rigid

body in a fluid motion in D := R
3 \ B. Clearly, D defines an exterior C2 domain in

R
3 with boundary Σ = ∂D = ∂B.

The motion of the fluid and the body will be governed by the following system of

equations.

Šárka Nečasová was supported by the Grant Agency of the Czech Republic No. P 201/
11/1304 and by RVO 67985840. Jörg Wolf was supported by the Grant Agency of the
Czech Republic No. P 201/11/1304.
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Equations of fluid in D × (0, T ),







divw = 0,

∂w

∂t
+ (w −U) · ∇w + ω ×w = divT(w, π) +Q⊤ · F(x, t)

(1.1)

where U = ξ + ω × y. Here by w we denote the velocity of the fluid and by U

the velocity of the body, where ξ stands for its translation and ω for its rotation.

Furthermore,

T(w, p) = 2νDw − Ip the Cauchy stress tensor,

D(u) =
1

2
(∇u + (∇u)t) the symmetrical stress tensor,

where the constant ν > 0 denotes the viscosity, p is the pressure, I denotes the

identity matrix (δij).

In addition, the term Q⊤F represents a given external force, while the tensor Q⊤

is related to ω in the following way

(1.2)
dQ⊤

dt
= Ω(ω)Q⊤, Q⊤(0) = I, Ω(ω) =





0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0



 .

The above system will be completed by the following boundary and initial conditions

w = w∗ +U , on ∂D × (0, T ),(1.3)

lim
|y|→∞

w(y, t) = 0,(1.4)

w(0) = w0.(1.5)

Equations of motion of the body

mξ̇ +mω × ξ = Q · F −

∫

∂D

(T(w, π) · n−w(w −U) · n) dS,(1.6)

Jω̇ + ω × Jω = Q⊤ ·MC −

∫

∂D

(y × (T(w, π) · n−w(w −U) · n)) dS,(1.7)

where F is the external force acting on the body, w∗ is a velocity distribution, which

takes into account that the body may generate a nonzero momentum flux through

its boundary. MC is the external torque (by the subscript C we denote the center of

mass), while n stands for the outward unit normal on ∂D. Finally, J is the inertial

tensor with respect to the center of mass.
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For the sake of simplicity we assume F = 0, F = 0, MC = 0 and w∗ = 0. The

above system of equations in a fixed exterior domain is obtained by applying the so-

called global transformation to the equations of the moving body in a fluid motion in

the whole space, which clearly coincides with the classical Navier-Stokes equation in

an time dependent exterior domain combined with appropriate boundary condition

and asymptotic condition as |x| → ∞. In particular, the conservation of energy is

invariant under this transformation. Thus, using the usual energy method, global

existence of weak solutions and local existence of strong solutions to the above system

can be proved similarly as in the case of the Navier-Stokes equations. There are

several results in this direction. The existence of a global weak solution of the Leray-

Hopf type has been proved by Borchers [1] (see also [18]). The asymptotic behaviour

in time of such solution was investigated by Chen and Miyakawa in [2]. The first

result of existence for more regular data is due to Hishida [11]. The generalization of

Hishida’s results in Lp spaces was done by Hieber, Heck and Geissert in [10]. They

proved the existence of a unique local mild solution to the Navier-Stokes problem.

The existence of a global strong solution under a smallness assumption on the data

with respect to the L2-norm has been studied by Galdi and Silvestre [8], [9] and by

Takahashi and Tucsnak [20] for a rigid body being a disk in the two-dimensional

situation. Local in time existence and uniqueness of the strong solution have been

proved by Cumsille and Tucsnak [4]. The global time existence and uniqueness

were investigated in the work of Cumsille and Takahashi [3]. However, in the three

dimensional case the uniqueness is valid only under a smallness assumption on the

data. Lp − Lq estimates of the problem were studied in [12].

Alternatively, the problem has been studied in [4], [5], [19], [20] by using the local

transformation introduced by Inue and Wakimoto in [13], and in domains depending

on time in [14]–[17].

The aim of this paper is the study of the corresponding linear system by neglecting

the nonlinear term (w ·∇)w in the momentum equation of (1.1) and moving the term

−U · ∇w + ω ×w to the right hand side. Our main result is the existence of global

strong solution to this linear problem in a suitable weighted Sobolev space together

with estimates of the pressure and the pressure gradient as well. This result will

be used for the study of global strong solutions to the full nonlinear problem which

will be the subject of a forthcoming paper. In Section 2 we introduce the notion of

a weak solution belonging to an appropriate weighted Sobolev space and state our

main result (cf. Theorem 2.1). The proof of the main theorem will be divided into

two parts. The first part concerns the existence of a strong solution to the linear

problem coupled with a motion of the body with a right hand side f in L2. The

second part deals with a weighted approach of the heat equation with a right hand

side f in weighted L2 space.
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2. The linearized problem

In this section we study the following linear problem which describes the movement

of a rigid body inside a fluid, neglecting the nonlinear term (w · ∇)w and moving

the term U · ∇w +ω ×w to the right hand side. The equation of the fluid is given

by the following Stokes system in D × (0, T ),






divu = 0,

∂u

∂t
−∆u = f −∇p

(2.1)

with the boundary and initial conditions

u = U on ∂D × (0, T ),(2.2)

lim
|x|→∞

u(x, t) = 0,(2.3)

u(0) = u0,(2.4)

where U = ξ + ω × x. The equation of the motion of the body is given by

mξ̇ = γ1 −

∫

∂D

T(u, p) · n dS,(2.5)

Jω̇ = γ2 −

∫

∂D

x× (T(u, p) · n) dS.(2.6)

Here f(x, t), u0(x), γ1(t) and γ2(t) are given data, while u, p, ξ and ω denote the

unknown quantities. (Recall that ξ stands for the translation and ω stands for the

rotation of the body.)

