Applications of Mathematics

Monika Balázsová; Miloslav Feistauer
On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains

Applications of Mathematics, Vol. 60 (2015), No. 5, 501-526
Persistent URL: http://dml.cz/dmlcz/144389

Terms of use:

© Institute of Mathematics AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

ON THE STABILITY OF THE ALE SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS IN TIME-DEPENDENT DOMAINS

Monika Balázsová, Miloslav Feistauer, Praha

(Received June 7, 2015)

Abstract. The paper is concerned with the analysis of the space-time discontinuous Galerkin method (STDGM) applied to the numerical solution of the nonstationary nonlinear convection-diffusion initial-boundary value problem in a time-dependent domain formulated with the aid of the arbitrary Lagrangian-Eulerian (ALE) method. In the formulation of the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the space discretization of diffusion terms and interior and boundary penalty. The nonlinear convection terms are discretized with the aid of a numerical flux. The space discretization uses piecewise polynomial approximations of degree not greater than p with an integer $p \geqslant 1$. In the theoretical analysis, the piecewise linear time discretization is used. The main attention is paid to the investigation of unconditional stability of the method.

Keywords: nonstationary nonlinear convection-diffusion equations; time-dependent domain; ALE method; space-time discontinuous Galerkin method; unconditional stability

MSC 2010: 65M60, 65M99

1. INTRODUCTION

Most of works on the theory and numerical solution of nonstationary partial differential equations are considered and analyzed in space domains independent of time. However, problems described by partial differential equations in deformable domains Ω_{t}, which change their shape in dependence on time $t \in[0, T]$, play an important role in various fields of science and technology. Particularly, we can mention problems of fluid-structure interaction, when the boundary of the domain occupied by the moving

The research of M. Feistauer was supported by the grant 13-00522S of the Czech Science Foundation and the research of M. Balázsová was supported by the Charles University in Prague, project GA UK No. 127615.
fluid is deformed in dependence on time according to the deformation of an elastic body adjacent to the fluid. There are several techniques how to solve numerically initial-boundary value problems in time-dependent domains. We can mention, e.g., the immersed boundary method or fictitious domain method ([7], [33]). Another, rather popular technique is the arbitrary Lagrangian-Eulerian (ALE) method ([18]), which will be applied in this paper to the numerical solution of nonstationary nonlinear convection-diffusion problems in a time-dependent domain. In several works ([11], [12], [24], [25], [27], [30]) we used the ALE method with success for numerical solving compressible Navier-Stokes equations in the framework of fluid-structure interaction problems. The space discretization was carried out by the discontinuous Galerkin method (DGM). For the time discretization we used either the backward difference formula (BDF) method or the DGM in time. In the latter case, we get the space-time discontinuous Galerkin method (STDGM).

There is a number of works devoted to the theory and applications of the DGM. Let us mention, e.g., [2], [3], [5], [6], [9], [14], [15], [16], [17], [22], [23], [31], [32], [34]. The numerical simulation of strongly nonstationary transient problems requires the application of numerical schemes of high order of accuracy both in space and in time. It appears suitable to use the discontinuous Galerkin discretization with respect to space as well as time for the construction of numerical schemes with high accuracy in space and time for the solution of nonlinear nonstationary problems.

The discontinuous Galerkin time discretization was introduced and analyzed, e.g., in [19] for the solution of ordinary differential equations. In [1], [13], [20], [21], [35] and [36] the solution of parabolic problems is carried out with the aid of conforming finite elements in space combined with the DG time discretization. See also the monograph [37]. In [23], the STDGM was analyzed for a linear nonstationary convection-diffusion-reaction problem. The paper [26] is devoted to the theory of error estimates for the STDGM applied to a nonstationary convection-diffusion problem with a nonlinear convection and linear diffusion. In paper [10], the theory of the STDGM was developed for the case with nonlinear convection as well as diffusion. The paper [4] is a continuation of the works [26] and [10] devoted to proving unconditional stability of the STDGM. In all the above mentioned theoretical papers, the space domain is independent of time.

There are several papers devoted to the analysis of linear convection-diffusion problems in time-dependent domains, formulated with the aid of the ALE method. We can mention [28], [29] and [8]. The last paper is concerned with the stability analysis of the time DGM without space discretization.

The presented paper represents the generalization of results from [4] to the STDGM for the numerical solution of a nonstationary nonlinear convection-diffusion problem in a time-dependent domain, formulated with the aid of the ALE method.

In Section 2 we formulate the continuous problem. Section 3 is devoted to the description of the space semidiscretization. Section 4 is concerned with the complete space-time DG discretization. The main results are contained in Section 5, where the stability of the STDGM is proved.

2. Formulation of the continuous problem

In what follows, we shall use the standard notation $L^{2}(\omega)$ for the Lebesgue space, $H^{k}(\omega), W^{k, p}(\omega)$ for the Hilbert and Sobolev spaces over a bounded domain $\omega \subset$ \mathbb{R}^{d}, and $C^{1}\left([0, T] ; W^{1, \infty}\left(\Omega_{t}\right)\right)$ for the Bochner space of continuously differentiable functions in $[0, T]$ with values in $W^{1, \infty}\left(\Omega_{t}\right)$. We shall be concerned with an initialboundary value nonlinear convection-diffusion problem in a time-dependent bounded polyhedral domain $\Omega_{t} \subset \mathbb{R}^{2}$, where $t \in[0, T], T>0$: Find a function $u=u(x, t)$ with $x \in \Omega_{t}, t \in(0, T)$ such that

$$
\begin{gather*}
\frac{\partial u}{\partial t}+\sum_{s=1}^{d} \frac{\partial f_{s}(u)}{\partial x_{s}}-\operatorname{div}(\beta(u) \nabla u)=g \quad \text { in } \Omega_{t}, t \in(0, T) \tag{2.1}\\
u=u_{D} \quad \text { on } \partial \Omega_{t}, t \in(0, T) \tag{2.2}\\
u(x, 0)=u^{0}(x), \quad x \in \Omega_{0} \tag{2.3}
\end{gather*}
$$

We assume that $f_{s} \in C^{1}(\mathbb{R}), f_{s}(0)=0$,

$$
\begin{equation*}
\left|f_{s}^{\prime}\right| \leqslant L_{f}, \quad s=1, \ldots, d \tag{2.4}
\end{equation*}
$$

and the function β is bounded and Lipschitz-continuous:

$$
\begin{gather*}
\beta: \mathbb{R} \rightarrow\left[\beta_{0}, \beta_{1}\right], \quad 0<\beta_{0}<\beta_{1}<\infty \tag{2.5}\\
\left|\beta\left(u_{1}\right)-\beta\left(u_{2}\right)\right| \leqslant L_{\beta}\left|u_{1}-u_{2}\right| \quad \forall u_{1}, u_{2} \in \mathbb{R} . \tag{2.6}
\end{gather*}
$$

Problem (2.1)-(2.3) will be reformulated with the aid of the arbitrary LagrangianEulerian (ALE) method. It is based on a regular one-to-one ALE mapping of the reference configuration Ω_{0} onto the current configuration Ω_{t} :

$$
\mathcal{A}_{t}: \bar{\Omega}_{0} \rightarrow \bar{\Omega}_{t}, \quad X \in \bar{\Omega}_{0} \rightarrow x=x(X, t)=\mathcal{A}_{t}(X) \in \bar{\Omega}_{t}, \quad t \in[0, T] .
$$

We assume that $\mathcal{A} \in C^{1}\left([0, T] ; W^{1, \infty}\left(\Omega_{t}\right)\right)$. We define the ALE velocity by

$$
\tilde{\boldsymbol{z}}(X, t)=\frac{\partial}{\partial t} \mathcal{A}_{t}(X), \quad \boldsymbol{z}(x, t)=\tilde{\boldsymbol{z}}\left(\mathcal{A}_{t}^{-1}(x), t\right), \quad t \in[0, T], X \in \Omega_{0}, x \in \Omega_{t}
$$

Let

$$
\begin{equation*}
|\boldsymbol{z}(x, t)|,|\operatorname{div} \boldsymbol{z}(x, t)| \leqslant c_{z} \quad \text { for } x \in \Omega_{t}, t \in(0, T) \tag{2.7}
\end{equation*}
$$

Further, we define the ALE derivative $D_{t} f=D f / D t$ of a function $f=f(x, t)$ for $x \in \Omega_{t}$ and $t \in[0, T]$ as

$$
D_{t} f(x, t)=\frac{D}{D t} f(x, t)=\frac{\partial \tilde{f}}{\partial t}(X, t)
$$

where $\tilde{f}(X, t)=f\left(\mathcal{A}_{t}(X), t\right), X \in \Omega_{0}$, and $x=\mathcal{A}_{t}(X) \in \Omega_{t}$. The use of the chain rule yields the relation

$$
\begin{equation*}
\frac{D f}{D t}=\frac{\partial f}{\partial t}+\boldsymbol{z} \cdot \nabla f \tag{2.8}
\end{equation*}
$$

which allows us to reformulate problem (2.1)-(2.3) in the ALE form: Find $u=u(x, t)$ with $x \in \Omega_{t}, t \in(0, T)$, such that

$$
\begin{gather*}
D_{t} u+\sum_{s=1}^{d} \frac{\partial f_{s}(u)}{\partial x_{s}}-\boldsymbol{z} \cdot \nabla u-\operatorname{div}(\beta(u) \nabla u)=g \quad \text { in } \Omega_{t}, t \in(0, T) \tag{2.9}\\
u=u_{D} \quad \text { on } \partial \Omega_{t} \tag{2.10}\\
u(x, 0)=u^{0}(x), \quad x \in \Omega_{0} \tag{2.11}
\end{gather*}
$$

3. Space semidiscretization

For any $t \in[0, T]$ we denote by $\mathcal{T}_{h, t}$ a partition of the closure $\bar{\Omega}_{t}$ into a finite number of closed simplexes with disjoint interiors. Over a triangulation $\mathcal{T}_{h, t}$, for each positive integer k we define the broken Sobolev space

$$
H^{k}\left(\Omega_{t}, \mathcal{T}_{h, t}\right)=\left\{v ;\left.v\right|_{K} \in H^{k}(K) \forall K \in \mathcal{T}_{h, t}\right\}
$$

equipped with the seminorm

$$
|v|_{H^{k}\left(\Omega_{t}, \mathcal{T}_{h, t}\right)}=\left(\sum_{K \in \mathcal{T}_{h, t}}|v|_{H^{k}(K)}^{2}\right)^{1 / 2}
$$

where $\left|\left.\right|_{H^{k}(K)}\right.$ denotes the seminorm in the space $H^{k}(K)$.
By $\mathcal{F}_{h, t}$ we denote the system of all faces of all elements $K \in \mathcal{T}_{h, t}$. It consists of the set of all inner faces $\mathcal{F}_{h, t}^{I}$ and the set of all boundary faces $\mathcal{F}_{h, t}^{B}: \mathcal{F}_{h, t}=\mathcal{F}_{h, t}^{I} \cup \mathcal{F}_{h, t}^{B}$.

Each $\Gamma \in \mathcal{F}_{h, t}$ will be associated with a unit normal vector \mathbf{n}_{Γ}. By $K_{\Gamma}^{(L)}$ and $K_{\Gamma}^{(R)} \in \mathcal{T}_{h, t}$ we denote the elements adjacent to the face $\Gamma \in \mathcal{F}_{h, t}$. Moreover, for $\Gamma \in \mathcal{F}_{h, t}^{B}$ the element adjacent to this face will be denoted by $K_{\Gamma}^{(L)}$. We shall use the convention that \mathbf{n}_{Γ} is the outer normal to $\partial K_{\Gamma}^{(L)}$.

