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Abstract. The paper presents a careful analysis of the Cantor-Zassenhaus polynomial fac-
torization algorithm, thus obtaining tight bounds on the performances, and proposing useful
improvements. In particular, a new simplified version of this algorithm is described, which
entails a lower computational cost. The key point is to use linear test polynomials, which
not only reduce the computational burden, but can also provide good estimates and deter-
ministic bounds of the number of operations needed for factoring. Specifically, the number
of attempts needed to factor a given polynomial, and the least degree of a polynomial such
that a factor is found with at most a fixed number of attempts, are computed. Interestingly,
the results obtained demonstrate the existence of some sort of duality relationship between
these two problems.
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1. Introduction

The Cantor-Zassenhaus polynomial factorization algorithm [5] is an efficient (poly-

nomial-time) probabilistic algorithm for factoring polynomials over a finite field Fpm

which are the product of irreducible polynomials with common degree s and multi-

plicity one. When the multiplicity is above 1, the factors can be separated by comput-

ing the greatest common divisor of the given polynomial and its formal derivative.

If the irreducible polynomials have different degrees, the factors are separated by

computing the greatest common divisors with polynomials of the form xp
mr−1 − 1,

starting from r = 1, so as to obtain the product of all irreducible factors of degree

The research was supported in part by the Swiss National Science Foundation under
grants No. 126948 and 132256.
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r = 1, 2, . . . (see e.g. [1]). Thus standard methods can be used to reduce the problem

to the above case.

First, we will introduce the Cantor-Zassenhaus factorization algorithm, providing

a non-standard description that will be the basis for the rest of the paper. In Section 2

we will discuss a more agile version of the algorithm, with more favorable estimates

of its complexity and success rate. Further, the new description leads us to consider

a deterministic version of the algorithm, so that in Section 3 we will deal with the

problem of establishing how many attempts are needed in the worst case to obtain

a factor. Lastly, in Section 4, we will consider a kind of dual problem, namely, what

is the least degree of a polynomial such that a factor is found with at most a fixed

number of attempts.

1.1. Preliminaries and notation. Let f(z) be a polynomial of degree t over

Fpm which is the product of irreducible polynomials of degree s. We take first the

case s = 1, and suppose that the trivial factor z does not divide f(z). We first deal

with the case p = 2, and following [5] we assume that m is even, otherwise we would

consider a quadratic extension solely for the computations. If α is a known primitive

element of F2m , we define lm = (2m − 1)/3 and ̺ = αlm , which is thus a primitive

cubic root of unity in the field F2m .

Let c(z) be a non-constant polynomial over F2m of degree less than t, and let

a(z) = c(z)lm mod f(z),

which is again a polynomial of degree at most t− 1. Furthermore, we have

(c(z)lm + 1)(c(z)lm + ̺)(c(z)lm + ̺2) = c(z)2
m−1 − 1.

Now, either gcd(c(z), f(z)) is nontrivial (and thus we already have a factor of f(z))

or else c(z)2
m−1 − 1 = 0 mod f(z). In this latter case, if we write c(z)2

m−1 − 1 =

u(z)f(z) + r(z) and specialize it into the roots {zi} of f(z), we see that r(z), which
is a polynomial of degree t− 1, takes the value 0 for all t roots, as b2

m−1 − 1 = 0 for

any b ∈ F
∗
2m . This implies that r(z) is identically 0. Thus we can write

(c(z)lm +1)(c(z)lm + ̺)(c(z)lm + ̺2) = (a(z)+ 1)(a(z)+ ̺)(a(z)+ ̺2) = 0 mod f(z).

Since every factor of the product (a(z)+1)(a(z)+̺)(a(z)+̺2) has degree less than t,

at least two of them must have a common nontrivial factor with f(z), unless a(z) = 1,

̺, ̺2. In this latter case, the Cantor-Zassenhaus algorithm considers another random

polynomial instead of c(z), and reiterates the procedure until all factors have been

found.
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Notice that a(z) ≡ 0 never occurs, since c(z) has degree less than f(z), so that at

least one root of f(z), say b, is not a root of c(z); then substituting b in the identity

c(z)lm = v(z)f(z) + a(z), we get a(b) 6= 0, therefore a(z) is not identically zero (this

holds even if the roots of f were not in the field of the coefficients, as in the original

description of the algorithm).