Our aim is to study the above system for a right hand side f = rot(rota × b),

where a denotes a smooth vector field such that |a(x)| behaves like |x|2 (x ∈ R
3).

R em a r k 2.1. In order to treat the nonlinear system we may move the term

(w − U) · ∇w + ω × w of equation (1.1) to the right hand side. Neglecting the

convective term w ·∇w we end up with a linearized system with f = U ·∇w−ω×w.

Calculating

ω ×w = wiω × ei = wi
∂

∂xi
(ω × x) = w · ∇U ,

U = ξ + ω × x = rotψ, where ψ =
1

2
(ξ × x− ω|x|2), x ∈ R

3,

we see that

(2.7) U · ∇w − ω ×w = U · ∇w −w · ∇U = rot(rotψ ×w),

which has the desired form.
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Clearly, for such forces f we can expect the existence of weak solutions in an

appropriate Sobolev space rather then in a usual Sobolev space. For the notion of

such weak solutions we will introduce the following weight function

η(x) = (1 + |x|2)−1/2, x ∈ R
3.

Then we define the spaces

L2
η(D) = {v ∈ L2

loc(D) ; ηv ∈ L2(D)},

W 1,2
η (D) = {v ∈W 1,2

loc (D) ; ηv ∈W 1,2(D)}.

In addition, by C(D) we denote the space of all solenoidal smooth vector fields ϕ ∈

C∞
0,σ(R

3) for which there exist constant vectors Φ1 and Φ2 such that

ϕ = Φ1 +Φ2 × x in a neighbourhood of ∂D.

Then we define V(D) and Vη(D) as the closure of C(D) with respect to the norm in

W 1,2(D) andW 1,2
η (D), respectively.

Definition 2.1 (Weak solution). Let u0 ∈ V(D) with u0 = ξ0 + ω0 × x on ∂D.

We assume f = rot g, where g ∈ L2(0, T ;W 1,2
η (D)). A triple (u, ξ,ω) is called

a weak solution to (2.1)–(2.6) if

(i) u ∈ L2(0, T ;Vη(D)) ∩ Cw([0, T );L
2
η(D)),

(ii) ξ,ω ∈ C([0, T ]),

(iii) for every ϕ ∈ C∞(0, T ; C(D)) there holds the identity

∫ t

0

∫

D

(

−u ·
∂ϕ

∂t
+Du :Dϕ

)

dxds(2.8)

+

∫

D

u(t) · ϕ(t) dx+ ξ(t) ·Φ1(t) + Jω(t) ·Φ2(t)

=

∫ t

0

(mξ · Φ̇1 − γ1 ·Φ1 + Jω · Φ̇2 − γ2 ·Φ2) ds

+

∫

D

u0 ·ϕ(0) dx+ ξ0 ·Φ1(0) + Jω0 ·Φ2(0) +

∫ t

0

∫

D

f ·ϕ dxds

for all 0 < t < T .

Our main result is the following:
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Theorem 2.1. Let u0 ∈ V(D) with u0 = ξ0+ω0×x on ∂D. Let f = rot g, such

that g ∈ L2(0, T ;W 1,2
η (D)). Then there exists a weak solution (u, ξ,ω) to (2.1)–(2.6)

according to Definition 2.1, such that

(2.9)
∂u

∂t
,

∂2u

∂xi∂xj
∈ L2(0, T ;L2

η(D)), i, j = 1, 2, 3

and there exists a pressure p ∈ L2(0, T ;L2
loc(D)) with

(2.10) ∇p ∈ L2(0, T ;L2(D)).

Furthermore, there holds

∥

∥

∥

∂u

∂t

∥

∥

∥

L2(0,T ;L2
η)

+ ‖u‖L2(0,T ;W 2,2
η ) + ‖∇u‖L∞(0,T ;L2

η)
(2.11)

+ ‖ξ‖W 1,2(0,T ) + ‖ω‖W 1,2(0,T ) + ‖∇p‖L2(0,T ;L2) 6 cK0,

where K0 := ‖u0‖W 1,2 + ‖f‖L2(0,T ;L2
η)
+ |ω0|+ |ξ0|+ ‖γ1‖L2(0,T ) + ‖γ2‖L2(0,T ) and

c = const depending on D only.

R em a r k 2.2. Since f /∈ L2 we are not allowed to test equation (2.1)2 with the

solution u. Therefore an estimate based on the usual energy method is not possible.

To overcome this difficulty we divide the problem into a Stokes-like problem in the

whole space with non-decaying right hand side and a linear problem (2.1)–(2.6) with

a right hand side belonging to L2(0, T ;L2(D)).

3. Estimates for auxiliary problems

Our first result is related to the a priori estimate of weak solutions of the Stokes-

like system in the weighted Sobolev space with solenoidal right hand side. As we

will see below, such system coincides with the system of heat equations. Therefore,

it will be sufficient to consider the case of the heat equation.