If $v \in H^{1}\left(\Omega_{t}, \mathcal{T}_{h, t}\right)$ and $\Gamma \in \mathcal{F}_{h, t}$, then $\left.v\right|_{\Gamma} ^{(L)},\left.v\right|_{\Gamma} ^{(R)}$ will denote the traces of v on Γ from the side of elements $K_{\Gamma}^{(L)}, K_{\Gamma}^{(R)}$ adjacent to Γ. For $\Gamma \in \mathcal{F}_{h, t}^{I}$ we set

$$
\begin{gather*}
\langle v\rangle_{\Gamma}=\frac{1}{2}\left(\left.v\right|_{\Gamma} ^{(L)}+\left.v\right|_{\Gamma} ^{(R)}\right), \quad[v]_{\Gamma}=\left.v\right|_{\Gamma} ^{(L)}-\left.v\right|_{\Gamma} ^{(R)}, \tag{3.1}\\
h(\Gamma)=\frac{h_{K_{\Gamma}^{(L)}}+h_{K_{\Gamma}^{(R)}}^{(R)}}{2} \text { for } \Gamma \in \mathcal{F}_{h, t}^{I}, \quad h(\Gamma)=h_{K_{\Gamma}^{(L)}}^{(L)} \quad \text { for } \Gamma \in \mathcal{F}_{h, t}^{B} . \tag{3.2}
\end{gather*}
$$

Now we introduce the space semidiscretization of problem (2.9)-(2.11). We assume that u is a sufficiently smooth solution of our problem. If we choose an arbitrary but fixed $t \in[0, T]$, multiply equation (2.9) by a test function $\varphi \in H^{2}\left(\Omega_{t}, \mathcal{T}_{h, t}\right)$, integrate over any element K and finally sum over all elements $K \in \mathcal{T}_{h, t}$, then we get

$$
\begin{align*}
& \sum_{K \in \mathcal{T}_{h, t}} \int_{K} D_{t} u \varphi \mathrm{~d} x+\sum_{K \in \mathcal{T}_{h, t}} \int_{K} \sum_{s=1}^{d} \frac{\partial f_{s}(u)}{\partial x_{s}} \varphi \mathrm{~d} x \tag{3.3}\\
& -\sum_{K \in \mathcal{T}_{h, t}} \int_{K} \sum_{s=1}^{d} z_{s} \frac{\partial u}{\partial x_{s}} \varphi \mathrm{~d} x-\sum_{K \in \mathcal{T}_{h, t}} \int_{K} \operatorname{div}(\beta(u) \nabla u) \varphi \mathrm{d} x=\sum_{K \in \mathcal{T}_{h, t}} \int_{K} g \varphi \mathrm{~d} x .
\end{align*}
$$

The individual terms in the above identity will be approximated with the aid of the following forms. If $u, \varphi \in H^{2}\left(\Omega_{t}, \mathcal{T}_{h, t}\right), \theta \in \mathbb{R}$ and $c_{W}>0$, we set

$$
\begin{align*}
a_{h}(u, \varphi, t)= & \sum_{K \in \mathcal{T}_{h, t}} \int_{K} \beta(u) \nabla u \cdot \nabla \varphi \mathrm{~d} x \tag{3.4}\\
& -\sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} \int_{\Gamma}\left(\langle\beta(u) \nabla u\rangle \cdot \mathbf{n}_{\Gamma}[\varphi]+\theta\langle\beta(u) \nabla \varphi\rangle \cdot \mathbf{n}_{\Gamma}[u]\right) \mathrm{d} S \\
& -\sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma}\left(\beta(u) \nabla u \cdot \mathbf{n}_{\Gamma} \varphi\right. \\
& \left.+\theta \beta(u) \nabla \varphi \cdot \mathbf{n}_{\Gamma} u-\theta \beta(u) \nabla \varphi \cdot \mathbf{n}_{\Gamma} u_{D}\right) \mathrm{d} S, \\
J_{h}(u, \varphi, t)= & c_{W} \sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} h(\Gamma)^{-1} \int_{\Gamma}[u][\varphi] \mathrm{d} S+c_{W} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} h(\Gamma)^{-1} \int_{\Gamma} u \varphi \mathrm{~d} S, \tag{3.5}\\
J_{h}^{B}(u, \varphi, t)= & c_{W} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} h(\Gamma)^{-1} \int_{\Gamma} u \varphi \mathrm{~d} S,
\end{align*}
$$

$$
\begin{align*}
A_{h}(u, \varphi, t)= & a_{h, t}(u, \varphi, t)+\beta_{0} J_{h, t}(u, \varphi, t), \tag{3.7}\\
b_{h}(u, \varphi, t)= & -\sum_{K \in \mathcal{T}_{h, t}} \int_{K} \sum_{s=1}^{d} f_{s}(u) \frac{\partial \varphi}{\partial x_{s}} \mathrm{~d} x \tag{3.8}\\
& +\sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} \int_{\Gamma} H\left(u_{\Gamma}^{(L)}, u_{\Gamma}^{(R)}, \mathbf{n}_{\Gamma}\right)[\varphi] \mathrm{d} S \\
& +\sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma} H\left(u_{\Gamma}^{(L)}, u_{\Gamma}^{(L)}, \mathbf{n}_{\Gamma}\right) \varphi \mathrm{d} S \\
d_{h}(u, \varphi, t)= & -\sum_{K \in \mathcal{T}_{h, t}} \int_{K} \sum_{s=1}^{d} z_{s} \frac{\partial u}{\partial x_{s}} \varphi \mathrm{~d} x=-\sum_{K \in \mathcal{T}_{h, t}} \int_{K}(\boldsymbol{z} \cdot \nabla u) \varphi \mathrm{d} x, \tag{3.9}\\
l_{h}(\varphi, t)= & \sum_{K \in \mathcal{T}_{h, t}} \int_{K} g \varphi \mathrm{~d} x+\beta_{0} c_{W} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} h(\Gamma)^{-1} \int_{\Gamma} u_{D} \varphi \mathrm{~d} S . \tag{3.10}
\end{align*}
$$

Further, if $\omega \subset \mathbb{R}^{2}$ is a measurable set and $\varphi, \psi \in L^{2}(\omega)$, we shall denote

$$
\begin{equation*}
(\varphi, \psi)_{\omega}=\int_{\omega} \varphi \psi \mathrm{d} x, \quad\|\varphi\|_{\omega}=\left(\int_{\omega}|\varphi|^{2} \mathrm{~d} x\right)^{1 / 2} \tag{3.11}
\end{equation*}
$$

Let us note that in integrals over faces we omit the subscript Γ. We consider $\theta=1$, $\theta=0$ and $\theta=-1$ and get the symmetric (SIPG), incomplete (IIPG) and nonsymmetric (NIPG) variants of the approximation of the diffusion terms, respectively.

In (3.8), H is a numerical flux with the following properties:
(H1) $H(u, v, \mathbf{n})$ is defined in $\mathbb{R}^{d} \times B_{1}$, where $B_{1}=\left\{\mathbf{n} \in \mathbb{R}^{d} ;|\mathbf{n}|=1\right\}$, and is
Lipschitz-continuous with respect to u, v : there exists $L_{H}>0$ such that $\left|H(u, v, \mathbf{n})-H\left(u^{*}, v^{*}, \mathbf{n}\right)\right| \leqslant L_{H}\left(\left|u-u^{*}\right|+\left|v-v^{*}\right|\right)$ for all $u, v, u^{*}, v^{*} \in \mathbb{R}$,
(H2) $H(u, v, \mathbf{n})$ is consistent: $H(u, v, \mathbf{n})=\sum_{s=1}^{d} f_{s}(u) n_{s}, u \in \mathbb{R}, \mathbf{n} \in B_{1}$,
(H3) $H(u, v, \mathbf{n})$ is conservative: $H(u, v, \mathbf{n})=-H(v, u,-\mathbf{n}), u, v \in \mathbb{R}, \mathbf{n} \in B_{1}$.

4. Space-time discretization

In the time interval $[0, T]$ we construct a partition formed by time instants $0=t_{0}<$ $t_{1}<\ldots<t_{M}=T$ and set $I_{m}=\left(t_{m-1}, t_{m}\right), \bar{I}_{m}=\left[t_{m-1}, t_{m}\right]$ and $\tau_{m}=t_{m}-t_{m-1}$ for $m=1, \ldots, M$. Then we have

$$
[0, T]=\bigcup_{m=1}^{M} \bar{I}_{m} \quad \text { and } \quad I_{m} \cap I_{n}=\emptyset \quad \text { for } m \neq n
$$

Further, we set $\tau=\max _{m=1, \ldots, M} \tau_{m}$. For a function φ defined in $\bigcup_{m=1}^{M} I_{m}$ we denote

$$
\varphi_{m}^{ \pm}=\varphi\left(t_{m} \pm\right)=\lim _{t \rightarrow t_{m} \pm} \varphi(t), \quad\{\varphi\}_{m}=\varphi\left(t_{m}+\right)-\varphi\left(t_{m}-\right) .
$$

Let $p, q \geqslant 1$ be integers. For any $t \in[0, T]$ we define the finite-dimensional space

$$
\begin{equation*}
S_{h, t}^{p}=\left\{v \in L^{2}\left(\Omega_{t}\right) ;\left.v\right|_{K} \in P^{p}(K), K \in \mathcal{T}_{h, t}, t \in[0, T]\right\} \tag{4.1}
\end{equation*}
$$

The approximate solution is sought in the space of piecewise polynomial functions in time and space

$$
\begin{equation*}
S_{h, \tau}^{p, q}=\left\{v \in L^{2}\left(Q_{T}\right) ; v=v(x, t), \text { for each } X \in \Omega_{0} \text { and each } m=1, \ldots, M\right. \tag{4.2}
\end{equation*}
$$ the function $t \in I_{m} \rightarrow v\left(\mathcal{A}_{t}(X), t\right)$ is a polynomial of degree $\leqslant q$ in t, $v(\cdot, t) \in S_{h, t}^{p}$ for all $\left.t \in I_{m}\right\}$,

where $Q_{T}=\left\{(x, t) ; t \in(0, T), x \in \Omega_{t}\right\}$.
A function U is an approximate solution of problem (2.9)-(2.11), if $U \in S_{h, \tau}^{p, q}$ and

$$
\begin{align*}
& \int_{I_{m}}\left(\left(D_{t} U, \varphi\right)_{\Omega_{t}}+A_{h}(U, \varphi, t)+b_{h}(U, \varphi, t)+d_{h}(U, \varphi, t)\right) \mathrm{d} t \tag{4.3}\\
& +\left(\{U\}_{m-1}, \varphi_{m-1}^{+}\right)_{\Omega_{t_{m-1}}}=\int_{I_{m}} l_{h}(\varphi, t) \mathrm{d} t \quad \forall \varphi \in S_{h, \tau}^{p, q}, \quad m=1, \ldots, M,
\end{align*}
$$

(4.4) $U^{0} \in S_{h, 0}^{p}, \quad\left(U^{0}-u^{0}, v_{h}\right)=0 \quad \forall v_{h} \in S_{h, 0}^{p}$.

In what follows we are concerned with the case $q=1$. This means that in the time discretization by the discontinuous Galerkin method we use piecewise linear approximations. We shall use properties (H1) and (H2) of the numerical flux H. (Assumption (H3) is important for proving the consistency of the method, but here it is not necessary.)