For the case p > 2, the procedure is similar: we consider lm = (pm − 1)/2 and

̺ = αlm = −1, where α is a primitive element of Fpm . Here we compute a(z) =

c(z)lm mod f(z) and then factor as soon as a(z) 6= ±1.

Let us now consider the case s > 1. One option is to look at Fpsm , where the

polynomial fully splits into linear factors: once a factor z − b is found, it can be

multiplied by the factors z− bp
mi

, with 1 6 i 6 s− 1, to obtain an irreducible factor

of degree s. A second option is to apply the algorithms over Fpm ([2], [5]), to directly

find the irreducible factors of degree s over Fpm . If p = 2, the argument follows as

above: either gcd(c(z), f(z)) is nontrivial, or gcd(c(z), f(z)) = 1, in which case

(c(z)lsm+1)(c(z)lsm+̺)(c(z)lsm+̺2) = (a(z)+1)(a(z)+̺)(a(z)+̺2) = 0 mod f(z).

Since every factor of the product (a(z) + 1)(a(z) + ̺)(a(z) + ̺2) has degree less

than t, at least two of them must have a common nontrivial factor with f(z) in F2m ,

unless a(z) = 1, ̺, ̺2. In this latter case, the Cantor-Zassenhaus algorithm considers

another random polynomial c(z), and reiterates the procedure until all factors have

been found.

For the case p > 2, the procedure is similar: we consider lsm = (psm − 1)/2 and

compute a(z) = c(z)lsm mod f(z) and then factor as soon as a(z) 6= ±1.

In the next section we will present a variant of the Cantor-Zassenhaus algorithm,

according to the description given above, and then deal with probabilistic as well as

deterministic considerations about its success rate.

2. Variations of the algorithm

We focus first on the case s = 1 and show that it is enough, and indeed convenient,

to choose c(z) = z as the initial test polynomial, and to choose c(z) = z+b, for some

random b 6= 0, as a further test polynomial, and to continue by choosing random b’s

different from the previous ones until a factor is found.

We then consider the case s > 1, where polynomials of degree 1 or s will be

involved as test polynomials in order to obtain bounds on the number of attempts

to find a factor.

More deterministic aspects of the algorithm will be postponed to Sections 3 and 4.
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We notice that a similar approach was already presented in [2], [11], but only for the

case of odd characteristic and factors of degree 1; also, the analysis was of a different

type, with focus on the expected number of operations used by the algorithm.

2.1. Case s = 1. Suppose f(z) is over F2m and z
lm = ̺i mod f(z), i ∈ {0, 1, 2}.

Now, any element in F∗
2m can be written as α

k+3n, with k ∈ {0, 1, 2}: we define A0 =

{α3i : i = 0, . . . , lm − 1}, that is the subgroup of the elements of F∗
2m that are cubic

powers, and let A1 = αA0 and A2 = α2A0 be the two cosets that complete the coset

partition of F∗
2m . If we substitute α

k+3n for any root zi of f(z) in z
lm−̺i = Q(z)f(z),

we obtain ̺k − ̺i = 0, which implies k = i. This means that if zlm = ̺i mod f(z),

then all the roots of f(z) are of the form αi+3n, that is they belong to the same

coset. When this situation occurs, we consider another test polynomial c(z) = z+ b,

which is equivalent to testing c(z) = z for the polynomial ς(z) whose set of roots is

{zi + b}. The test succeeds as soon as we find a b such that the roots zi + b do not

all belong to the same coset.

The next step is to determine an upper bound to the number of attempts needed

in the worst case scenario, or on average, until a factor is found.

Let us first consider the simple case t = 2: suppose that z1 and z2 belong to the

same coset; then we look for a b such that z1 + b and z2 + b are in different cosets.

For the worst case scenario, we need to know how many pairs (z1 + b, z2 + b) have

both elements in the same coset. This is equivalent to knowing the number of ways

in which z1 − z2 = z1 + b− (z2 + b) can be written as the sum of two elements in the

same coset. This number is actually (2m − 1)/3 − 1, as can be deduced from [18],

Theorem 1, specialized with i = 0 and χ the cubic character. So at most with

(2m − 1)/3 attempts we can factor a polynomial of degree 2. Clearly, at each test we

can factor with a probability of 2/3, so that the expected number of attempts is 1.5.