Lemma 3.1. Let f ∈ L2(0, T ;L2
η(R

3)). Then there exists a weak solution

z ∈ L2(0, T ;W 1,2
η (R3)) ∩ L∞(0, T ;L2

η(R
3))

to the heat equation

∂z

∂t
−∆z = f in R

3 × (0, T ),(3.1)

z(0) = 0.(3.2)
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In addition, there holds ∂z/∂t, ∂2z/∂xi∂xj ∈ L2(0, T ;L2
η(R

3)), i, j = 1, 2, 3, together

with the estimate

(3.3)
∥

∥

∥

∂z

∂t

∥

∥

∥

L2(0,T ;L2
η)

+ ‖z‖L2(0,T ;W 2,2
η ) 6 c‖f‖L2(0,T ;L2

η)
.

(Here by W 2,2
η (R3) we denote the space of all v ∈ W 2,2

loc (R
3) such that ηDαv ∈

L2(R3) for every multi-index α 6 2.)

P r o o f. We divide the proof into two steps. First, we consider the case f ∈

L2(0, T ;L2(R3)) and prove the a priori estimate (3.3). Second, for general f we get

an approximate weak solution zm for the truncated right hand side fm and pass to

the limit m → ∞ by using a priori estimate (3.3).

1◦ Let f ∈ L2(0, T ;L2(R3)). Clearly, there exists a weak solution

z ∈ L2(0, T ;W 1,2(R3)) ∩ C([0, T ];L2(R3)),

such that
∂z

∂t
,

∂2z

∂xi∂xj
∈ L2(0, T ;L2(R3)), i, j = 1, 2, 3.

Setting h(x, t) = z(x, t)η(x) and using the product rule the equation (3.1) turns into

(3.4)
∂h

∂t
−∆h = ηf − 2∇z · ∇η − z∆η in R

3 × (0, T ).

By elementary calculus, the equation (3.4) can be rewritten as

(3.5)
∂h

∂t
−∆h = ηf + 2x · η2∇h+ (η4 + 2η2)h in R

3 × (0, T ).

Next, we multiply both sides of (3.5) by h, integrate the obtained equation over

R
3 × (0, t) (t ∈ (0, T )) and apply integration by parts. This yields

1

2
‖h(t)‖2L2 +

∫ t

0

∫

R3

|∇h|2 dxds =

∫ t

0

∫

R3

ηfh dxds+

∫ t

0

∫

R3

(η2 − η4)|h|2 dxds

for a.e. t ∈ (0, T ). Using Young’s inequality and Gronwall’s lemma we obtain the

following a priori estimate

(3.6) ‖h‖L∞(0,T ;L2) + ‖∇h‖L2(0,T ;L2) 6 c‖ηf‖L2(0,T ;L2).

Recalling the definition of h from (3.6) we immediately obtain

(3.7) ‖z‖L∞(0,T ;L2
η)

+ ‖∇z‖L2(0,T ;L2
η)

6 c‖ηf‖L2(0,T ;L2).
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On the other hand, multiplying equation (3.5) by ∂h/∂t and by ∆h, and applying

integration by parts, observing (3.6) and (3.7) we get

(3.8)
∥

∥

∥

∂z

∂t

∥

∥

∥

L2(0,T ;L2
η)

+ ‖z‖L2(0,T ;W 2,2
η ) 6 c‖ηf‖L2(0,T ;L2).

2◦ Now, let f ∈ L2(0, T ;L2
η(R

3)). We define

fε(x) = (1 + ε|x|)−1f, x ∈ R
3, ε > 0.

Clearly, fε ∈ L2(0, T ;L2(R3)) and ‖fε‖L2(0,T ;L2
η)

6 ‖f‖L2(0,T ;L2
η)
for all ε > 0.

As it has been shown in 1◦, for each ε > 0 there exists a weak solution zε ∈

L2(0, T ;W 1,2(R3)) ∩ C([0, T ];L2(R3)) to (3.1), (3.2) replacing f by fε therein. In

addition, we have ∂zε/∂t ∈ L2(0, T ;L2(R3)) and ∂2zε/∂xi∂xj ∈ L2(0, T ;L2(R3)),

i, j = 1, 2, 3. From (3.7) and (3.8) it follows that

∥

∥

∥

∂zε
∂t

∥

∥

∥

L2(0,T ;L2
η)

+ ‖zε‖L2(0,T ;W 2,2
η ) 6 c‖ηfε‖L2(0,T ;L2) 6 c‖f‖L2(0,T ;L2

η)
.(3.9)

By means of reflexivity of L2(0, T ;W 2,2
η ) there exists a sequence (εk) with εk → 0+

as k → ∞ and z ∈ L2(0, T ;W 2,2
η ) with ∂z/∂t ∈ L2(0, T ;L2

η) such that

zεk → z weakly in L2(0, T ;W 2,2
η ) as k → ∞.

In the equation for zεk , taking the passage to the limit εk → 0+ on both sides we see

that z solves (3.1), (3.2) in weak sense. Finally, by virtue of (3.9), using the lower

semicontinuity of the norm we get (3.3). �

Next, let us consider the problem (2.1)–(2.6) with f ∈ L2(0, T ;L2(D)). In this

case we have the following existence result.