5. Analysis of the stability

In our further considerations for each $t \in[0, T]$ we introduce a system of triangulations $\left\{\mathcal{T}_{h, t}\right\}_{h \in\left(0, h_{0}\right)}$, where $h_{0}>0$. We assume that it is shape regular and locally quasiuniform. This means that there exist positive constants c_{R} and c_{Q}, independent of K, Γ, t and h such that for all $t \in[0, T]$

$$
\begin{gather*}
\frac{h_{K}}{\varrho_{K}} \leqslant c_{R} \quad \text { for all } K \in \mathcal{T}_{h, t}, \tag{5.1}\\
h_{K_{\Gamma}^{(L)}} \leqslant c_{Q} h_{K_{\Gamma}^{(R)}}, \quad h_{K_{\Gamma}^{(R)}} \leqslant c_{Q} h_{K_{\Gamma}^{(L)}} \quad \text { for all } \Gamma \in \mathcal{F}_{h, t}^{I} . \tag{5.2}
\end{gather*}
$$

Under these assumptions, by [16] the multiplicative trace inequality and the inverse inequality hold: There exist constants $c_{M}, c_{I}>0$ independent of v, h, t and K such that

$$
\begin{gather*}
\|v\|_{L^{2}(\partial K)}^{2} \leqslant c_{M}\left(\|v\|_{L^{2}(K)}|v|_{H^{1}(K)}+h_{K}^{-1}\|v\|_{L^{2}(K)}^{2}\right), \tag{5.3}\\
v \in H^{1}(K), K \in \mathcal{T}_{h, t}, t \in[0, T], h \in\left(0, h_{0}\right),
\end{gather*}
$$

and

$$
\begin{equation*}
|v|_{H^{1}(K)} \leqslant c_{I} h_{K}^{-1}\|v\|_{L^{2}(K)}, v \in P^{p}(K), K \in \mathcal{T}_{h, t}, t \in[0, T], h \in\left(0, h_{0}\right) . \tag{5.4}
\end{equation*}
$$

Moreover, we assume that

$$
\begin{equation*}
\mathcal{T}_{h, t}=\left\{K_{t}=\mathcal{A}_{t}\left(K_{0}\right) ; K_{0} \in \mathcal{T}_{h, 0}\right\} . \tag{5.5}
\end{equation*}
$$

This assumption is usually satisfied in practical computations, when the ALE mapping \mathcal{A}_{t} is a continuous, piecewise affine mapping in $\bar{\Omega}_{0}$ for each $t \in[0, T]$.

In the space $H^{1}\left(\Omega, \mathcal{T}_{h, t}\right)$ we define the norm

$$
\begin{equation*}
\|\varphi\|_{D G, t}=\left(\sum_{K \in \mathcal{T}_{h, t}}|\varphi|_{H^{1}(K)}^{2}+J_{h}(\varphi, \varphi, t)\right)^{1 / 2} \tag{5.6}
\end{equation*}
$$

Moreover, on $\partial \Omega$ we define the norm

$$
\begin{equation*}
\left\|u_{D}\right\|_{D G B, t}=\left(c_{W} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} h^{-1}(\Gamma) \int_{\Gamma}\left|u_{D}\right|^{2} \mathrm{~d} S\right)^{1 / 2}=\left(J_{h}^{B}\left(u_{D}, u_{D}, t\right)\right)^{1 / 2} \tag{5.7}
\end{equation*}
$$

If we use $\varphi:=U$ as a test function in (4.3), we get the basic identity

$$
\begin{align*}
\int_{I_{m}}\left(\left(D_{t} U, U\right)_{\Omega_{t}}\right. & \left.+A_{h}(U, U, t)+b_{h}(U, U, t)+d_{h}(U, U, t)\right) \mathrm{d} t \tag{5.8}\\
& +\left(\{U\}_{m-1}, U_{m-1}^{+}\right)_{\Omega_{t_{m-1}}}=\int_{I_{m}} l_{h}(U, t) \mathrm{d} t
\end{align*}
$$

An important step is the proof of the coercivity of the diffusion and penalty terms.

Theorem 1. Let

$$
\begin{align*}
& c_{W} \geqslant \frac{\beta_{1}^{2}}{\beta_{0}^{2}} c_{M}\left(c_{I}+1\right) \quad \text { for } \theta=-1(\mathrm{NIPG}) \tag{5.9}\\
& c_{W} \geqslant \frac{\beta_{1}^{2}}{\beta_{0}^{2}} c_{M}\left(c_{I}+1\right)\left(c_{Q}+1\right) \quad \text { for } \theta=0(\mathrm{IIPG}) \tag{5.10}\\
& c_{W} \geqslant \frac{16 \beta_{1}^{2}}{\beta_{0}^{2}} c_{M}\left(c_{I}+1\right)\left(c_{Q}+1\right) \quad \text { for } \theta=1(\mathrm{SIPG}) . \tag{5.11}
\end{align*}
$$

Then

$$
\begin{align*}
\int_{I_{m}}\left(a_{h}(U, U, t)+\right. & \left.\beta_{0} J_{h}(U, U, t)\right) \mathrm{d} t \tag{5.12}\\
& \geqslant \frac{\beta_{0}}{2} \int_{I_{m}}\|U\|_{D G, t}^{2} \mathrm{~d} t-\frac{\beta_{0}}{2} \int_{I_{m}}\left\|u_{D}\right\|_{D G B, t}^{2} \mathrm{~d} t .
\end{align*}
$$

Proof. 1) Let $\theta=-1$. Using assumption (2.5) and the definition of the $\|\cdot\|_{D G, t^{-}}$ norm, we have

$$
\begin{equation*}
a_{h}(U, U, t)+\beta_{0} J_{h}(U, U, t) \geqslant \beta_{0}\|U\|_{D G, t}^{2}-\sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma} \beta(U) \nabla U \cdot \mathbf{n}_{\Gamma} u_{D} \mathrm{~d} S \tag{5.13}
\end{equation*}
$$

Now we have to estimate the last term on the right-hand side of (5.13). Using the properties of the function β and Young's inequality, for each $k_{1}, \delta>0$ we get

$$
\begin{aligned}
& \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma}\left|\beta(U) \nabla U \cdot \mathbf{n}_{\Gamma} u_{D}\right| \mathrm{d} S \leqslant \beta_{1} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma}|\nabla U|\left|u_{D}\right| \mathrm{d} S \\
& \quad \leqslant \frac{\beta_{1} k_{1}}{2 \delta} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma} h_{K_{\Gamma}^{(L)}}^{-1}\left|u_{D}\right|^{2} \mathrm{~d} S+\frac{\beta_{1} \delta}{2 k_{1}} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma} h_{K_{\Gamma}^{(L)}|\nabla U|^{2} \mathrm{~d} S .}
\end{aligned}
$$

If we set $\delta:=\beta_{0} / \beta_{1}$ and use the definition of the form J_{h}^{B}, we obtain

$$
\begin{aligned}
\sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma} \mid \beta(U) & \nabla U \cdot \mathbf{n}_{\Gamma} u_{D} \mid \mathrm{d} S \\
& \leqslant \frac{\beta_{1}^{2} k_{1}}{2 \beta_{0} c_{W}} J_{h}^{B}\left(u_{D}, u_{D}, t\right)+\frac{\beta_{0}}{2 k_{1}} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\partial K_{\Gamma}^{(L)}} h_{K_{\Gamma}^{(L)}}|\nabla U|^{2} \mathrm{~d} S
\end{aligned}
$$

Now, we express the first term on the right-hand side with the aid of the definition of the $\|\cdot\|_{D G B, t}$-norm and to the second term we apply the multiplicative trace
inequality (5.3) and the inverse inequality (5.4). We get

$$
\begin{aligned}
& \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma}\left|\beta(U) \nabla U \cdot \mathbf{n}_{\Gamma} u_{D}\right| \mathrm{d} S \\
& \quad \leqslant \frac{\beta_{1}^{2} k_{1}}{2 \beta_{0} c_{W}}\left\|u_{D}\right\|_{D G B, t}^{2}+\frac{\beta_{0}}{2 k_{1}} c_{M}\left(c_{I}+1\right) \sum_{K \in \mathcal{T}_{h, t}}\|\nabla U\|_{L^{2}(K)}^{2}
\end{aligned}
$$

If we use the inequality $\sum_{K \in \mathcal{T}_{h, t}}\|\nabla U\|_{L^{2}(K)}^{2} \leqslant\|U\|_{D G, t}^{2}$, which obviously follows from the definition of the $\|\cdot\|_{D G, t}$-norm, we get

$$
\sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma}\left|\beta(U) \nabla U \cdot \mathbf{n}_{\Gamma} u_{D}\right| \mathrm{d} S \leqslant \frac{\beta_{1}^{2} k_{1}}{2 \beta_{0} c_{W}}\left\|u_{D}\right\|_{D G B, t}^{2}+\frac{\beta_{0}}{2 k_{1}} c_{M}\left(c_{I}+1\right)\|U\|_{D G, t}^{2} .
$$

Substituting back to (5.13) and integrating over the interval I_{m}, we obtain

$$
\begin{aligned}
& \int_{I_{m}}\left(a_{h}(U, U, t)+\beta_{0} J_{h}(U, U, t)\right) \mathrm{d} t \\
& \qquad \quad \geqslant \beta_{0}\left(1-\frac{1}{2 k_{1}} c_{M}\left(c_{I}+1\right)\right) \int_{I_{m}}\|U\|_{D G, t}^{2} \mathrm{~d} t-\frac{\beta_{1}^{2} k_{1}}{2 \beta_{0} c_{W}} \int_{I_{m}}\left\|u_{D}\right\|_{D G B, t}^{2} \mathrm{~d} t .
\end{aligned}
$$

If we set $k_{1}=c_{M}\left(c_{I}+1\right)$ and use assumption (5.9), we finally get inequality (5.12), which we wanted to prove.
2) Let $\theta=0$. From assumption (2.5) and the definition of the $\|\cdot\|_{D G, t}$-norm, we get

$$
\begin{aligned}
& a_{h}(U, U, t)+\beta_{0} J_{h}(U, U, t) \\
& \quad \geqslant \beta_{0}\|U\|_{D G, t}^{2}-\beta_{1} \sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} \int_{\Gamma}\left|\langle\nabla U\rangle \cdot \mathbf{n}_{\Gamma}[U]\right| \mathrm{d} S-\beta_{1} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma}\left|\nabla U \cdot \mathbf{n}_{\Gamma} U\right| \mathrm{d} S \\
& \quad \geqslant \beta_{0}\|U\|_{D G, t}^{2}-\beta_{1}\left(\sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} \int_{\Gamma} \frac{\left|\nabla U_{\Gamma}^{(L)}\right|+\left|\nabla U_{\Gamma}^{(R)}\right|}{2}|[U]| \mathrm{d} S+\sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma}|\nabla U||U| \mathrm{d} S\right) .
\end{aligned}
$$

Now applying Young's inequality with $\delta>0$ separately to the first and the second term above in round brackets and using the inequality $(a+b)^{2} \leqslant 2\left(a^{2}+b^{2}\right)$ valid for
$a, b \in \mathbb{R}$, we obtain

$$
\begin{align*}
\sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} & \int_{\Gamma} \frac{\left|\nabla U^{(L)}\right|+\left|\nabla U_{\Gamma}^{(R)}\right|}{2}|[U]| \mathrm{d} S+\sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma}|\nabla U||U| \mathrm{d} S \tag{5.14}\\
\leqslant & \frac{1}{2} \sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} \int_{\Gamma} \frac{h(\Gamma)}{\delta c_{W}} \frac{\left(\left|\nabla U_{\Gamma}^{(L)}\right|+\left|\nabla U_{\Gamma}^{(R)}\right|\right)^{2}}{4} \mathrm{~d} S+\frac{1}{2} \sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} \int_{\Gamma} \frac{\delta c_{W}}{h(\Gamma)}|[U]|^{2} \mathrm{~d} S \\
& +\frac{1}{2} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma} \frac{h(\Gamma)}{\delta c_{W}}\left|\nabla U_{\Gamma}^{(L)}\right|^{2} \mathrm{~d} S+\frac{1}{2} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma} \frac{\delta c_{W}}{h(\Gamma)}|U|^{2} \mathrm{~d} S \\
\leqslant & \sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} \int_{\Gamma} \frac{h_{K_{\Gamma}^{(L)}}^{(L)} h_{K_{\Gamma}^{(R)}}^{(R)}}{2 \delta c_{W}} \frac{\left|\nabla U_{\Gamma}^{(L)}\right|^{2}+\left|\nabla U_{\Gamma}^{(R)}\right|^{2}}{4} \mathrm{~d} S \\
& +\sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma} \frac{h_{K_{\Gamma}^{(L)}}^{2 \delta c_{W}}\left|\nabla U_{\Gamma}^{(L)}\right|^{2} \mathrm{~d} S+\frac{\delta}{2} J_{h}(U, U, t)}{}
\end{align*}
$$