If f(z) is a polynomial over Fpm , p > 2, then the maximum number of attempts is

(pm − 1)/2, by similar reasoning: we again use some additive properties of residues

([9], [10], [12], [18]). At each test we can factor with a probability of 1/2, so that the

expected number of attempts is 2.

The remainder of this paper will be devoted to establishing both the probabilistic

estimates and the deterministic bounds on the number of attempts needed to suc-

cessfully factor, for a generic t. A first deterministic, though very loose, bound is the

following:

Proposition 2.1. Let s = 1. The maximum number of attempts needed to find

a factor is upper bounded by lm (that is (2
m − 1)/3 or (pm − 1)/2 for p = 2 or p

odd, respectively). In particular, in the Cantor-Zassenhaus algorithm it is sufficient

to consider only linear polynomials as test polynomials c(z).
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P r o o f. In characteristic 2, if a root zi belongs to a given known coset, we can

test all the lm elements of that coset, until we obtain zi itself: zi + zi adds to 0,

which does not belong to any coset. Thus we will succeed with at most lm attempts.

In characteristic p greater than 2, it is sufficient to add all the elements of the coset

multiplied by p− 1.

That it is enough to consider all the pm monic linear polynomials is anyway clear,

since computing gcd{z − b, f(z)} for all b in Fpm would be enough to find all the

factors. �

R em a r k 2.1. The above argument implies that, if the first attempt fails, we

know which coset the roots belong to, and can restrict our choice of b to that coset.

R em a r k 2.2. Alternatively, the upper bounds of the proposition follow from the

above remarks about t = 2: clearly, if t is greater than 2, then a degree-2 polynomial

is anyway a factor of the t-degree polynomial, so that the maximum number of

attempts cannot exceed the number needed to factor this degree-2 polynomial.

R em a r k 2.3. In the original version of the Cantor-Zassenhaus algorithm,

gcd(a(z), f(z)) is computed when searching for a factor of f(z), corresponding to

the case when gcd(c(z), f(z)) is nontrivial. Our version of the algorithm avoids this

computation, since it is sufficient to evaluate f(z) in b with any efficient polynomial

evaluation algorithm; this can be done before elevating to the power lm.

R em a r k 2.4. If q is a prime factor of pm−1, then we may consider the exponent

lm = (pm − 1)/q: in this case the probability of success is (q − 1)/q and the corre-

sponding expected number of attempts is q/(q − 1), which is close to 1 already for

small primes like 5 or 7; the drawback is that, if q is large, in the worst case we must

check q greatest common divisors, namely gcd(a(z) + ζjq , f(z)), for 0 6 j 6 q − 1,

where ζq is the q-th primitive root of unity.

R em a r k 2.5. It is interesting to assess the probability of factoring with the

above method. Given that the set of {zi+ b} for some b is made up of elements each
belonging to a given coset Ai with probability 1/3 (or 1/2 in the case p > 2), the

probability that they all belong to a common coset of the three is 3 ·1/3t (and 2 ·1/2t
in case of the two cosets in F∗

pm , p > 2). Therefore the expected number of attempts

to obtain a factor is 1/(1− 1/3t−1) = 1 + 1/(3t−1 − 1) or 1 + 1/(2t−1 − 1) and so

decreases exponentially with the degree of the polynomial, so that the probability of

factoring with one test is close to 1 when the degree is large enough. Clearly, once

a factor is found, the polynomial splits into two parts, to which we can re-apply the

previous computation if we are interested in a complete factorization, until all linear

factors are obtained.
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2.2. Case s > 1. If s > 1, either we look for linear factors in Fpms , and the analysis

is the same as in the case s = 1, or we choose the direct method, as explained in the

previous section. In this latter case, by a similar argument as above, the algorithm

succeeds as soon as c(zi), zi being the roots of f(z), are not all in the same coset.

This is equivalent to requiring non conjugate roots to be not all in the same coset, as

c(zp
m

i )lsm = ((c(zi))
pm

)lsm = ((c(zi))
lsm)p

m

= (c(zi))
lsm

by the properties of the Frobenius automorphism τ(z) = zq.

Let us examine this more precisely, describing in detail the case p = 2, while

a similar argument applies in the case of odd primes. Let f(z) be, as above, a poly-

nomial of degree t over F2m , which is the product of t/s irreducible polynomials fi(z)

of degree s over the same field F2m , where it is not restrictive to assume even m.