Lemma 3.2. Let f ∈ L2(0, T ;L2(D)) and let u0 ∈ V(D) with u0 = ξ0 + ω0 × x

on ∂D, where ξ0,ω0 ∈ R are given. In addition, let γ1,γ2 ∈ L2(0, T ). Then there

exists a weak solution (u, ξ,ω) to (2.1)–(2.6), such that

‖∇u‖L2 + ‖u‖L∞(0,T ;L2) + ‖ξ‖L∞(0,T ) + ‖ω‖L∞(0,T )(3.10)

6 c‖u0‖L2 + ‖f‖L2 + |ξ0|+ |ω0|+ |γ1|L2(0,T ) + |γ2|L2(0,T ).

In addition, we have

∂u

∂t
,

∂2u

∂xi∂xj
,∇p ∈ L2(0, T ;L2(D)) i, j = 1, 2, 3, ξ̇, ω̇ ∈ L2(0, T )
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and there holds

∥

∥

∥

∂u

∂t

∥

∥

∥

L2

+ ‖∇2u‖L2 + ‖∇p‖L2 + ‖ξ̇‖L2(0,T ) + ‖ω̇‖L2(0,T )(3.11)

6 c‖u0‖W 1,2 + ‖f‖L2 + |ξ0|+ |ω0|+ ‖γ̇1‖L2(0,T ) + ‖γ̇2‖L2(0,T ).

P r o o f. 1◦ The existence and uniqueness of a weak solution (u, ξ,ω) can be

shown easily by applying the linear theory of evolutionary equations in Hilbert spaces

(e.g. see in [6]).

2◦ Assume u0 = 0. Let (u, ξ,ω) be a weak solution to (2.1)–(2.6). First, we

assume

(3.12)
∂u

∂t
∈ L2(0, T ;L2(D)), ξ̇, ω̇ ∈ L2(0, T ).

Next, let ζ ∈ C∞
0 (R3) such that ζ ≡ 1 in a neighborhood of B. Set

Ψ(x, t) :=
1

2
rot((ξ(t) × x− ω(t)|x|2)ζ(x)), (x, t) ∈ R

3 × (0, T ).

Since
1

2
rot(ξ × x− ω|x|2) = ξ + ω × x, x ∈ R

3

it follows that u − Ψ = 0 on ∂D. Thus, for almost all t ∈ (0, T ) the function

v := u(·, t)−Ψ(·, t) is a solution to the Stokes system



















div v = 0 in D,

−∆v = f(t) + ∆Ψ(t)−
∂u

∂t
(t)−∇p(t) in D,

v|∂D = 0, lim
|x|→∞

v(x) = 0.

By the well-known theory of the Stokes equation one gets ∇p(t) ∈ L2(D) together

with the estimate

(3.13) ‖∇p(t)‖L2 6 c
(

‖f(t)‖L2 +
∥

∥

∥

∂u

∂t
(t)

∥

∥

∥

L2

+ |ξ(t)|+ |ω(t)|
)

,

where c = const independent of t ∈ (0, T ). Hence, from (3.13), the equation (2.1)2
and the assumption ∂u/∂t ∈ L2(0, T ;L2(D)) then ∇p,∆u ∈ L2(0, T ;L2(D)). More-

over, there holds

‖∇p‖L2(0,T ;L2) + ‖∇2u‖L2(0,T ;L2)(3.14)

6 c
(

‖f‖L2(0,T ;L2) +
∥

∥

∥

∂u

∂t

∥

∥

∥

L2(0,T ;L2)
+ ‖ξ‖L∞ + ‖ω‖L∞

)

.
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Then, multiplying both sides of (2.1)2 by ∂u/∂t, integrating the result over D ×

(0, t) (t ∈ (0, T )) and applying integration by parts we are led to

∫ t

0

∫

D

∣

∣

∣

∂u

∂t

∣

∣

∣

2

dxds+
1

2

∫

D

|∇u(t)|2 dx(3.15)

=

∫ t

0

∫

∂D

(T(u, p) · n) · (ξ̇ + ω̇ × x) dS ds+

∫ t

0

∫

D

f ·
∂u

∂t
dxds.

(Note that by virtue of (3.13) the trace of T(u, p) upon ∂D is well defined.)

Next, from (2.5) we induce

∫

∂D

(T(u, p) · n) · ξ̇(s) dS = γ1(s) · ξ̇(s)−m|ξ̇(s)|2 for a.e. s ∈ (0, T ).

Moreover, from (2.6) we obtain

∫

∂D

((T(u, p) · n) · ω̇(s)× x) dS =

∫

∂D

x× (T(u, p) · n) dS · ω̇(s) dS

= (γ2(s)− Jω̇(s)) · ω̇(s)

for a.e. s ∈ (0, T ). Inserting these identities into (3.15) and applying integration by

parts we see that

∫ t

0

∫

D

∣

∣

∣

∂u

∂t

∣

∣

∣

2

dxds+
1

2

∫

D

|∇u(t)|2 dx+

∫ t

0

(m|ξ̇|2 + |Rω̇|2) ds

=

∫ t

0

(ξ̇ · γ1 + ω̇ · γ2) ds+

∫ t

0

∫

D

f ·
∂u

∂t
dxds

for a.e. t ∈ (0, T ). Here R denotes the square root of J , i.e. R2 = J = J⊤. By the

aid of Cauchy-Schwarz’s inequality and Young’s inequality one finds

∥

∥

∥

∂u

∂t

∥

∥

∥

L2(0,T ;L2)
+ ‖ξ̇‖L2(0,T ) + ‖ω̇‖L2(0,T ) + ‖∇u‖L∞(0,T ;L2)(3.16)

6 2(‖f‖L2(0,T ;L2) + ‖γ1‖L2(0,T ) + ‖γ2‖L2(0,T )).