Using the quasiuniformity of the system of triangulations, we get

$$
\begin{align*}
\frac{1}{8 \delta c_{W}} & \sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} \int_{\Gamma}\left(h_{K_{\Gamma}^{(L)}}+h_{\left.K_{\Gamma}^{(R)}\right)}\left(\left|\nabla U_{\Gamma}^{(L)}\right|^{2}+\left|\nabla U_{\Gamma}^{(R)}\right|^{2}\right) \mathrm{d} S\right. \tag{5.15}\\
& +\frac{1}{2 \delta c_{W}} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma} h_{K_{\Gamma}^{(L)}}^{(L)}\left|\nabla U_{\Gamma}^{(L)}\right|^{2} \mathrm{~d} S+\frac{\delta}{2} J_{h}(U, U, t) \\
\leqslant & \frac{c_{Q}+1}{8 \delta c_{W}} \sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} \int_{\Gamma}\left(h_{K_{\Gamma}^{(L)}}\left|\nabla U_{\Gamma}^{(L)}\right|^{2}+h_{K_{\Gamma}^{(R)}}\left|\nabla U_{\Gamma}^{(R)}\right|^{2}\right) \mathrm{d} S \\
& +\frac{1}{2 \delta c_{W}} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma} h_{K_{\Gamma}^{(L)}}\left|\nabla U_{\Gamma}^{(L)}\right|^{2} \mathrm{~d} S+\frac{\delta}{2} J_{h}(U, U, t) \\
\leqslant & \frac{c_{Q}+1}{2 \delta c_{W}} \sum_{K \in \mathcal{T}_{h, t}} \int_{\partial K} h_{K}|\nabla U|^{2} \mathrm{~d} S+\frac{\delta}{2} J_{h}(U, U, t)
\end{align*}
$$

In the last inequality we have used that $c_{Q}>0$ and

$$
\frac{c_{Q}+1}{8 \delta c_{W}} \leqslant \frac{c_{Q}+1}{2 \delta c_{W}}, \quad \frac{1}{2 \delta c_{W}} \leqslant \frac{c_{Q}+1}{2 \delta c_{W}} .
$$

The multiplicative trace inequality and the inverse inequality imply that

$$
\begin{align*}
\int_{\partial K} h_{K}|\nabla U|^{2} \mathrm{~d} S & =h_{K}\|\nabla U\|_{L^{2}(\partial K)}^{2} \tag{5.16}\\
& \leqslant c_{M}\left(1+c_{I}\right)\|\nabla U\|_{L^{2}(K)}^{2}=c_{M}\left(1+c_{I}\right)|U|_{H^{1}(K)}^{2}
\end{align*}
$$

Now, summarizing (5.14)-(5.16) yields
(5.17) $\quad a_{h}(U, U, t)+\beta_{0} J_{h}(U, U, t)$

$$
\geqslant \beta_{0}\|U\|_{D G, t}^{2}-\frac{\beta_{1} c_{M}\left(1+c_{I}\right)\left(c_{Q}+1\right)}{2 \delta c_{W}} \sum_{K \in \mathcal{T}_{h, t}}|U|_{H^{1}(K)}^{2}-\frac{\beta_{1} \delta}{2} J_{h, t}(U, U, t) .
$$

If we set $\delta=\frac{\beta_{0}}{\beta_{1}}$, we find that

$$
\begin{align*}
& a_{h}(U, U, t)+\beta_{0} J_{h}(U, U, t) \geqslant \beta_{0}\|U\|_{D G, m}^{2} \tag{5.18}\\
& \quad-\frac{2 \beta_{1}^{2} c_{M}\left(1+c_{I}\right)\left(c_{Q}+1\right)}{2 \beta_{0} c_{W}} \sum_{K \in \mathcal{T}_{h, t}}|U|_{H^{1}(K)}^{2}-\frac{\beta_{0}}{2} J_{h}(U, U, t) .
\end{align*}
$$

Using assumption (5.10) for the constant c_{W} and the definition of the $\|\cdot\|_{D G, t}$-norm, we have

$$
\begin{equation*}
a_{h}(U, U, t)+\beta_{0} J_{h}(U, U, t) \geqslant \frac{\beta_{0}}{2}\|U\|_{D G, t}^{2} . \tag{5.19}
\end{equation*}
$$

Integrating both sides over the interval I_{m}, we finally get

$$
\begin{equation*}
\int_{I_{m}}\left(a_{h}(U, U, t)+\beta_{0} J_{h}(U, U, t)\right) \mathrm{d} t \geqslant \frac{\beta_{0}}{2} \int_{I_{m}}\|U\|_{D G, t}^{2} \mathrm{~d} t \tag{5.20}
\end{equation*}
$$

3) Let $\theta=1$. From assumption (2.5) and the definition of the $\|\cdot\|_{D G, t}$-norm, we get

$$
\begin{align*}
& a_{h}(U, U, t)+\beta_{0} J_{h}(U, U, t) \geqslant \beta_{0}\|U\|_{D G, t}^{2} \tag{5.21}\\
& \quad-2 \beta_{1} \sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} \int_{\Gamma}\left|\langle\nabla U\rangle \cdot \mathbf{n}_{\Gamma}[U]\right| \mathrm{d} S \\
& \quad-2 \beta_{1} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma}\left|\nabla U \cdot \mathbf{n}_{\Gamma} U\right| \mathrm{d} S-\beta_{1} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma}\left|\nabla U \cdot \mathbf{n}_{\Gamma} u_{D}\right| \mathrm{d} S \\
& \geqslant \beta_{0}\|U\|_{D G, t}^{2} \\
& \quad-2 \beta_{1}\left(\sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} \int_{\Gamma} \frac{\left|\nabla U_{\Gamma}^{(L)}\right|+\left|\nabla U_{\Gamma}^{(R)}\right|}{2}|[U]| \mathrm{d} S+\sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma}|\nabla U||U| \mathrm{d} S\right) \\
& \quad-\beta_{1} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma}|\nabla U|\left|u_{D}\right| \mathrm{d} S .
\end{align*}
$$

The expression in the round brackets has already been estimated in the proof of the previous part, see estimates (5.14)-(5.16). We have

$$
\begin{align*}
\sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} & \int_{\Gamma} \frac{\left|\nabla U_{\Gamma}^{(L)}\right|+\left|\nabla U_{\Gamma}^{(R)}\right|}{2}|[U]| \mathrm{d} S+\sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma}|\nabla U||U| \mathrm{d} S \tag{5.22}\\
& \leqslant \frac{c_{Q}+1}{2 \delta c_{W}} \sum_{K \in \mathcal{T}_{h, t}} \int_{\partial K} h_{K}|\nabla U|^{2} \mathrm{~d} x+\frac{\delta}{2} J_{h}(U, U, t) \\
& \leqslant c_{M}\left(1+c_{I}\right) \frac{c_{Q}+1}{2 \delta c_{W}} \sum_{K \in \mathcal{T}_{h, t}}|U|_{H^{1}(K)}^{2}+\frac{\delta}{2} J_{h}(U, U, t) .
\end{align*}
$$

It follows from (5.21)-(5.22) that

$$
\begin{align*}
& a_{h}(U, U, t)+\beta_{0} J_{h}(U, U, t) \tag{5.23}\\
& \geqslant \beta_{0}\|U\|_{D G, t}^{2}-\frac{\beta_{1} c_{M}\left(1+c_{I}\right)\left(c_{Q}+1\right)}{\delta c_{W}} \sum_{K \in \mathcal{T}_{h, t}}|U|_{H^{1}(K)}^{2}-\beta_{1} \delta J_{h}(U, U, t) \\
& \quad-\beta_{1} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma}|\nabla U|\left|u_{D}\right| \mathrm{d} S .
\end{align*}
$$

The last term on the right-hand side can be estimated similarly to the proof of part 1). For each $k_{1}>0$ we get

$$
\begin{align*}
\beta_{1} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} & \int_{\Gamma}|\nabla U|\left|u_{D}\right| \mathrm{d} S \tag{5.24}\\
& \leqslant \beta_{1} k_{1} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma} h_{K_{\Gamma}^{(L)}}^{-1}\left|u_{D}\right|^{2} \mathrm{~d} S+\frac{\beta_{1}}{k_{1}} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma} h_{K_{\Gamma}^{(L)}}|\nabla U|^{2} \mathrm{~d} S \\
& \leqslant \frac{\beta_{1} k_{1}}{c_{W}} J_{h}^{B}\left(u_{D}, u_{D}, t\right)+\frac{\beta_{1}}{k_{1}} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma} h_{K_{\Gamma}^{(L)}}|\nabla U|^{2} \mathrm{~d} S \\
& \leqslant \frac{\beta_{1} k_{1}}{c_{W}}\left\|u_{D}\right\|_{D G B, t}^{2}+\frac{\beta_{1}}{k_{1}} c_{M}\left(c_{I}+1\right) \sum_{K \in \mathcal{T}_{h, t}^{B}}\|\nabla U\|_{L^{2}(K)}^{2} \\
& \leqslant \frac{\beta_{1} k_{1}}{c_{W}}\left\|u_{D}\right\|_{D G B, t}^{2}+\frac{\beta_{1}}{k_{1}} c_{M}\left(c_{I}+1\right)\|U\|_{D G, t}^{2} .
\end{align*}
$$

Substituting back to (5.23), we obtain

$$
\begin{align*}
& a_{h}(U, U, t)+\beta_{0} J_{h}(U, U, t) \tag{5.25}\\
& \qquad \beta_{0}\|U\|_{D G, t}^{2}-\frac{\beta_{1} c_{M}\left(c_{I}+1\right)\left(c_{Q}+1\right)}{\delta c_{W}} \sum_{K \in \mathcal{T}_{h, t}}|U|_{H^{1}(K)}^{2}-\beta_{1} \delta J_{h}(U, U, t) \\
& \quad-\frac{\beta_{1} k_{1}}{c_{W}}\left\|u_{D}\right\|_{D G B, t}^{2}-\frac{\beta_{1}}{k_{1}} c_{M}\left(c_{I}+1\right)\|U\|_{D G, t}^{2} .
\end{align*}
$$

If we set $\delta:=\beta_{0} / 4 \beta_{1}$ and $k_{1}:=4 \beta_{1} \beta_{0}^{-1} c_{M}\left(c_{I}+1\right)$, we find that

$$
\begin{align*}
& a_{h}(U, U, t)+\beta_{0} J_{h}(U, U, t) \tag{5.26}\\
& \qquad \beta_{0}\|U\|_{D G, t}^{2}-\frac{4 \beta_{1}^{2} c_{M}\left(c_{I}+1\right)\left(c_{Q}+1\right)}{\beta_{0} c_{W}} \sum_{K \in \mathcal{T}_{h, t}}|U|_{H^{1}(K)}^{2}-\frac{\beta_{0}}{4} J_{h}(U, U, t) \\
& \quad \\
& \quad-\frac{4 \beta_{1}^{2}}{\beta_{0} c_{W}} c_{M}\left(c_{I}+1\right)\left\|u_{D}\right\|_{D G B, t}^{2}-\frac{\beta_{0}}{4}\|U\|_{D G, t}^{2}
\end{align*}
$$

Using assumption (5.11) for the constant c_{W} implies that

$$
\begin{align*}
a_{h}(U, U, t)+ & \beta_{0} J_{h}(U, U, t) \tag{5.27}\\
\geqslant & \beta_{0}\|U\|_{D G, t}^{2}-\frac{\beta_{0}}{4} \sum_{K \in \mathcal{T}_{h, t}}|U|_{H^{1}(K)}^{2}-\frac{\beta_{0}}{4} J_{h}(U, U, t) \\
& \quad-\frac{\beta_{0}}{4\left(c_{Q}+1\right)}\left\|u_{D}\right\|_{D G B, t}^{2}-\frac{\beta_{0}}{4}\|U\|_{D G, t}^{2} \\
\geqslant & \frac{\beta_{0}}{2}\|U\|_{D G, t}^{2}-\frac{\beta_{0}}{2}\left\|u_{D}\right\|_{D G B, t}^{2}
\end{align*}
$$

Finally, using the definition of the $\|\cdot\|_{D G, t}$-norm and integrating over the interval I_{m}, we get (5.12).