According to the Cantor-Zassenhaus algorithm, a polynomial c(z) over F2m , rel-

atively prime with f(z), separates f(z) into two polynomials of smaller degree if

a(z) = c(z)lsm mod f(z) is different from 1, ̺, ̺2: at least two factors fi(z) are

in two distinct greatest common divisors between f(z) and a(z) + 1, a(z) + ̺ and

a(z) + ̺2, respectively.

Lemma 2.1. With the above hypotheses and definitions, a polynomial c(z)

over F2m separates f(z) into two polynomials, one containing the factor f1(z),

and the other containing the factor f2(z), if and only if c(z)lsm mod f1(z) 6=
c(z)lsm mod f2(z). Equivalently, f1(z) and f2(z) are separated if and only if c(z1)

and c(z2) belong to different cosets A′
h of F

∗
2sm , where z1 and z2 are roots of f1(z)

and f2(z), respectively.

P r o o f. The polynomial f(z) can be written as a product of three polynomials,

i.e., f1(z), f2(z), and fr(z) which collect the remaining factors, thus a(z) can be

decomposed, using the Chinese Remainder Theorem (CRT), as

a(z) = a1(z)ψ1(z) + a2(z)ψ2(z) + ar(z)ψr(z) mod f(z),

ψ1(z) + ψ2(z) + ψr(z) = 1,

where a1(z) = c(z)lsm mod f1(z), a2(z) = c(z)lsm mod f2(z), and ar(z) = c(z)lsm

modfr(z).

If a(z) = 1, ̺, ̺2, the uniqueness of the CRT decompositions implies that a1(z) =

a2(z) = ar(z).

If a(z) 6= 1, ̺, ̺2, then c(z) separates f(z) into two polynomials of smaller degree,

and we distinguish two cases: 1) a1(z) 6= a2(z): the polynomials f1(z) and f2(z) are

in different factors because, if both of them were in the same factor, they would both
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divide the same polynomial a(z)+ ̺h, thus ai(z) = a(z) = ̺h modulo fi(z), i = 1, 2,

contrary to the assumption.

2) a1(z) = a2(z): f1(z) and f2(z) are in the same factor; if we suppose they are

not, then a1(z) = a(z) = ̺h1 mod f1(z) 6= a2(z) = a(z) = ̺h2 mod f2(z), yielding

a contradiction.

Also, since a(z) = c(z)lsm mod f(z) and a(z) = ai(z) = ̺hi mod fi(z), we have

that c(zi)
lsm = ̺hi , i = 1, 2, which means that c(zi) ∈ A′

hi
, hence it follows from the

first part of the lemma that c(z) separates f1(z) and f2(z) if and only if c(z1) 6= c(z2).

�

Now, as in the case s = 1, we are interested in upper bounds for the number

of attempts, and we can limit the choice of c(z) according to our convenience. For

example, if we know at least one primitive polynomialm(z) of degree s, we can choose

the polynomials c(z) within the set of monic irreducible polynomials of degree s, so

that we get directly pms/s as an upper bound. If we have no primitive polynomial

of degree s, that is, we have no means of obtaining and drawing from the pool of

irreducible polynomials of degree s, then we can choose the polynomials c(z) within

the larger set of monic polynomials of degree s, and we have the looser bound pms.

Somewhat surprisingly, we show next that again it is usually actually sufficient to

consider linear polynomials.

Let χ′
3(x) be a nontrivial cubic character over F2sm , namely χ

′
3 is a mapping from

F
∗
2sm into the complex numbers defined as

χ′
3(α

hθ) = ζh3 , θ ∈ A′
0, h = 0, 1, 2,

α being a primitive element of F∗
2sm , ζ3 a primitive complex cubic root of unity, and

A′
0 the coset of cubes in F

∗
2sm . Moreover, we set χ

′
3(0) = 0 by definition.

If z1 and z2 are roots of two distinct irreducible polynomials of degree s, we denote

by N
(m)
2 (z1, z2) the number of monic polynomials c(z) = z + b with b ∈ F2m such

that χ′
3(c(z1)) = χ′

3(c(z2)).