Finally, combining (3.14) and (3.16) we obtain the a priori estimate

‖∇p‖L2(0,T ;L2) + ‖∇2u‖L2(0,T ;L2)(3.17)

6 c(‖f‖L2(0,T ;L2) + ‖γ1‖L2(0,T ) + ‖γ2‖L2(0,T )).

Second, let us consider the general case, without assuming (3.12). To begin with,

we introduce the Steklov mean as follows. Let f ∈ L1(0, T ;L1(D)). Define

fλ(x, t) = −
1

λ

∫ t

max{t+λ,0}

f(x, s) ds, (x, s) ∈ D × (0, T ), λ < 0.
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Applying the Steklov mean to both sides of the equations (2.1)2, (2.5) and (2.6),

recalling that u(0) = 0 we see that (uλ, ξλ,ωλ) is a weak solution to (2.1)–(2.6) with

fλ, γ1,λ, γ2,λ, ωλ(0), ξλ(0) instead of f , γ1, γ2, ω0, ξ0. In addition, this weak

solution satisfies (3.12). Thus, from (3.16) and (3.17) it follows that

∥

∥

∥

∂uλ

∂t

∥

∥

∥

L2(0,T ;L2)
+ ‖∇2uλ‖L2(0,T ;L2) + ‖∇uλ‖L∞(0,T ;L2)(3.18)

+ ‖∇pλ‖L2(0,T ;L2) + ‖ξ̇λ‖L2(0,T ) + ‖ω̇λ‖L2(0,T )

6 2(‖f‖L2(0,T ;L2) + ‖γ1‖L2(0,T ) + ‖γ2‖L2(0,T )).

Here c = const > 0 depending on the geometry D only. Thus, by means of reflexivity

of L2(0, T ;L2(D)) and L2(0, T ) the assertion of the lemma follows from (3.18).

3◦ Let u0 ∈ V(D) ∩W 2,2(D). Let (u, ξ,ω) be a weak solution to (2.1)–(2.6).

Clearly, u − u0 solves the system (2.1)–(2.6) too, with vanishing initial data and

right hand side in L2(0, T ;L2(D)). Hence, applying the result of step 2◦, wee see

that
∂u

∂t
,∆u,∇p ∈ L2(0, T ;L2(D)), ξ̇, ω̇ ∈ L2(0, T ).

Now, we are in a position to multiply the equation (2.1)2 by ∂u/∂t and integrate

both sides over D× (0, t) (t ∈ (0, T )). Then arguing similarly as in step 2◦, by using

integration by parts we achieve the identity

∫ t

0

∫

D

∣

∣

∣

∂u

∂t

∣

∣

∣

2

dxds+
1

2

∫

D

|∇u(t)|2 dx+

∫ t

0

(|ξ̇|2 + |Rω̇|2) ds

=
1

2

∫

D

|∇u0|
2 dx+

∫ t

0

∫

D

f ·
∂u

∂t
dxds+

∫ t

0

(ξ̇ · γ1 + ω̇ · γ2) ds

for a.e. t ∈ (0, T ). As above, from this identity the assertion easily follows.

4◦ Finally, in case u0 ∈ V(D) the proof is completed by a standard density argu-

ment using the a priori estimate obtained in 3◦. �

4. Proof of main theorem

We divide the proof into two steps. First, we prove the assertion for the case

when f belongs to L2(0, T ;L2(D)). Then, we will complete the proof by applying

a standard approximation argument, passing to the limit on the basis of the a priori

estimate obtained in the first step.

1◦ Let f = rot g, with g ∈ L2(0, T ;W 1,2(D)), u0 ∈ V(D) with u0 = ξ + ω × x

a.e. on ∂D and γ1,γ2 ∈ L2(0, T ). According to Lemma 3.2 there exists a weak
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solution (u, ξ,ω) to (2.1)–(2.6) which is strong in the sense that ∂u/∂t,∆u,∇p ∈

L2(0, T ;L2(D)) and ξ̇, ω̇ ∈ L2(0, T ).

Fix 0 < R0 < ∞, such that B ⊂ BR0/2(0). Let ζ ∈ C∞
0 (R3) denote a cut-off

function with supp(ζ) ⊂ BR0
, such that ζ ≡ 1 in a neighborhood of B. We write

f as the sum f1 + f2, where f1 = rot(ζg), f2 = rot((1 − ζ)g) a.e. in D × (0, T ).

Once more, applying Lemma 3.2 there exists a strong solution (u1, ξ1,ω1) to the

system (2.1)–(2.6) with right hand side f1 in place of f . In particular, we have the

a priori estimate

∥

∥

∥

∂u1

∂t

∥

∥

∥

L2(0,T ;L2)
+ ‖∇2u1‖L2(0,T ;L2) + ‖∇p1‖L2(0,T ;L2) + ‖ξ̇1‖L2 + ‖ω̇1‖L2(4.1)

6 c(‖∇u0‖L2 + ‖f‖L2(0,T ;L2(DR0
)) + ‖γ1‖L2 + ‖γ2‖L2).

