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On the class of positive almost

weak⋆ Dunford-Pettis operators

Abderrahman Retbi

Abstract. In this paper, we introduce and study the class of almost weak⋆ Dunford-
Pettis operators. As consequences, we derive the following interesting results:
the domination property of this class of operators and characterizations of the
wDP⋆ property. Next, we characterize pairs of Banach lattices for which each
positive almost weak⋆ Dunford-Pettis operator is almost Dunford-Pettis.

Keywords: almost weak⋆ Dunford-Pettis operator; almost Dunford-Pettis opera-
tor; weak Dunford-Pettis⋆ property; positive Schur property; order continuous
norm
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1. Introduction and notation

Let us recall from [2] that a norm bounded subset A of a Banach lattice E is
said to be almost limited if every disjoint weak⋆ null sequence (fn) of E′ converges
uniformly on A, that is, limn→∞ supx∈A |fn(x)| = 0.

An operator T from a Banach lattice E into a Banach space Y is said to be
almost Dunford-Pettis if ‖T (xn)‖ → 0 in Y for every weakly null sequence (xn)
consisting of pairwise disjoint elements in E [6].

A Banach space X has the Dunford-Pettis⋆ property (DP⋆ property for short),

if xn

w
−→ 0 in X and fn

w
⋆

−−→ 0 in X ′ imply fn(xn) → 0.
A Banach lattice E has

- the positive Schur property, if ‖fn‖ → 0 for every weakly null sequence (fn) ⊂
E+, equivalently, ‖fn‖ → 0 for every weakly null sequence (fn) ⊂ E+ consisting
of pairwise disjoint terms (see page 16 of [9]);
- the weak Dunford-Pettis⋆ property (wDP⋆ property for short), if every relatively
weakly compact set in E is almost limited, equivalently, whenever fn(xn) → 0 for
every weakly null sequence (xn) in E and for every disjoint weak⋆ null sequence
(fn) in E′ [2].

Recall from [4] that an operator T from a Banach space X into another Banach
space Y is called weak⋆ Dunford-Pettis if fn(T (xn)) → 0 for every weakly null
sequence (xn) ⊂ X , and every weak⋆ null sequence (fn) ⊂ Y ′. In this paper,
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we introduce and study the disjoint version of this class of operators, that we
call almost weak⋆ Dunford-Pettis operators (Definition 2.1). It is a class which
contains that of weak⋆ Dunford-Pettis (resp. almost Dunford-Pettis).

The main results are some characterizations of almost weak⋆ Dunford-Pettis
operators (Theorem 2.3). Next, we derive the following interesting consequences:
the domination property of this class of operators (Corollary 2.4), a characteri-
zation of wDP⋆ property (Corollary 2.5). After that, we prove that each positive
almost weak⋆ Dunford-Pettis operator from a Banach lattice E into a σ- Dedekind
complete Banach lattice F is almost Dunford-Pettis if and only if E has the posi-
tive Schur property or the norm of F is order continuous (Theorem 2.7). As
consequence, we will give some interesting results (Corollaries 2.8 and 2.9).

To state our results, we need to fix some notations and recall some definitions.
A Banach lattice is a Banach space (E, ‖ · ‖) such that E is a vector lattice and
its norm satisfies the following property: for each x, y ∈ E such that |x| ≤ |y|,
we have ‖x‖ ≤ ‖y‖. If E is a Banach lattice, its topological dual E′, endowed
with the dual norm, is also a Banach lattice. A norm ‖ · ‖ of a Banach lattice
E is order continuous if for each generalized sequence (xα) such that xα ↓ 0 in
E, the sequence (xα) converges to 0 in the norm ‖ · ‖, where the notation xα ↓ 0
means that the sequence (xα) is decreasing, its infimum exists and inf(xα) = 0.
A Riesz space is said to be σ-Dedekind complete if every countable subset that is
bounded above has a supremum, equivalently, whenever 0 ≤ xn ↑≤ x implies the
existence of sup(xn).