Estimating the convective terms:

Theorem 2. For each $k_{2}>0$ there exists a constant $c_{b}>0$ such that for the approximate solution U of problem (2.9)-(2.11) we have the inequality

$$
\begin{equation*}
\int_{I_{m}}\left|b_{h}(U, U, t)\right| \mathrm{d} t \leqslant \frac{\beta_{0}}{k_{2}} \int_{I_{m}}\|U\|_{D G, t}^{2} \mathrm{~d} t+c_{b} \int_{I_{m}}\|U\|_{\Omega_{t}}^{2} \mathrm{~d} t \tag{5.28}
\end{equation*}
$$

(The constant c_{b} depends on k_{2}, namely, $c_{b}=c_{1}^{2} k_{2} / \beta_{0}$, where $c_{1}>0$ is independent of k_{2}.)

Proof. By (3.8),

$$
\begin{align*}
& b_{h}(U, U, t)=\underbrace{-\sum_{K \in \mathcal{T}_{h, t}} \int_{K} \sum_{s=1}^{d} f_{s}(U) \frac{\partial U}{\partial x_{s}} \mathrm{~d} x}_{:=\sigma_{1}} \tag{5.29}\\
& +\underbrace{\sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} \int_{\Gamma} H\left(U_{\Gamma}^{(L)}, U_{\Gamma}^{(R)}, \mathbf{n}_{\Gamma}\right)[U] \mathrm{d} S+\sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma} H\left(U_{\Gamma}^{(L)}, U_{\Gamma}^{(L)}, \mathbf{n}_{\Gamma}\right) U \mathrm{~d} S}_{:=\sigma_{2}}
\end{align*}
$$

Then from the Lipschitz-continuity of the functions $f_{s}, s=1, \ldots, d$, with the modul
$L_{f}>0$, the assumption that $f_{s}(0)=0$ and the Cauchy inequality, we obtain

$$
\begin{align*}
\left|\sigma_{1}\right| & \leqslant \sum_{K \in \mathcal{T}_{h, t}} \int_{K} \sum_{s=1}^{d}\left|f_{s}(U)-f_{s}(0)\right|\left|\frac{\partial U}{\partial x_{s}}\right| \mathrm{d} x \tag{5.30}\\
& \leqslant L_{f} \sum_{K \in \mathcal{T}_{h, t}} \int_{K} \sum_{s=1}^{d}|U|\left|\frac{\partial U}{\partial x_{s}}\right| \mathrm{d} x \leqslant L_{f} \sqrt{d}\|U\|_{L^{2}\left(\Omega_{t}\right)}|U|_{H^{1}\left(\Omega_{t}, \mathcal{T}_{h, t}\right)} .
\end{align*}
$$

Now we shall estimate σ_{2}. From the relation $f_{s}(0)=0, s=1, \ldots, d$, and the consistency of property (H2) of the numerical flux H we have $H\left(0,0, \mathbf{n}_{\Gamma}\right)=0$. Then we can use the Lipschitz-continuity of H and get

$$
\left|\sigma_{2}\right| \leqslant L_{H} \sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} \int_{\Gamma}\left(\left|U_{\Gamma}^{(L)}\right|+\left|U_{\Gamma}^{(R)}\right|\right)|[U]| \mathrm{d} S+L_{H} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma}\left(\left|U_{\Gamma}^{(L)}\right|+\left|U_{\Gamma}^{(L)}\right|\right)\left|U_{\Gamma}^{(L)}\right| \mathrm{d} S .
$$

Using that $U_{\Gamma}^{(R)}=U_{\Gamma}^{(L)}$ for $\Gamma \in \mathcal{F}_{h, t}^{B}$, the Cauchy inequality, and the relation $h(\Gamma) \leqslant$ $\frac{1}{2}\left(c_{Q}+1\right) h_{K}$ if $\Gamma \subset \partial K$, we obtain

$$
\begin{align*}
\left|\sigma_{2}\right| \leqslant & L_{H} \sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} \int_{\Gamma}\left(\left|U_{\Gamma}^{(L)}\right|+\left|U_{\Gamma}^{(R)}\right|\right)\left|U_{\Gamma}^{(L)}\right| \mathrm{d} S \tag{5.31}\\
& +L_{H} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma}\left(\left|U_{\Gamma}^{(L)}\right|+\left|U_{\Gamma}^{(R)}\right|\right)\left|U_{\Gamma}^{(L)}\right| \mathrm{d} S \\
\leqslant & \frac{L_{H}}{\sqrt{c_{W}}}\left(c_{W} \sum_{\Gamma \in \mathcal{F}_{h, t}^{I}} \int_{\Gamma} \frac{\left|U_{\Gamma}^{(L)}\right|^{2}}{h(\Gamma)} \mathrm{d} S+c_{W} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} \int_{\Gamma} \frac{\left(U_{\Gamma}^{(L)}\right)^{2}}{h(\Gamma)} \mathrm{d} S\right)^{1 / 2} \\
& \times\left(\sum_{\Gamma \in \mathcal{F}_{h, t}} h(\Gamma) \int_{\Gamma}\left(\left|U_{\Gamma}^{(L)}\right|+\left|U_{\Gamma}^{(R)}\right|\right)^{2} \mathrm{~d} S\right)^{1 / 2} \\
\leqslant & \frac{L_{H}}{\sqrt{c_{W}}} J_{h}(U, U, t)^{1 / 2}\left(\sum_{\Gamma \in \mathcal{F}_{h, t}} 2 h(\Gamma) \int_{\Gamma}\left|U_{\Gamma}^{(L)}\right|^{2}+\left|U_{\Gamma}^{(R)}\right|^{2} \mathrm{~d} S\right)^{1 / 2} \\
\leqslant & L_{H} \sqrt{\frac{c_{Q}+1}{c_{W}}} J_{h}(U, U, t)^{1 / 2} \\
& \times\left(\sum_{\Gamma \in \mathcal{F}_{h, t}} h_{K_{\Gamma}^{(L)}} \int_{\partial K_{\Gamma}^{(L)} \cap \Gamma}\left|U_{\Gamma}^{(L)}\right|^{2} \mathrm{~d} S+h_{K_{\Gamma}^{(R)}} \int_{\partial K_{\Gamma}^{(R)} \cap \Gamma}\left|U_{\Gamma}^{(R)}\right|^{2} \mathrm{~d} S\right)^{1 / 2} \\
\leqslant & L_{H} \sqrt{\frac{c_{Q}+1}{c_{W}}} J_{h}(U, U, t)^{1 / 2}\left(\sum_{K \in \mathcal{T}_{h, t}} \int_{\partial K} h_{K}|U|^{2} \mathrm{~d} S\right)^{1 / 2} \\
= & L_{H} \sqrt{\frac{c_{Q}+1}{c_{W}}} J_{h}(U, U, t)^{1 / 2}\left(\sum_{K \in \mathcal{T}_{h, t}} h_{K}\|U\|_{L^{2}(\partial K)}^{2}\right)^{1 / 2} .
\end{align*}
$$

Substituting (5.30) and (5.31) into (5.29), using the Cauchy inequality and the definition of the $\|\cdot\|_{D G, t}$-norm, we find that

$$
\begin{aligned}
\left|b_{h}(U, U, t)\right| \leqslant & L_{f} \sqrt{d}\|U\|_{\Omega_{t}}|U|_{H^{1}\left(\Omega_{t}, \mathcal{T}_{h, t}\right)} \\
& +L_{H} \sqrt{\frac{c_{Q}+1}{c_{W}}} J_{h}(U, U, t)^{1 / 2}\left(\sum_{K \in \mathcal{T}_{h, t}} h_{K}\|U\|_{L^{2}(\partial K)}^{2}\right)^{1 / 2} \\
\leqslant & \left(L_{f}^{2} d\|U\|_{\Omega_{t}}^{2}+L_{H}^{2} \frac{c_{Q}+1}{c_{W}} \sum_{K \in \mathcal{T}_{h, t}} h_{K}\|U\|_{L^{2}(\partial K)}^{2}\right)^{1 / 2} \\
& \times\left(|U|_{H^{1}\left(\Omega_{t}, \mathcal{T}_{h, t}\right)}+J_{h}(U, U, t)\right)^{1 / 2} \\
\leqslant & c\|U\|_{D G, t}\left(\|U\|_{\Omega_{t}}+\left(\sum_{K \in \mathcal{T}_{h, t}} h_{K}\|U\|_{L^{2}(\partial K)}^{2}\right)^{1 / 2}\right)
\end{aligned}
$$

where $c=\left(\max \left\{L_{f}^{2} d, L_{H}^{2}\left(c_{Q}+1\right) / c_{W}\right\}\right)^{1 / 2}$. Furthermore, the multiplicative trace inequality and the inverse inequality imply that

$$
\begin{aligned}
\sum_{K \in \mathcal{T}_{h, t}} h_{K}\|U\|_{L^{2}(\partial K)}^{2} & \leqslant c_{M} \sum_{K \in \mathcal{T}_{h, t}} h_{K}\left(\|U\|_{L^{2}(K)}|U|_{H^{1}(K)}+h_{K}^{-1}\|U\|_{L^{2}(K)}^{2}\right) \\
& \leqslant c_{M}\left(c_{I}+1\right) \sum_{K \in \mathcal{T}_{h, t}}\|U\|_{L^{2}(K)}^{2}=c_{M}\left(c_{I}+1\right)\|U\|_{\Omega_{t}}^{2}
\end{aligned}
$$

Hence, from this relation and Young's inequality we get

$$
\begin{aligned}
\left|b_{h}(U, U, t)\right| & \leqslant c\|U\|_{D G, t}\left(\|U\|_{\Omega_{t}}+\left(\sum_{K \in \mathcal{T}_{h, t}} h_{K}\|U\|_{L^{2}(\partial K)}^{2}\right)^{1 / 2}\right) \\
& \leqslant c_{1}\|U\|_{D G, t}\|U\|_{\Omega_{t}} \leqslant \frac{\beta_{0}}{k_{2}}\|U\|_{D G, t}^{2}+c_{1}^{2} \frac{k_{2}}{\beta_{0}}\|U\|_{\Omega_{t}}^{2}=\frac{\beta_{0}}{k_{2}}\|U\|_{D G, t}^{2}+c_{b}\|U\|_{\Omega_{t}}^{2},
\end{aligned}
$$

where $c_{1}=c\left(1+\sqrt{c_{M}\left(c_{I}+1\right)}\right), k_{2}>0$ and $c_{b}=c_{1}^{2} k_{2} / \beta_{0}$. Integrating over the interval I_{m}, we finally have (5.28).