Additionally, by means of (3.10) we get

‖∇u1‖L2(0,T ;L2) + ‖u1‖L∞(0,T ;L2) + ‖ξ1‖L∞ + ‖ω1‖L∞(4.2)

6 c(‖u0‖L2 + ‖f‖L2(0,T ;L2(DR0
)) + |ξ0|+ |ω0|+ ‖γ1‖L2 + ‖γ2‖L2).

Next, let z ∈ L2(0, T ;W 2,2(R3)) ∩ W 1,2(0, T ;L2(R3)), such that zj is the strong

solution to the heat equation

∂zj
∂t

−∆zj = f2,j in R
3 × (0, T ),

zj(0) = 0 in R
3

(j = 1, 2, 3) (cf. Lemma 3.1). Since div f2 = 0 one sees that div z is a weak solution

to the heat equation with zero data. By a standard uniqueness argument it follows

that div z = 0 a.e. in R
3 × (0, T ). Furthermore, applying Lemma 3.1 one gets the

estimate

(4.3)
∥

∥

∥

∂z

∂t

∥

∥

∥

L2(0,T ;L2
η)

+ ‖z‖L2(0,T ;W 2,2
η ) 6 c‖f‖L2(0,T ;L2

η)
.

Setting u2 = u − u1 − z and p2 = p − p1 we see that u2 ∈ L2(0, T ;W 1,2(D)) ∩

L∞(0, T ;L2(D)) solves the system in D × (0, T ),






divu2 = 0,

∂u2

∂t
−∆u2 = −∇p2

(4.4)

fulfilling the following boundary and initial conditions

u2 = ξ − ξ1 + (ω − ω1)× x− z on ∂D × (0, T ),(4.5)

lim
|x|→∞

u2(x, t) = 0,(4.6)

u2(0) = 0.(4.7)
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We multiply the equation (4.4)2 by u2, integrate both sides over D×(0, t) (t ∈ (0, T ))

and apply integration by parts. This leads to

1

2
‖u2(t)‖

2
2,D −

∫ t

0

∫

D

divT(u2, p2) · u2ζ dxds(4.8)

−

∫ t

0

∫

D

divT(u2, p2 − (p2)DR0
) · u2(1− ζ) dxds = 0

for all t ∈ (0, T ). Recalling the definition of T we calculate

(4.9) −T(u2, p2) = −T(u, p) + T(u1, p1) +Dz.

Noticing u2 = u−u1−z and taking into account divT(u, p) = ∂u/∂t−f (cf. (2.1)2
for u), the first integral on the left of (4.8) satisfies the following identity

−

∫ t

0

∫

D

divT(u2, p2) · u2ζ dxds(4.10)

= −

∫ t

0

∫

D

divT(u, p) · uζ dxds+

∫ t

0

∫

D

(∂u

∂t
− f

)

· (u1 + z)ζ dxds

+

∫ t

0

∫

D

(divT(u1, p1) + ∆z) · u2ζ dxds.

Using integration by parts, observing equations (2.5) and (2.6) assigned to ξ and ω,

we infer

−

∫ t

0

∫

D

divT(u, p) · uζ dxds(4.11)

=

∫ t

0

∫

D

|∇u|2ζ dxds+
1

2
(|ξ(t)|2 + |Rω(t)|2 − |ξ0|

2 − |Rω0|
2)

+

∫ t

0

∫

D

T(u, p− pDR0
) : u⊗∇ζ dxds−

∫ t

0

(γ1 · ξ + γ2 · ω) ds.

(Note that for every v ∈ V(D) there holds
∫

D v · ∇ζ dx =
∫

∂D v · n dS = 0.)

On the other hand, integration by parts gives

−

∫ t

0

∫

D

divT(u2, p2) · u2(1− ζ) dxds =

∫ t

0

∫

D

|∇u2|
2(1− ζ) dxds(4.12)

−

∫ t

0

∫

D

T(u2, p2 − (p2)DR0
) : u2 ⊗∇ζ dxds.
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Combining identities (4.10), (4.11), (4.12) and inserting the result into the left hand

side of (4.8) we get

1

2
(‖u2(t)‖

2
L2 + |ξ(t)|2 + |Rω(t)|2) +

∫ t

0

∫

D

(|∇u|2ζ + |∇u2|
2(1− ζ)) dxds(4.13)

=
1

2
(‖u0‖

2
L2 + |ξ0|

2 + |Rω0|
2) +

∫ t

0

(γ1 · ξ + γ2 · ω) ds

+

∫ t

0

∫

D

((T(u2, p2 − (p2)DR0
) · u2 − T(u, p− pDR0

) · u) · ∇ζ) dxds

−

∫ t

0

∫

D

(∂u

∂t
− f

)

· (u1 + z)ζ dxds

−

∫ t

0

∫

D

(divT(u1, p1) + ∆z) · u2ζ dxds

=
1

2
(‖u0‖

2
L2 + |ξ0|

2 + |Rω0|
2) + I1 + I2 + I3 + I4

for almost all t ∈ (0, T ).

(i) Using Cauchy-Schwarz’s inequality and Young’s inequality, taking into ac-

count (4.1), (4.2) and (4.3) we easily get

I1 + I4 6 cK2
0 +

1

8
(‖u2‖

2
L∞(0,T ;L2) + ‖ω‖2

L∞(0,T ) + ‖ξ‖2
L∞(0,T ))

(whereK0 := ‖u0‖W 1,2 +‖f‖L2(0,T ;L2
η)
+ |ω0|+ |ξ0|+‖γ1‖L2(0,T )+‖γ2‖L2(0,T )).