We will use the term operator T : E −→ F between two Banach lattices to
mean a bounded linear mapping. It is positive if T (x) ≥ 0 in F whenever x ≥ 0
in E. If T is an operator from a Banach lattice E into another Banach lattice
F then its dual operator T ′ is defined from F ′ into E′ by T ′(f)(x) = f(T (x))
for each f ∈ F ′ and for each x ∈ E. We refer the reader to [1] for unexplained
terminology of Banach lattice theory and positive operators.

2. Main results

Next we give the definition of almost weak⋆ Dunford-Pettis operator between
Banach lattices, which is a different version of the weak⋆ Dunford-Pettis operator.

Definition 2.1. An operator T from a Banach lattice E to a Banach lattice F

is almost weak⋆ Dunford-Pettis if fn(T (xn)) → 0 for every weakly null sequence
(xn) in E consisting of pairwise disjoint terms, and for every weak⋆ null sequence
(fn) in F ′ consisting of pairwise disjoint terms.

For proof of the next theorem, we need the following lemma which is just
Lemma 2.2 of Chen in [2].

Lemma 2.2. Let E be a σ-Dedekind complete Banach lattice, and let (fn) be

a weak⋆ convergent sequence of E′. If (gn) is a disjoint sequence of E′ satisfying

|gn| ≤ |fn| for each n, then the sequences (gn), (|gn|), (gn)+, (gn)− are all weak⋆

convergent to zero. In particular, if (fn) is a disjoint weak⋆ convergent sequence

in its own right, then the sequences (fn), (|fn|), (fn)+, (fn)− are all weak⋆ null.
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Now, for positive operators between two Banach lattices, we give a characteri-
zation of almost weak⋆ Dunford-Pettis operators.

Theorem 2.3. Let E and F be two Banach lattices such that F is σ-Dedekind

complete. For every positive operator T from E into F , the following assertions

are equivalent.

(1) T is almost weak⋆ Dunford-Pettis operator.

(2) For every disjoint weakly null sequence (xn) ⊂ E+, and every disjoint

weak⋆ null sequence (fn) ⊂ (F ′)+ it follows that fn(T (xn)) → 0.

(3) For every disjoint weakly null sequence (xn) ⊂ E+, and every weak⋆ null

sequence (fn) ⊂ F ′ it follows that fn(T (xn)) → 0.

(4) For every disjoint weakly null sequence (xn) ⊂ E+, and every weak⋆ null

sequence (fn) ⊂ (F ′)+ it follows that fn(T (xn)) → 0.

(5) For every weakly null sequence (xn) ⊂ E+, and every weak⋆ null sequence

(fn) ⊂ (F ′)+ it follows that fn(T (xn)) → 0.

Proof: (1) ⇒ (2) Obvious.
(2) ⇒ (3) Assume by way of contradiction that there exists a disjoint weakly

null sequence (xn) ⊂ E+, and a weak⋆ null sequence (fn) ⊂ F ′ such that
fn(T (xn)) does not converge to 0. The inequality |fn(T (xn))| ≤ |fn| (T (xn))
implies |fn| (T (xn)) does not converge to 0. Then there exist some ǫ > 0 and a
subsequence of |fn| (T (xn)) (which we shall denote by |fn| (T (xn)) again) satisfy-
ing |fn| (T (xn)) > ǫ for all n.

On the other hand, since xn → 0 weakly in E, then T (xn) → 0 weakly in F .
Now an easy inductive argument shows that there exist a subsequence (zn) of
(xn) and a subsequence (gn) of (fn) such that

|gn| (T (zn)) > ǫ

and

(4n
∑n

i=1
|gi|) (T (zn+1)) < 1

n

for all n ≥ 1. Put h =
∑

∞

i=1
2−n |gn| and hn = (|gn+1| − 4n

∑n

i=1
|gi| − 2−nh)+.