Theorem 3. There exists a constant $c_{d}>0$ such that for the approximate solution U of problem (2.9)-(2.11) we have the inequality

$$
\begin{equation*}
\int_{I_{m}}\left|d_{h}(U, U, t)\right| \mathrm{d} t \leqslant \frac{\beta_{0}}{2} \int_{I_{m}}\|U\|_{D G, t}^{2} \mathrm{~d} t+\frac{c_{d}}{2 \beta_{0}}\|U\|_{\Omega_{t}}^{2} \mathrm{~d} t . \tag{5.32}
\end{equation*}
$$

Proof. By (3.9), (2.7) and the Cauchy and Young's inequalities,

$$
\begin{aligned}
\int_{I_{m}}\left|d_{h}(U, U, t)\right| \mathrm{d} t & \leqslant c_{z} \int_{I_{m}} \sum_{K \in \mathcal{T}_{h, t}} \int_{K} \sum_{s=1}^{d}|U|\left|\frac{\partial U}{\partial x_{s}}\right| \mathrm{d} x \mathrm{~d} t \\
& \leqslant c_{z} \int_{I_{m}}\|U\|_{\Omega_{t}}|U|_{H^{1}\left(\Omega_{t}, \mathcal{T}_{h, t}\right)} \mathrm{d} t \\
& \leqslant c_{z} \int_{I_{m}}\|U\|_{\Omega_{t}}\|U\|_{D G, t} \mathrm{~d} t \leqslant \frac{\beta_{0}}{2} \int_{I_{m}}\|U\|_{D G, t}^{2} \mathrm{~d} t+\frac{c_{z}^{2}}{2 \beta_{0}}\|U\|_{\Omega_{t}}^{2} \mathrm{~d} t
\end{aligned}
$$

which is (5.32) with $c_{d}=c_{z}^{2}$.

Estimating the right-hand side form:

Theorem 4. For the approximate solution U of problem (2.9)-(2.11) and any $k_{3}>0$ we have

$$
\begin{align*}
\int_{I_{m}}\left|l_{h}(U, t)\right| \mathrm{d} t \leqslant & \frac{1}{2} \int_{I_{m}}\left(\|g\|_{\Omega_{t}}^{2}+\|U\|_{\Omega_{t}}^{2}\right) \mathrm{d} t \tag{5.33}\\
& +\beta_{0} k_{3} \int_{I_{m}}\left\|u_{D}\right\|_{D G B, t}^{2} \mathrm{~d} t+\frac{\beta_{0}}{k_{3}} \int_{I_{m}}\|U\|_{D G, t}^{2} \mathrm{~d} t .
\end{align*}
$$

Proof. It follows from (3.10) that

$$
\left|l_{h}(U, t)\right|=\left|(g, U)_{\Omega_{t}}+\beta_{0} c_{W} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} h(\Gamma)^{-1} \int_{\Gamma} u_{D} U \mathrm{~d} S\right| .
$$

After using the Cauchy inequality for the first term on the right-hand side and applying Young's inequality with $k_{3}>0$ to the second term, we find that

$$
\begin{aligned}
\mid(g, U)_{\Omega_{t}}+ & \beta_{0} c_{W} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} h(\Gamma)^{-1} \int_{\Gamma} u_{D} U \mathrm{~d} S \mid \\
\leqslant & \frac{1}{2}\left(\|g\|_{\Omega_{t}}^{2}+\|U\|_{\Omega_{t}}^{2}\right)+\beta_{0} k_{3} c_{W} \underbrace{\sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} h_{K_{\Gamma}^{(L)}}^{-1} \int_{\Gamma}\left|u_{D}\right|^{2} \mathrm{~d} S}_{=\left\|u_{D}\right\|_{D G B, t}^{2}} \\
& +\frac{\beta_{0}}{k_{3}} \underbrace{c_{W} \sum_{\Gamma \in \mathcal{F}_{h, t}^{B}} h_{K_{\Gamma}^{(L)}}^{-1} \int_{\Gamma}|U|^{2} \mathrm{~d} S}_{\leqslant J_{h}(U, U, t) \leqslant\|U\|_{D G, t}^{2}} .
\end{aligned}
$$

Hence,

$$
\left|l_{h}(U, t)\right| \leqslant \frac{1}{2}\left(\|g\|_{\Omega_{t}}^{2}+\|U\|_{\Omega_{t}}^{2}\right)+\beta_{0} k_{3}\left\|u_{D}\right\|_{D G B, t}^{2}+\frac{\beta_{0}}{k_{3}}\|U\|_{D G, t}^{2},
$$

from which we get (5.33) by integrating both sides over the interval I_{m}.
In what follows, we are concerned with the derivation of inequalities based on estimating the expression $\int_{I_{m}}\left(D_{t} U, U\right)_{\Omega_{t}} \mathrm{~d} t$.

Lemma 1. There exist constants $c_{1}, c_{2}>0$ independent of h, τ, m, M and U such that

$$
\begin{align*}
& \left\|U_{m}^{-}\right\|_{\Omega_{t_{m}}}^{2}-\left\|U_{m-1}^{-}\right\|_{\Omega_{t_{m-1}}}^{2}+\left\|\{U\}_{m-1}\right\|_{\Omega_{t_{m-1}}}^{2}+\frac{\beta_{0}}{2} \int_{I_{m}}\|U\|_{D G, t}^{2} \mathrm{~d} t \tag{5.34}\\
& \quad \leqslant c_{1}\left(\int_{I_{m}}\|g\|_{\Omega_{t}}^{2} \mathrm{~d} t+\int_{I_{m}}\left\|u_{D}\right\|_{D G B, t}^{2} \mathrm{~d} t\right)+c_{2} \int_{I_{m}}\|U\|_{\Omega_{t}}^{2} \mathrm{~d} t
\end{align*}
$$

Moreover, for any $\delta_{1}>0$ we have

$$
\begin{align*}
\left\|U_{m}^{+}\right\|_{\Omega_{t_{m}}}^{2} & +\left\|U_{m-1}^{-}\right\|_{\Omega_{t_{m-1}}}^{2}+\frac{\beta_{0}}{2} \int_{I_{m}}\|U\|_{D G, t}^{2} \mathrm{~d} t \tag{5.35}\\
\leqslant & c_{1}\left(\int_{I_{m}}\|g\|_{\Omega_{t}}^{2} \mathrm{~d} t+\int_{I_{m}}\left\|u_{D}\right\|_{D G B, t}^{2} \mathrm{~d} t\right)+c_{2} \int_{I_{m}}\|U\|_{\Omega_{t}}^{2} \mathrm{~d} t \\
& +\frac{1}{\delta_{1}}\left\|U_{m-1}^{-}\right\|_{\Omega_{t_{m-1}}}^{2}+\delta_{1}\left\|U_{m-1}^{+}\right\|_{\Omega_{t_{m-1}}}^{2}
\end{align*}
$$

Proof. We have

$$
\begin{equation*}
\int_{I_{m}}\left(D_{t} U, U\right)_{\Omega_{t}} \mathrm{~d} t=\sum_{K \in \mathcal{T}_{h, t}} \int_{I_{m}}\left(D_{t} U, U\right)_{K} \mathrm{~d} t \tag{5.36}
\end{equation*}
$$

By virtue of assumption (5.5), the Reynolds transport theorem (see, e.g., [22] or [1]) and relation (2.8), we get

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} & \int_{K} U^{2}(x, t) \mathrm{d} x \\
& =\int_{K}\left(\frac{U^{2}(x, t)}{\partial t}+\boldsymbol{z}(x, t) \cdot \nabla\left(U^{2}(x, t)\right)+U^{2}(x, t) \operatorname{div} \boldsymbol{z}(x, t)\right) \mathrm{d} x \\
& =\int_{K}\left(2 U(x, t)\left(\frac{U(x, t)}{\partial t}+\boldsymbol{z}(x, t) \cdot \nabla U(x, t)\right)+U^{2}(x, t) \operatorname{div} \boldsymbol{z}(x, t)\right) \mathrm{d} x \\
& =2\left(D_{t} U, U\right)_{K}+\left(U^{2}, \operatorname{div} \boldsymbol{z}\right)_{K}
\end{aligned}
$$

Integration over I_{m} and summing over $K \in \mathcal{T}_{h, t}$ together with assumption (2.7) imply that

$$
\begin{align*}
\int_{I_{m}}\left(D_{t} U, U\right)_{\Omega_{t}} \mathrm{~d} t & =\frac{1}{2} \int_{I_{m}}\left(\frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega_{t}} U^{2} \mathrm{~d} x\right) \mathrm{d} t-\frac{1}{2} \int_{I_{m}}\left(U^{2}, \operatorname{div} z\right)_{\Omega_{t}} \mathrm{~d} t \tag{5.37}\\
& =\frac{1}{2}\left\|U_{m}^{-}\right\|_{\Omega_{t_{m}}}^{2}-\frac{1}{2}\left\|U_{m-1}^{+}\right\|_{\Omega_{t_{m-1}}}^{2}-\frac{1}{2} \int_{I_{m}}\left(U^{2}, \operatorname{div} z\right)_{\Omega_{t}} \mathrm{~d} t \\
& \geqslant \frac{1}{2}\left\|U_{m}^{-}\right\|_{\Omega_{t_{m}}}^{2}-\frac{1}{2}\left\|U_{m-1}^{+}\right\|_{\Omega_{t_{m-1}}}^{2}-\frac{1}{2} c_{z} \int_{I_{m}}\|U\|_{\Omega_{t}}^{2} \mathrm{~d} t .
\end{align*}
$$

By a simple manipulation we find that

$$
\left(\{U\}_{m-1}, U_{m-1}^{+}\right)_{\Omega_{t_{m-1}}}=\frac{1}{2}\left(\left\|U_{m-1}^{+}\right\|_{\Omega_{t_{m-1}}}^{2}+\left\|\{U\}_{m-1}\right\|_{\Omega_{t_{m-1}}}^{2}-\left\|U_{m-1}^{-}\right\|_{{\Omega_{t}}}^{2}\right) .
$$

Now we have already estimated all terms in our basic identity (5.8). Using all these estimates above, after some manipulation we get (5.34).

Another useful relation reads

$$
\begin{align*}
& \int_{I_{m}}\left(D_{t} U, U\right)_{\Omega_{t}} \mathrm{~d} t+\left(\{U\}_{m-1}, U_{m-1}^{+}\right)_{\Omega_{t_{m-1}}} \tag{5.38}\\
& =\frac{1}{2}\left\|U_{m}^{-}\right\|_{\Omega_{t_{m}}}^{2}-\frac{1}{2}\left\|U_{m-1}^{+}\right\|_{\Omega_{t_{m-1}}}^{2}-\frac{1}{2} \int_{I_{m}}\left(U^{2}, \operatorname{div} z\right)_{\Omega_{t}} \mathrm{~d} t \\
& \quad+\left\|U_{m-1}^{+}\right\|_{\Omega_{t_{m-1}}}^{2}-\left(U_{m-1}^{-}, U_{m-1}^{+}\right)_{\Omega_{t_{m-1}}} \\
& \geqslant \frac{1}{2}\left(\left\|U_{m}^{-}\right\|_{\Omega_{t_{m}}}^{2}+\frac{1}{2}\left\|U_{m-1}^{+}\right\|_{\Omega_{t_{m-1}}}^{2}\right)-\left(U_{m-1}^{-}, U_{m-1}^{+}\right)_{\Omega_{t_{m-1}}}-\frac{1}{2} c_{z} \int_{I_{m}}\|U\|_{\Omega_{t}}^{2} \mathrm{~d} t .
\end{align*}
$$

Then, analogously as above, using (5.38) and Young's inequality for the expression $\left(U_{m-1}^{-}, U_{m-1}^{+}\right)_{\Omega_{t_{m-1}}}$, we get estimate (5.35).

As we see, it is necessary to estimate the term $\int_{I_{m}}\|U\|_{\Omega_{t}}^{2} \mathrm{~d} t$. We start with proving some useful inequalities. As was mentioned above, we consider the case $q=1$.