(ii) In order to estimate I2 we first notice the following identity

T(u2, p2 − (p2)DR0
) · u2 − T(u, p− pDR0

) · u

= −(Du1 +Dz) · u2 −Du2 · (u1 + z) − (Du1 +Dz) · (u1 + z)

+ I(p1 − (p1)DR0
) · u2 − I(p1 − (p1)DR0

) · (u1 + z)

− I(p2 − (p2)DR0
) · (u1 + z).

Again using Cauchy-Schwarz’s and Young’s inequality and the Poincaré inequal-

ity for the term involving the pressure p1−(p1)DR0
together with (4.2) and (4.3)

we get

I2 6 cK2
0 + c‖p2 − (p2)DR0

‖L2(0,T ;L2(DR0
))K0 +

1

8
‖u2‖

2
L∞(0,T ;L2).

(iii) For the estimation of I3 we apply integration by parts. This gives

−

∫ t

0

∫

D

∂u2

∂t
· (u1 + z)ζ dxds

=

∫ t

0

∫

D

u2 ·
∂

∂t
(u1 + z)ζ dxds−

∫

D

(u2(t) · (u1(t) + z(t))ζ) dx.
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By the aid of Cauchy-Schwarz’s inequality and Young’s inequality, again observ-

ing (4.1), (4.2) and (4.3) we get

I3 6 cK2
0 +

1

8
‖u2‖

2
L∞(0,T ;L2).

Now, inserting the estimates of I1 − I4 into (4.13) we obtain the estimate

‖u2‖
2
L∞(0,T ;L2) + ‖∇u2‖

2
L2(0,T ;L2) + ‖ξ‖2

L2(0,T ) + ‖ω‖2
L2(0,T )(4.14)

6 cK2
0 + c‖p2 − (p2)DR0

‖L2(0,T ;L2(DR0
))K0.

Next, we are going to estimate the L2 norm of ∂u2/∂t. To begin with, we multiply

both sides of the equation (4.4)2 by ∂u2/∂t and integrate the obtained result over

D × (0, t) (t ∈ (0, T )). Then, using integration by parts we are led to

∥

∥

∥

∂u2

∂t

∥

∥

∥

2

L2(0,t;L2)
−

∫ t

0

∫

D

divT(u2, p2) ·
∂u2

∂t
ζ dxds+

1

2

∫

D

|∇u2(t)|
2(1− ζ) dx(4.15)

=

∫ t

0

∫

D

T(u2, p2 − (p2)DR0
) ·

∂u2

∂t
⊗∇ζ dxds+

1

2

∫

D

|∇u0|
2(1− ζ) dx

for almost all t ∈ (0, T ). By elementary calculus we see that

−

∫ t

0

∫

D

divT(u2, p2) ·
∂u2

∂t
ζ dxds = −

∫ t

0

∫

D

divT(u, p) ·
∂u

∂t
ζ dxds

+

∫ t

0

∫

D

(∂u

∂t
− f

)

·
∂(u1 + z)

∂t
ζ dxds+

∫ t

0

∫

D

(divT(u1, p1) + ∆z) ·
∂u2

∂t
ζ dxds.

Observing (2.5) and (2.6), arguing as in the proof of Lemma 3.2 we infer

−

∫ t

0

∫

D

divT(u, p) ·
∂u

∂t
ζ dxds =

∫ t

0

(|ξ̇|2 − ξ̇ · γ1 + |Rω̇|2 − ω̇ · γ2) ds

+
1

2

∫

D

|∇u(t)|2 dx−
1

2

∫

D

|∇u0|
2 dx+

∫ t

0

∫

D

T(u, p− pDR0
) :

∂u

∂t
⊗∇ζ dxds.

(Note that pDR0

∫

D(∂u/∂t) · ∇ζ dx = 0.)

Combining the above identities together with (4.15) we obtain

∥

∥

∥

∂u2

∂t

∥

∥

∥

2

L2(0,t;L2)
+

1

2

∫

D

|∇u(t)|2ζ + |∇u2(t)|
2(1 − ζ) dx+

∫ t

0

(|ξ̇|2 + |Rω̇|2) ds(4.16)

=

∫ t

0

∫

D

(

T(u2, p2 − (p2)DR0
) ·

∂u2

∂t
− T(u, p− pDR0

) ·
∂u

∂t

)

· ∇ζ dxds

+

∫ t

0

∫

D

((∂u

∂t
− f

)

·
∂(u1 + z)

∂t
ζ + (divT(u1, p1) + ∆z) ·

∂u2

∂t
ζ
)

dxds

+
1

2
‖∇u0‖

2
L2 +

∫ t

0

(ξ̇ · γ1 + ω̇ · γ2) ds.

255



Clearly, recalling u = u1 + u2 + z one calculates

T(u2, p2 − (p2)DR0
) ·

∂u2

∂t
− T(u, p− pDR0

) ·
∂u

∂t

= −(Du1 +Dz) ·
∂u2

∂t
−Du2 ·

∂(u1 + z)

∂t
− (Du1 +Dz) ·

∂(u1 + z)

∂t

+ I(p1 − (p1)DR0
) ·

∂u2

∂t
− I(p1 − (p1)DR0

) ·
∂(u1 + z)

∂t

− I(p2 − (p2)DR0
) ·

∂(u1 + z)

∂t
.