Proposition 2.2. Let s > 1. The maximum number NA of attempts needed

to find an irreducible factor of degree s, using monic linear polynomials as test

polynomials, is upper bounded by (2m/3)(1 + (4s− 2)/
√
2m +1/2m) if p = 2, or by

(pm/2)(1+(2s− 1)/
√
pm) if p is odd. In particular, linear polynomials are sufficient

to find a factor if (4s− 2)/
√
2m < 2 or (2s− 1)/

√
pm < 1, respectively.

P r o o f. In the case of characteristic 2, NA is upper bounded by the maximum of

N
(m)
2 (z1, z2)+1 taken over all distinct pairs of roots z1 and z2 of distinct irreducible

polynomials of degree s. Thus an upper bound for N
(m)
2 (z1, z2) independent of z1

and z2 is also an upper bound for NA − 1.
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Consider the indicator function

IA′

h
(c(zi)) =

1 + ζh3χ
′
3(c(zi)) + ζh3 χ̄

′
3(c(zi))

3
, i = 1, 2,

which is 1 if the cubic character of c(zi) is ζ
h
3 , and is 0 otherwise, if we suppose c(z)

relatively prime with f(z).

Therefore, for a given c(z) we have a coincidence whenever the product IA′

h
(c(z1))·

IA′

h
(c(z2)) is 1. Thus,

2
∑

h=0

IA′

h
(c(z1))IA′

h
(c(z2)) =

1

3
(1 + χ′

3(c(z1))χ̄
′
3(c(z2)) + χ̄′

3(c(z1))χ
′
3(c(z2)))

is the coincidence indicator for a fixed polynomial c(z). Summing over all monic lin-

ear polynomials z+ b over F2m , we get the total number N
(m)
2 (z1, z2) of coincidences

N
(m)
2 (z1, z2) =

1

3

∑

b∈F2m

(1 + χ′
3(z1 + b)χ̄′

3(z2 + b) + χ̄′
3(z1 + b)χ′

3(z2 + b))− 2

3
,

where −2/3 comes from excluding the polynomials z+b having z1 or z2 as a root. For

its computation, the summation is split into three summations: the first is simply 2m,

and the second and third are complex conjugated, thus it is enough to evaluate only

C =
∑

b∈F2m

χ′
3(z1 + b)χ̄′

3(z2 + b).

This summation is hard to evaluate in closed form, thus we content ourselves with

a bound. Namely, as χ′
3 can be viewed as the lifted character of a nontrivial character

χ3 over F2m ([7], [8]), we can write

C =
∑

b∈F2m

χ3(NF2ms/F2m
(z1 + b))χ̄3(NF2ms/F2m

(z2 + b)),

where NF2ms/F2m
(x)

.
= xx2

m

. . . x2
m(s−1)

is the relative norm of x.

Since NF2ms/F2m
(zi + b), i = 1, 2, are polynomials of degree s in b, and χ̄3 = χ2

3,

we can then use the Weil bound ([15], Theorem 2C′; cf. also [17], Lemma 2.2) to

obtain

C < (2s− 1)2m/2.

In conclusion, we obtain NA bounded as

(2.1) NA <
2m

3

(

1 +
4s− 2√

2m
+

1

2m

)

.
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The same argument holds similarly for p odd, and making the appropriate changes

the conclusion is

(2.2) NA <
pm

2

(

1 +
2s− 1√
pm

)

.

�

3. Deterministic splitting I: fixed t

In the following we analyse the algorithm in greater detail from a deterministic

point of view; in particular we will show that the maximum number of attempts to

obtain a factor is usually very small, so that the algorithm, which is probabilistic in

nature, can often be considered deterministic. In order to simplify the subsequent

analysis, we will assume from now on that s = 1.

If we use the proposed variant of the Cantor-Zassenhaus algorithm, the tightest

upper bound for the number of attempts necessary to split a polynomial f(z) of

degree t over F2m is equal to

M2(t)
.
= 1 + max

z1 6=z2 6=...6=zt
N2(t),

where N2(t) is the number of solutions b of a system of t equations in F2m of the

form

(3.1)



























αjw3
1 + b = αky31 ,

αjw3
2 + b = αky32 ,

...