Lemma 2. There exist constants L_{1} and M_{1} such that

$$
\begin{gather*}
\left\|U_{m-1}^{+}\right\|_{\Omega_{t_{m-1}}}^{2}+\left\|U_{m}^{-}\right\|_{\Omega_{t_{m}}}^{2} \geqslant \frac{L_{1}}{\tau_{m}} \int_{I_{m}}\|U\|_{\Omega_{t}}^{2} \mathrm{~d} t \tag{5.39}\\
\left\|U_{m-1}^{+}\right\|_{\Omega_{t_{m-1}}}^{2} \leqslant \frac{M_{1}}{\tau_{m}} \int_{I_{m}}\|U\|_{\Omega_{t}}^{2} \mathrm{~d} t \tag{5.40}
\end{gather*}
$$

Proof. Let $\phi \in P^{1}(0,1)$ be a polynomial depending on $\vartheta \in(0,1)$ of degree at most one. Since the expressions

$$
\left(\sum_{l=0}^{1} \phi^{2}(l)\right)^{1 / 2}, \quad\left(\int_{0}^{1} \phi^{2} \mathrm{~d} \phi\right)^{1 / 2}
$$

are equivalent norms in the finite dimensional space $P^{1}(0,1)$, there exist constants $\widetilde{L}_{1}, \widetilde{M}_{1}>0$ such that

$$
\widetilde{L}_{1} \int_{0}^{1} \phi^{2} \mathrm{~d} \vartheta \leqslant \sum_{l=0}^{1} \phi^{2}(l) \leqslant \widetilde{M}_{1} \int_{0}^{1} \phi^{2} \mathrm{~d} \vartheta
$$

Putting $\vartheta=\left(t-t_{m-1}\right) / \tau_{m}$ for $t \in I_{m}$ and using the substitution theorem, we find that

$$
\begin{gather*}
p^{2}\left(t_{m-1}\right)+p^{2}\left(t_{m}\right) \geqslant \frac{\widetilde{L}_{1}}{\tau_{m}} \int_{I_{m}} p^{2} \mathrm{~d} t \tag{5.41}\\
p^{2}\left(t_{m-1}\right) \leqslant \frac{\widetilde{M}_{1}}{\tau_{m}} \int_{I_{m}} p^{2} \mathrm{~d} t \tag{5.42}
\end{gather*}
$$

for all $p \in P^{1}\left(I_{m}\right)$. We set

$$
\begin{aligned}
\widetilde{U}_{m-1} & :=U_{m-1}^{+} \circ \mathcal{A}_{t_{m-1}}: \Omega_{0} \rightarrow \mathbb{R} \\
\widetilde{U}_{m} & :=U_{m}^{-} \circ \mathcal{A}_{t_{m}}: \Omega_{0} \rightarrow \mathbb{R} \\
\widetilde{U}(t) & :=U(t) \circ \mathcal{A}_{t}: \Omega_{0} \rightarrow \mathbb{R}
\end{aligned}
$$

Then $\widetilde{U}_{m-1}=\widetilde{U}\left(t_{m-1}\right), \widetilde{U}_{m}=\widetilde{U}\left(t_{m}\right)$ and $\widetilde{U}(X, \cdot) \in P^{1}\left(I_{m}\right)$ for $X \in \Omega_{0}$.
For all $X \in \Omega_{0}$, using (5.41), we get

$$
\begin{equation*}
\left|\widetilde{U}\left(X, t_{m-1}\right)\right|^{2}+\left|\widetilde{U}\left(X, t_{m}\right)\right|^{2} \geqslant \frac{\widetilde{L}_{1}}{\tau_{m}} \int_{I_{m}}|\widetilde{U}(X, t)|^{2} \mathrm{~d} t \tag{5.43}
\end{equation*}
$$

Let us use the notation

$$
J(X, t)=\operatorname{det} \frac{D \mathcal{A}_{t}(X)}{D X}
$$

for the Jacobian determinant of the mapping \mathcal{A}_{t}. Then, by virtue of the regularity of the mapping \mathcal{A}_{t}, we have

$$
\begin{equation*}
0<C_{J}^{-} \leqslant|J(X, t)| \leqslant C_{J}^{+} \quad \forall X \in \Omega_{0}, t \in \bar{I}_{m}, m=1, \ldots, M \tag{5.44}
\end{equation*}
$$

where C_{J}^{-}, C_{J}^{+}are constants independent of X, t, and m.
Now, using (5.43) and (5.44), we get

$$
\begin{aligned}
&\left|\widetilde{U}\left(X, t_{m-1}\right)\right|^{2}\left|J\left(X, t_{m-1}\right)\right|+\left|\widetilde{U}\left(X, t_{m}\right)\right|^{2}\left|J\left(X, t_{m}\right)\right| \\
& \geqslant C_{J}^{-}\left(\left|\widetilde{U}\left(X, t_{m-1}\right)\right|^{2}+\left|\widetilde{U}\left(X, t_{m}\right)\right|^{2}\right) \\
& \geqslant C_{J}^{-} \frac{\widetilde{L_{1}}}{\tau_{m}} \int_{I_{m}}|\widetilde{U}(X, t)|^{2} \mathrm{~d} t \\
& \geqslant \frac{C_{J}^{-}}{C_{J}^{+}} \frac{\widetilde{L_{1}}}{\tau_{m}} \int_{I_{m}}|\widetilde{U}(X, t)|^{2}|J(X, t)| \mathrm{d} t
\end{aligned}
$$

Integrating over the domain Ω_{0}, setting $L_{1}=\widetilde{L}_{1} \frac{C_{J}^{-}}{C_{J}^{-}}$and using the Fubini theorem, we find that

$$
\begin{aligned}
\int_{\Omega_{0}} & \left(\left|\widetilde{U}\left(X, t_{m-1}\right)\right|^{2}\left|J\left(X, t_{m-1}\right)\right|+\left|\widetilde{U}\left(X, t_{m}\right)\right|^{2}\left|J\left(X, t_{m}\right)\right|\right) \mathrm{d} X \\
& \geqslant \frac{L_{1}}{\tau_{m}} \int_{\Omega_{0}}\left(\int_{I_{m}}|\widetilde{U}(X, t)|^{2}|J(X, t)| \mathrm{d} t\right) \mathrm{d} X \\
& =\frac{L_{1}}{\tau_{m}} \int_{I_{m}}\left(\int_{\Omega_{0}}|\widetilde{U}(X, t)|^{2}|J(X, t)| \mathrm{d} X\right) \mathrm{d} t
\end{aligned}
$$

Finally, the substitution theorem gives

$$
\int_{\Omega_{t_{m-1}}}\left|U\left(x, t_{m-1}^{+}\right)\right|^{2} \mathrm{~d} x+\int_{\Omega_{t_{m}}}\left|U\left(x, t_{m}^{-}\right)\right|^{2} \mathrm{~d} x \geqslant \frac{L_{1}}{\tau_{m}} \int_{I_{m}}\left(\int_{\Omega_{t}}|U(x, t)|^{2} \mathrm{~d} x\right) \mathrm{d} t
$$

which is (5.39). Inequality (5.40) can be proved analogously with the aid of (5.42).

Now we can prove the theorem about estimation of the term $\int_{I_{m}}\|U\|_{\Omega_{t}}^{2} \mathrm{~d} t$.
Theorem 5. Under the assumption $q=1$ there exists a constant c^{*} (depending on c_{2} and L_{1}) such that

$$
\begin{equation*}
\int_{I_{m}}\|U\|_{\Omega_{t}}^{2} \mathrm{~d} t \leqslant \frac{2 c_{1}}{L_{1}} \tau_{m} \int_{I_{m}}\left(\|g\|_{\Omega_{t}}^{2}+\left\|u_{D}\right\|_{D G B, t}^{2}\right) \mathrm{d} t+\frac{8 M_{1}}{L_{1}^{2}} \tau_{m}\left\|U_{m-1}^{-}\right\|_{\Omega_{t_{m-1}}}^{2} \tag{5.45}
\end{equation*}
$$

holds, if

$$
\begin{equation*}
0<\tau_{m} \leqslant c^{*} \tag{5.46}
\end{equation*}
$$

Here c_{1} and c_{2} are the constants from Lemma 1.
Proof. From (5.35), (5.39), and (5.40) we get

$$
\begin{align*}
& \left(\frac{L_{1}}{\tau_{m}}-c_{2}\right) \int_{I_{m}}\|U\|_{\Omega_{t}}^{2} \mathrm{~d} t+\frac{\beta_{0}}{2} \int_{I_{m}}\|U\|_{D G, t}^{2} \mathrm{~d} t \tag{5.47}\\
& \leqslant c_{1} \int_{I_{m}}\left(\|g\|_{\Omega_{t}}^{2}+\left\|u_{D}\right\|_{D G B, t}^{2}\right) \mathrm{d} t+\frac{1}{\delta_{1}}\left\|U_{m-1}^{-}\right\|_{\Omega_{t_{m-1}}}^{2}+\delta_{1} \frac{M_{1}}{\tau_{m}} \int_{I_{m}}\|U\|_{\Omega_{t}}^{2} \mathrm{~d} t
\end{align*}
$$

which can be written in the form

$$
\begin{align*}
& \left(L_{1}-\delta_{1} M_{1}-c_{2} \tau_{m}\right) \int_{I_{m}}\|U\|_{\Omega_{t}}^{2} \mathrm{~d} t+\frac{\beta_{0}}{2} \int_{I_{m}}\|U\|_{D G, t}^{2} \mathrm{~d} t \tag{5.48}\\
& \quad \leqslant c_{1} \tau_{m} \int_{I_{m}}\left(\|g\|_{\Omega_{t}}^{2}+\left\|u_{D}\right\|_{D G B, t}^{2}\right) \mathrm{d} t+\frac{\tau_{m}}{\delta_{1}}\left\|U_{m-1}^{-}\right\|_{\Omega_{t_{m-1}}}^{2}
\end{align*}
$$

Let $L_{1}-\delta_{1} M_{1}=\frac{3}{4} L_{1}$ and $c_{2} \tau_{m} \leqslant \frac{1}{4} L_{1}$. If we set $\delta_{1}=L_{1} / 4 M_{1}$ and assume that

$$
0<\tau_{m} \leqslant c^{*}:=\frac{L_{1}}{4 c_{2}}
$$

using (5.48) we find that

$$
\begin{aligned}
& \frac{L_{1}}{2} \int_{I_{m}}\|U\|_{\Omega_{t}}^{2} \mathrm{~d} t+\frac{\beta_{0}}{2} \int_{I_{m}}\|U\|_{D G, t}^{2} \mathrm{~d} t \\
& \quad \leqslant c_{1} \tau_{m} \int_{I_{m}}\left(\|g\|_{\Omega_{t}}^{2}+\left\|u_{D}\right\|_{D G B, t}^{2}\right) \mathrm{d} t+\frac{4 M_{1}}{L_{1}} \tau_{m}\left\|U_{m-1}^{-}\right\|_{\Omega_{t_{m-1}}}^{2}
\end{aligned}
$$

from which we immediately get (5.45).
To prove our main theorem on the stability, we shall apply the discrete Gronwall lemma.