By the aid of this identity, using Young’s inequality and taking into account esti-

mates (4.1), (4.2) and (4.3) we obtain

∥

∥

∥

∂u2

∂t

∥

∥

∥

2

L2(0,T ;L2)
+ ‖∇u2‖

2
L∞(0,T ;L2) + ‖ξ̇‖2

L2(0,T ) + ‖ω̇‖2
L2(0,T )(4.17)

6 cK2
0 + c‖p2 − (p2)DR0

‖L2(0,T ;L2(DR0
))K0.

For the estimation of the pressure on the right hand side of (4.17) we make use

of (4.4)2. That is,

−∇p2 =
∂u2

∂t
−∆u2 a.e. in DR0

× (0, T ).

Consulting [7] (Theorem III. 3.1, Theorem III. 5.2) we obtain the estimate

‖p2 − (p2)L2(0,T ;L2(DR0
))‖L2(0,T ;L2(DR0

)) 6 c
(∥

∥

∥

∂u2

∂t

∥

∥

∥

L2(0,T ;L2)
+ ‖∇u2‖L2(0,T ;L2)

)

.

Inserting this estimate into the right hand side of (4.17), using Young’s inequality

and taking into account (4.14) we get

(4.18)
∥

∥

∥

∂u2

∂t

∥

∥

∥

L2(0,T ;L2)
+ ‖u2‖L∞(0,T ;W 1,2) + ‖ξ‖W 1,2 + ‖ω‖W 1,2 6 cK0.

Finally, it remains to estimate ∇p2 and ∇2u2. Let t ∈ (0, T ) be fixed such that

(∂u2/∂t)(t), (∂
2z/∂xi∂xj)(t) ∈ L

2, i, j = 1, 2, 3. We define

Ψ2(x) =
1

2
rot(ζ(ξ2(t)× x− ω2(t)|x|

2)), x ∈ R
3, t > 0,

where ξ2 = ξ− ξ1 and ω2 = ω−ω1. Then v = u2(·, t)−Ψ2(·, t)− ζz(·, t) solves the

steady problem

div v = −∇ζ · z(t) in D,

−∆v =
∂u2

∂t
(t) + ∆Ψ2(t) + ∆(ζz(t)) −∇p2(t) in D,

v = 0 on ∂D.
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Consulting [7] we see that ∂2v/∂xi∂xj ,∇p2 ∈ L2(D) together with the estimate

‖∇2v‖2
L2 + ‖∇p2(t)‖

2
L2(4.19)

6 c
(∥

∥

∥

∂u2

∂t
(t)

∥

∥

∥

2

L2

+ ‖∆(ζz(t))‖2
L2(DR0

) + ‖∆Ψ2(t)‖
2
L2

)

.

Integrating both sides of (4.19) over (0, T ) using (4.18), (4.3) and (4.1) we see that

(4.20) ‖∇2u2‖L2(0,T ;L2) + ‖∇p2‖L2(0,T ;L2) 6 cK0.

P r o o f. 2◦ Proof of the theorem for general f = rot(g) for g ∈ L2(0, T ;W 1,2
η (D)).

For ε > 0 we define

gε(x, t) = (1 + ε|x|)−1g(x, t), (x, t) ∈ D × (0, T ), fε = rot(gε).

Clearly, gε ∈ L2(0, T ;W 1,2(D)) and fε ∈ L2(0, T ;L2(D)) for all ε > 0. In addition,

we immediately see that for a.e. t ∈ (0, T )

‖gε(t)‖W 1,2
η (D) 6 2‖g(t)‖

W
1,2
η (D), ε > 0.

By Lebesgue’s theorem of dominated convergence it follows that

fε → f in L2(0, T ;L2
η(D)) as ε → 0.

As it has been proved above in 1◦ there exists a strong solution (uε, ξε,ωε) to

the system (2.1)–(2.6) with fε in place of f . Furthermore, there exists a pressure

pε ∈ L2(0, T ;L2
loc(D)) with ∇pε ∈ L2(0, T ;L2(D)). Using (4.1), (4.2), (4.3), (4.18)

and (4.20) we get the a priori bound

∥

∥

∥

∂uε

∂t

∥

∥

∥

L2(0,T ;L2
η)

+ ‖∇2uε‖L2(0,T ;L2
η)

+ ‖uε‖L∞(0,T ;W 1,2
η )(4.21)

+ ‖ξε‖W 1,2 + ‖ωε‖W 1,2 + ‖∇pε‖L2(0,T ;L2) 6 cK0,

where c denotes a constant depending on D only. Hence, by means of reflexivity we

may choose a sequence of positive numbers εj → 0 as j → ∞, such that

uεj → u weakly in L2(0, T ;W 2,2
η (D)),

∂uεj

∂t
→

∂u

∂t
weakly in L2(0, T ;L2

η(D)),

ξεj ,ωεj → ξ,ω weakly in W 1,2(0, T ),

∇pεj → ∇p weakly in L2(0, T ;L2(D)) as j → ∞.

As one easily checks, the triple (u, ξ,ω) is a strong solution to the system (2.1)–(2.6)

with pressure p satisfying (2.9), (2.10). �
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