By Lemma 4.35 of [1] the sequence (hn) is disjoint. Since 0 ≤ hn ≤ |gn+1| for all
n ≥ 1 and (gn) is weak⋆ null in F ′, then from Lemma 2.2 (hn) is weak⋆ null in
F ′. From the inequality

hn(T (zn+1)) ≥

(

|gn+1| − 4n

n
∑

i=1

|gi| − 2−nh

)

(T (zn+1))

≥ ǫ −
1

n
− 2−nh(T (zn+1))

we see that hn(T (zn+1)) ≥ ǫ

2
must hold for all n sufficiently large (because

2−nh(T (zn+1)) → 0), which contradicts with our hypothesis (2).
(3) ⇒ (4) Obvious.
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(4) ⇒ (5) Assume by way of contradiction that there exists a weakly null
sequence (xn) ⊂ E+ and a weak⋆ null sequence (fn) ⊂ (F ′)+ such that fn(T (xn))
does not converge to 0. Then there exists some ǫ > 0 and a subsequence of
fn(T (xn)) (which we shall denote by fn(T (xn)) again) satisfying fn(T (xn)) ≥ ǫ

for all n.
On the other hand, since (fn) is a weak⋆ null sequence in (F ′), then T ′(fn) → 0

weak⋆ in E′. Now an easy inductive argument shows that there exist a subse-
quence (zn) of (xn) and a subsequence (gn) of (fn) such that

T ′(gn)(zn) > ǫ

and

T ′(gn+1) (4n
∑n

i=1
zi) < 1

n

for all n ≥ 1. Put z =
∑

∞

n=1
2−nzn and yn = (zn+1 − 4n

∑n

i=1
zi − 2−nz)+. By

Lemma 4.35 of [1] the sequence (yn) is disjoint. Since 0 ≤ yn ≤ zn+1 for all n ≥ 1
and (zn) is weakly null in E, then from Theorem 4.34 of [1] (yn) → 0 weakly in
E. From the inequality

T ′(gn+1)(yn) ≥ T ′(gn+1)

(

zn+1 − 4n

n
∑

i=1

zi − 2−nz

)

≥ ǫ −
1

n
− 2−nT ′(gn+1)(z)

we see that gn+1(T (yn)) = T ′(gn+1)(yn) ≥ ǫ

2
must hold for all n sufficiently large

(because 2−nT ′(gn+1)(z) → 0), which contradicts with our hypothesis (4).
(5) ⇒ (1) Let (xn) be a weak null sequence in E consisting of pairwise disjoint

terms, and let (fn) be a weak⋆ null sequence in F ′ consisting of pairwise disjoint
terms, it follows from Remark(1) of [6] that (|xn|) is weakly null in E, and from
lemma 2.2 that (|fn|) is weak⋆ null in F ′. So by our hypothesis (5), |fn| (T |xn|) →
0. Now, from the inequality |fn(T (xn))| ≤ |fn| (T (|xn|)) for each n, we deduce
that fn(T (xn)) → 0, and this completes the proof. �

The domination property for almost weak⋆ Dunford-Pettis operators can be
derived from Theorem 2.3.

Corollary 2.4. Let E and F be two Banach lattices such that F is σ-Dedekind

complete. If S and T are two positive operators from E into F such that 0 ≤
S ≤ T and T is an almost weak⋆ Dunford-Pettis, then S is also almost weak⋆

Dunford-Pettis.

Proof: Let (xn) be a weakly null sequence in E+ and (fn) be a weak⋆ null
sequence in (F ′)+. According to (5) of Theorem 2.3, it suffices to show that
fn(S(xn)) → 0. Since T is almost weak⋆ Dunford-Pettis, then Theorem 2.3
implies that fn(T (xn)) → 0. Now, by the inequality 0 ≤ fn(S(xn)) ≤ fn(T (xn))
for each n, we conclude that fn(S(xn)) → 0. �
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As consequence of Theorem 2.3 and Theorem 3.2 of Chen [2], other charac-
terizations of Banach lattices with the wDP⋆ property are given in the following
Corollary.