Lemma 3 (Discrete Gronwall lemma). Let x_{m}, a_{m}, b_{m} and c_{m}, where $m=$ $1,2, \ldots$, be non-negative sequences and let the sequence a_{m} be non-decreasing. If

$$
\begin{gathered}
x_{0}+c_{0} \leqslant a_{0} \\
x_{m}+c_{m} \leqslant a_{m}+\sum_{j=0}^{m-1} b_{j} x_{j} \quad \text { for } m \geqslant 1,
\end{gathered}
$$

then we have

$$
x_{m}+c_{m} \leqslant a_{m} \prod_{j=0}^{m-1}\left(1+b_{j}\right) \quad \text { for } m \geqslant 0
$$

The proof can be carried out by induction.
Finally, we come to our main result on the unconditional stability of the STDGM.
Theorem 6. Let $q=1$ and $0<\tau_{m} \leqslant c^{*}$. Then there exists a constant $c>0$ such that

$$
\begin{align*}
& \left\|U_{m}^{-}\right\|_{\Omega_{t_{m}}}^{2}+\sum_{j=1}^{m}\left\|\left\{U_{j-1}\right\}\right\|_{\Omega_{t_{j-1}}}^{2}+\frac{\beta_{0}}{2} \sum_{j=1}^{m} \int_{I_{j}}\|U\|_{D G, j}^{2} \mathrm{~d} t \tag{5.49}\\
& \quad \leqslant c\left(\left\|U_{0}^{-}\right\|_{\Omega_{t_{0}}}^{2}+\sum_{j=1}^{m} \int_{I_{j}} R_{j} \mathrm{~d} t\right), \quad m=1, \ldots, M, h \in\left(0, h_{0}\right)
\end{align*}
$$

where

$$
R_{j}=c_{1}\left(1+\frac{2 c_{2}}{L_{1}} \tau_{j}\right)\left(\|g\|_{\Omega_{t}}^{2}+\left\|u_{D}\right\|_{D G B, t}^{2}\right)
$$

Proof. Writing j instead of m in (5.34) and using (5.45), we obtain

$$
\begin{align*}
& \left\|U_{j}^{-}\right\|_{\Omega_{t_{j}}}^{2}-\left\|U_{j-1}^{-}\right\|_{\Omega_{t_{j-1}}}^{2}+\left\|\{U\}_{j-1}\right\|_{\Omega_{t_{j-1}}}^{2}+\frac{\beta_{0}}{2} \int_{I_{j}}\|U\|_{D G, j}^{2} \mathrm{~d} t \tag{5.50}\\
& \quad \leqslant c_{1}\left(1+\frac{2 c_{2}}{L_{1}} \tau_{m}\right) \int_{I_{j}}\left(\|g\|_{\Omega_{t}}^{2}+\left\|u_{D}\right\|_{D G B, t}^{2}\right) \mathrm{d} t+c_{2} \frac{8 M_{1}}{L_{1}^{2}} \tau_{j}\left\|U_{j-1}^{-}\right\|_{\Omega_{t_{j-1}}}^{2} \\
& \quad=\int_{I_{j}} R_{j} \mathrm{~d} t+c_{2} \frac{8 M_{1}}{L_{1}^{2}} \tau_{j}\left\|U_{j-1}^{-}\right\|_{\Omega_{t_{j-1}}}^{2}
\end{align*}
$$

Let $m \geqslant 1$. Summing (5.50) over all $j=1, \ldots, m$, we get

$$
\begin{aligned}
\left\|U_{m}^{-}\right\|^{2}+ & \sum_{j=1}^{m}\left\|\{U\}_{j-1}\right\|_{\Omega_{t_{j-1}}}^{2}+\frac{\beta_{0}}{2} \sum_{j=1}^{m} \int_{I_{j}}\|U\|_{D G, j}^{2} \mathrm{~d} t \\
& \leqslant\left\|U_{0}^{-}\right\|_{\Omega_{0}}^{2}+c_{2} \frac{8 M_{1}}{L_{1}^{2}} \sum_{j=0}^{m-1} \tau_{j+1}\left\|U_{j}^{-}\right\|_{\Omega_{t_{j}}}^{2}+\sum_{j=1}^{m} \int_{I_{j}} R_{j} \mathrm{~d} t
\end{aligned}
$$

Using the discrete Gronwall inequality setting

$$
\begin{aligned}
x_{0} & =a_{0}=\left\|U_{0}^{-}\right\|_{\Omega_{t_{0}}}^{2}, \quad c_{0}=0 \\
x_{m} & =\left\|U_{m}^{-}\right\|_{\Omega_{t_{m}}}^{2}, \\
c_{m} & =\sum_{j=1}^{m}\left\|\left\{U_{j-1}\right\}\right\|_{\Omega_{t_{j-1}}}^{2}+\frac{\beta_{0}}{2} \sum_{j=1}^{m} \int_{I_{j}}\|U\|_{D G, j}^{2} \mathrm{~d} t \\
a_{m} & =\left\|U_{0}^{-}\right\|_{\Omega_{t_{0}}}^{2}+\sum_{j=1}^{m} \int_{I_{m}} R_{j} \mathrm{~d} t, \\
b_{j} & =c_{2} \frac{8 M_{1}}{L_{1}^{2}} \tau_{j+1}, \quad j=0,1, \ldots, m,
\end{aligned}
$$

yields

$$
\begin{align*}
& \left\|U_{m}^{-}\right\|^{2}+\sum_{j=1}^{m}\left\|\left\{U_{j-1}\right\}\right\|_{\Omega_{t_{j-1}}}^{2}+\frac{\beta_{0}}{2} \sum_{j=1}^{m} \int_{I_{j}}\|U\|_{D G, j}^{2} \mathrm{~d} t \tag{5.51}\\
& \quad \leqslant\left(\left\|U_{0}^{-}\right\|^{2}+\sum_{j=1}^{m} \int_{I_{j}} R_{j} \mathrm{~d} t\right) \prod_{j=0}^{m-1}\left(1+c_{2} \frac{8 M_{1}}{L_{1}^{2}} \tau_{j+1}\right) .
\end{align*}
$$

Finally, (5.51) and the inequality $1+\sigma<\exp (\sigma)$ valid for any $\sigma>0$ immediately yield (5.49) with the constant $c:=\exp \left(c_{2} \cdot 8 M_{1} L_{1}^{-2} T\right)$.

6. Conclusion

The subject of the paper is the stability analysis of the space-time discontinuous Galerkin method for the numerical solution of an initial-boundary value problem in a time-dependent domain. A parabolic equation with nonlinear convection and diffusion, equipped with initial and Dirichlet boundary conditions, is formulated by the ALE method. The space discretization is carried out by the SIPG, IIPG, and NIPG versions of the discontinuous Galerkin method using piecewise polynomial approximations of degree $p \geqslant 1$. In time the discontinuous Galerkin piecewise linear discretization is used. The main result is the proof of unconditional stability of the method.

The subject of a further research will be the stability analysis for higher-order time discontinuous Galerkin discretization and the derivation of error estimates.

References

[1] G. Akrivis, C. Makridakis: Galerkin time-stepping methods for nonlinear parabolic equations. M2AN, Math. Model. Numer. Anal. 38 (2004), 261-289.
[2] D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002), 1749-1779.
[3] I. Babus̆ka, C. E. Baumann, J. T. Oden: A discontinuous $h p$ finite element method for diffusion problems: 1-D analysis. Comput. Math. Appl. 37 (1999), 103-122.
[4] M. Balázsová, M. Feistauer, M. Hadrava, A. Kosik: On the stability of the space-time discontinuous Galerkin method for the numerical solution of nonstationary nonlinear convection-diffusion problems. To appear in J. Numer. Math.
[5] F. Bassi, S. Rebay: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131 (1997), 267-279.
[6] C.E. Baumann, J. T. Oden: A discontinuous $h p$ finite element method for the Euler and Navier-Stokes equations. Int. J. Numer. Methods Fluids 31 (1999), 79-95.
[7] D. Boffi, L. Gastaldi, L. Heltai: Numerical stability of the finite element immersed boundary method. Math. Models Methods Appl. Sci. 17 (2007), 1479-1505.
[8] A. Bonito, I. Kyza, R. H. Nochetto: Time-discrete higher-order ALE formulations: stability. SIAM J. Numer. Anal. 51 (2013), 577-604.
[9] F. Brezzi, G. Manzini, D. Marini, P. Pietra, A. Russo: Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differ. Equations 16 (2000), 365-378.
[10] J. Česenek, M. Feistauer: Theory of the space-time discontinuous Galerkin method for nonstationary parabolic problems with nonlinear convection and diffusion. SIAM J. Numer. Anal. 50 (2012), 1181-1206.
[11] J. Česenek, M. Feistauer, J. Horáček, V. Kučera, J. Prokopová: Simulation of compressible viscous flow in time-dependent domains. Appl. Math. Comput. 219 (2013), 7139-7150.
[12] J. Česenek, M. Feistauer, A. Kosik: DGFEM for the analysis of airfoil vibrations induced by compressible flow. ZAMM, Z. Angew. Math. Mech. 93 (2013), 387-402.
[13] K. Chrysafinos, N. J. Walkington: Error estimates for the discontinuous Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 44 (2006), 349-366.
[14] B. Cockburn, C.-W. Shu: Runge-Kutta discontinuous Galerkin methods for convec-tion-dominated problems. J. Sci. Comput. 16 (2001), 173-261.
[15] V. Dolejš̌: On the discontinuous Galerkin method for the numerical solution of the Navier-Stokes equations. Int. J. Numer. Methods Fluids 45 (2004), 1083-1106.
[16] V. Dolejš̌́, M. Feistauer: Discontinuous Galerkin Method-Analysis and Applications to Compressible Flow. Springer, Heidelberg, 2015.
[17] V. Dolejš̌́, M. Feistauer, J. Hozman: Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming meshes. Comput. Methods Appl. Mech. Eng. 196 (2007), 2813-2827.
[18] J. Donea, S. Giuliani, J. P. Halleux: An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33 (1982), 689-723.
[19] K. Eriksson, D. Estep, P. Hansbo, C. Johnson: Computational differential equations. Cambridge Univ. Press, Cambridge, 1996.
[20] K. Eriksson, C. Johnson: Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991), 43-77.
[21] D. Estep, S. Larsson: The discontinuous Galerkin method for semilinear parabolic problems. RAIRO, Modélisation Math. Anal. Numér. 27 (1993), 35-54.
[22] M. Feistauer, J. Felcman, I. Straškraba: Mathematical and Computational Methods for Compressible Flow. Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2003.
[23] M. Feistauer, J. Hájek, K. Švadlenka: Space-time discontinuous Galerkin method for solving nonstationary convection-diffusion-reaction problems. Appl. Math., Praha 52 (2007), 197-233.
[24] M. Feistauer, J. Hasnedlová-Prokopová, J. Horáček, A. Kosík, V. Kučera: DGFEM for dynamical systems describing interaction of compressible fluid and structures. J. Comput. Appl. Math. 254 (2013), 17-30.
[25] M. Feistauer, J. Horáčě, V. Kučera, J. Prokopová: On numerical solution of compressible flow in time-dependent domains. Math. Bohem. 137 (2012), 1-16.
[26] M. Feistauer, V. Kučera, K. Najzar, J. Prokopová: Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems. Numer. Math. 117 (2011), 251-288.
[27] M. Feistauer, V. Kučera, J. Prokopová: Discontinuous Galerkin solution of compressible flow in time-dependent domains. Math. Comput. Simul. 80 (2010), 1612-1623.
[28] L. Formaggia, F. Nobile: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7 (1999), 105-131.
[29] L. Gastaldi: A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 9 (2001), 123-156.
[30] J. Hasnedlová, M. Feistauer, J. Horáček, A. Kosik, V. Kučera: Numerical simulation of fluid-structure interaction of compressible flow and elastic structure. Computing 95 (2013), S343-S361.
[31] O. Havle, V. Dolejš̌́, M. Feistauer: Discontinuous Galerkin method for nonlinear con-vection-diffusion problems with mixed Dirichlet-Neumann boundary conditions. Appl. Math., Praha 55 (2010), 353-372.
[32] P. Houston, C.Schwab, E. Süli: Discontinuous $h p$-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002), 2133-2163.
[33] K. Khadra, P. Angot, S. Parneix, J.-P. Caltagirone: Fictiuous domain approach for numerical modelling of Navier-Stokes equations. Int. J. Numer. Methods Fluids 34 (2000), 651-684.
[34] J. T. Oden, I. Babuška, C. E. Baumann: A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146 (1998), 491-519.
[35] D. Schötzau: hp-DGFEM for Parabolic Evolution Problems. Applications to Diffusion and Viscous Incompressible Fluid Flow. PhD Thesis, ETH No. 13041, Zürich, 1999.
[36] D. Schötzau, C. Schwab: An $h p$ a priori error analysis of the DG time-stepping method for initial value problems. Calcolo 37 (2000), 207-232.
[37] V. Thomée: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics 25, Springer, Berlin, 2006.

Authors' address: Monika Balázsová, Miloslav Feistauer, Faculty of Mathematics and Physics, Charles University in Prague, Sokolovská 83, 18675 Praha 8, Czech Republic, e-mail: balazsova@karlin.mff.cuni.cz, feist@karlin.mff.cuni.cz.