Corollary 2.5. Let E be a σ-Dedekind complete Banach lattice. Then, the

following assertions are equivalent.

(1) E has the wDP⋆ property.

(2) The solid hull of every relatively weakly compact set in E is almost limited.

(3) The identity operator IdE : E → E is almost weak⋆ Dunford-Pettis.

(4) For every disjoint weakly null sequence (xn) ⊂ E, and every disjoint

weak⋆ null sequence (fn) ⊂ E′ it follows that fn(xn) → 0.

(5) For every disjoint weakly null sequence (xn) ⊂ E+, and every disjoint

weak⋆ null sequence (fn) ⊂ (E′)+ it follows that fn(xn) → 0.

(6) For every disjoint weakly null sequence (xn) ⊂ E+, and every weak⋆ null

sequence (fn) ⊂ E′ it follows that fn(xn) → 0.

(7) For every disjoint weakly null sequence (xn) ⊂ E+, and every weak⋆ null

sequence (fn) ⊂ (E′)+ it follows that fn(xn) → 0.

(8) For every weakly null sequence (xn) ⊂ E+, and every weak⋆ null sequence

(fn) ⊂ (E′)+ it follows that fn(xn) → 0.

Proof: (3) ⇔ (4) Obvious.
(3) ⇔ (5) ⇔ (6) ⇔ (7) ⇔ (8) follows from Theorem 2.3.
(1) ⇔ (2) ⇔ (4) follows from Theorem 3.2 of [2]. �

The proof of the next theorem is based on the following proposition.

Proposition 2.6. Let E, F and G be three Banach lattices such that G has

the DP⋆ property. Then, each operator T : E → F that admits a factorization

through the Banach lattice G is almost weak⋆ Dunford-Pettis.

Proof: Let P : E → G and Q : G → F be two operators such that T = Q ◦ P .
Let (xn) be a disjoint weakly null sequence in E and let (fn) be a disjoint weak⋆

null sequence in F ′. It is clear that P (xn)
w
−→ 0 in G and Q′(fn)

w
⋆

−−→ 0 in G′. As
G has the DP⋆ property, then

fn(Txn) = fn(Q ◦ P (xn)) = (Q′fn)(P (xn)) → 0.

This proves that T is almost weak⋆ Dunford-Pettis. �

Note that every almost Dunford-Pettis operator is almost weak⋆ Dunford-
Pettis, but the converse is not true in general. In fact, Idℓ∞ : ℓ∞ → ℓ∞ is
almost weak⋆ Dunford-Pettis operator because ℓ∞ has the wDP⋆ property, but
it fails to be almost Dunford-Pettis because ℓ∞ does not have the positive Schur
property.

Now, we characterize Banach lattices such that each positive almost weak⋆

Dunford-Pettis operator is almost Dunford-Pettis.

Theorem 2.7. Let E and F be two Banach lattices such that F is σ-Dedekind

complete. Then the following assertions are equivalent.
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(1) Each positive almost weak⋆ Dunford-Pettis operator T : E → F is almost

Dunford-Pettis.

(2) One of the following assertions is valid:

(a) E has the positive Schur property,

(b) the norm of F is order continuous.

Proof: (1) ⇒ (2) Assume by way of contradiction that E does not have the
positive Schur property and the norm of F is not order continuous. We have to
construct a positive almost weak⋆ Dunford-Pettis operator which is not almost
Dunford-Pettis. As E does not have the positive Schur property, then there exists
a disjoint weakly null sequence (xn) in E+ which is not norm null. By choosing a
subsequence we may suppose that there is ǫ > 0 with ‖xn‖ > ǫ > 0 for all n. From
the equality ‖xn‖ = sup {f(xn) : f ∈ (E′)+, ‖f‖ = 1}, there exists a sequence
(fn) ⊂ (E′)+ such that ‖fn‖ = 1 and fn(xn) ≥ ǫ holds for all n. Now, consider
the operator R : E → ℓ∞ defined by

R(x) = (fn(x))∞n=1

On the other hand, since the norm of F is not order continuous, it follows from
Theorem 4.51 of [1] that ℓ∞ is lattice embeddable in F , i.e., there exists a lattice
homomorphism S : ℓ∞ → F and there exist tow positive constants M and m

satisfying

m ‖(λk)k‖∞ ≤ ‖S((λk)k)‖
F
≤ M ‖(λk)k‖∞

for all (λk)k ∈ ℓ∞. Put T = S◦R, and note by Proposition 2.6 that T is a positive
almost weak⋆ Dunford-Pettis operator because ℓ∞ has DP⋆ property. However,
for the disjoint weakly null sequence (xn) ⊂ E+, we have

‖T (xn)‖ = ‖S((fk(xn))k)‖ ≥ m ‖(fk(xn))k‖∞ ≥ mfn(xn) ≥ mǫ

for every n. This shows that T is not almost Dunford-Pettis, and we are done.
(a)⇒ (1) In this case, each operator T : E → F is almost Dunford-Pettis.
(b)⇒ (1) Let (xn) ⊂ E be a positive disjoint weakly null sequence. We shall

show that ‖T (xn)‖ → 0. By Corollary 2.6 of [3], it suffices to prove that |T (xn)|
w
−→

0 and fn(T (xn)) → 0 for every disjoint and norm bounded sequence (fn) ⊂ (F ′)+.
Let f ∈ (F ′)+ and by Theorem 1.23 of [1] there exists some g ∈ [−f, f ] with

f |Txn| = g(Txn). Since xn

w
−→ 0 then f |Txn| = g(Txn) = (T ′g)(xn) → 0,

thus |T (xn)|
w
−→ 0. On the other hand, let (fn) ⊂ (F ′)+ be a disjoint and norm

bounded sequence. As the norm of F is order continuous, then by Corollary

2.4.3 of [5] fn

w
⋆

−−→ 0. Now, since T is positive almost weak⋆ Dunford-Pettis then,
fn(T (xn)) → 0. This completes the proof. �

Remark 1. The assumption that F is σ-Dedekind complete is essential in The-
orem 2.7. In fact, if we consider E = ℓ∞ and F = c, the Banach lattice of all
convergent sequences, it is clear that F = c is not σ-Dedekind complete, and it
follows from the proof of Proposition 1 of [7] and Theorem 5.99 of [1] that each
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operator from ℓ∞ into c is Dunford-Pettis (and hence is almost Dunford-Pettis).
But ℓ∞ does not have the positive Schur property and the norm of c is not order
continuous.

As consequences of Theorem 2.7, we have the following characterization.

Corollary 2.8. Let E be a σ-Dedekind complete Banach lattice. Then the fol-

lowing assertions are equivalent.

(1) Each positive almost weak⋆ Dunford-Pettis operator T : E → E is almost

Dunford-Pettis.

(2) The norm of E is order continuous.

Proof: The result follows from Theorem 2.7 by noting that if E has the positive
Schur property then the norm of E is order continuous. �

Now, from Corollary 2.8 and Theorem 4.9 (Nakano) of [1], we obtain the fol-
lowing result, which is just Proposition 3.3 of [2].

Corollary 2.9. Let E be a Banach lattice. Then E has the positive Schur

property if and only if E has the wDP⋆ property and its norm is order continuous.

Proof: The “only if” part is trivial.
For the “if” part, since E has wDP⋆ property, then IdE : E → E is almost

weak⋆ Dunford-Pettis operator. As the norm of E is order continuous, it follows
from Theorem 4.9 (Nakano) of [1] that E is σ-Dedekind complete, and by Corol-
lary 2.8 we have that IdE : E → E is almost Dunford-Pettis. This proves that E

has the positive Schur property. �
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