αjw3
t + b = αky3t

where αjw3
1 , α

jw3
2 , . . . , α

jw3
t are given and distinct (i.e. they are the roots zi of f(z)),

whereas the yis must be chosen in the field to satisfy the system, and the three values

{0, 1, 2} for k and j are all considered. However, we may assume j = 0 (and zi = wi),

since dividing each equation by αj and setting b′ = bα−j and k′ = k − j mod 3, we

see that the number of solutions of the system is independent of j. If the system is

unsolvable, then the number of attempts is 1.

To evaluate N2(t), we define an indicator function of the sets Au using the cubic

character, namely for every x 6= 0

IAu
(x) =

1 + ζ2u3 χ3(x) + ζu3 χ̄3(x)

3
=

{

1 if x ∈ Au,

0 otherwise,
u = 0, 1, 2
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(where the bar over χ denotes complex conjugation). Then, given a zi we can

partition the elements b 6= z3i in F2m into subsets depending on k ∈ {0, 1, 2} so
that χ3(b+ z3i ) = ζk3 . Therefore, a solution of (3.1) for a fixed k and j = 0 is singled

out by the product
t
∏

i=1

IAk
(b + z3i ) =

1

3t

[

1 +

t
∑

i=1

σ
(k)
i

]

,

where each σ
(k)
i is a homogeneous sum of monomials which are products of i char-

acters of the form χ3(b+ z3h) or χ̄3(b + z3h). Thus

(3.2) N2(t) =
∑

b∈F2m

b6∈{z3
i }

[ t
∏

i=1

IA0(b + z3i ) +

t
∏

i=1

IA1(b+ z3i ) +

t
∏

i=1

IA2(b + z3i )

]

.

The roots zi in the sum need not be considered, since in any case they are not

solutions (z3i + z3i = 0 cannot be in the same coset as z3i + z3j if i 6= j).

Similarly, in characteristic greater than 2, the tightest upper bound for the number

of attempts necessary to split a polynomial f(z) of degree t is equal to

Mp(t)
.
= 1 + max

z1 6=z2 6=...6=zt
Np(t),

where Np(t) is the number of solutions b of a system of t equations in Fpm of the

form

(3.3)



























αjw2
1 + b = αky21 ,

αjw2
2 + b = αky22 ,

...

αjw2
t + b = αky2t

where αjw2
1 , α

jw2
2 , . . . , α

jw2
t are given and distinct and the two values {0, 1} for k

and j are considered. Again, we may assume j = 0 and we can define an indicator

function of the sets Bu using the quadratic character, where B0 is the set of squares

and B1 the complementary set in F
∗
pm : namely, let χ2 be the mapping from F

∗
pm into

the complex numbers defined as

χ2(α
hθ) = (−1)h, θ ∈ B0, h = 0, 1.

Again, we set χ2(0) = 0.
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The corresponding indicator function is thus

IBu
(x) =

1 + (−1)uχ2(x)

2
=

{

1 if x ∈ Bu,

0 otherwise,
u = 0, 1.

Given a zi we partition Fpm \ {z2i } into subsets depending on the value of k, so that
χ2(b+z

2
i ) = (−1)k. Therefore, a solution of (3.3) for a fixed k is given by the product

t
∏

i=1

IBk
(b+ z2i ) =

1

2t

[

1 +

t
∑

i=1

σ
(k)
i

]

,

where each σ
(k)
i is a homogeneous sum of monomials which are products of i char-

acters of the form χ2(b+ z2h). Thus Np(t) is

(3.4) Np(t) =
∑

b∈Fpm

b6∈{−z2
i }

[ t
∏

i=1

IB0(b+ z2i ) +

t
∏

i=1

IB1(b+ z2i )

]

.

The following subsections deal with computations of Np(t) for small values of t,

then with general bounds on Np(t).

3.1. Computations for small t. In the following computations, we will use some

properties of nontrivial characters that we briefly mention:
∑

x∈Fq

χ(x) = 0; if b 6= 0,

then
∑

x∈Fq

χ(x)χ̄(x+ b) = −1 ([14], [18]). Moreover,

∑

x∈F2m

χ3(x)χ3(x+ 1) = Gm(1, χ3) = −(−2)m/2,

with Gm(1, χ3) being the Gauss sum [14].

We will start with the case p = 2. First we compute N2(2), already found above

by another technique, then analogously N2(3).

⊲ Case p = 2, t = 2: Setting xi = b+ z3i , we have

2
∏

i=1

IAh
(xi) =

1

9

(

1 + σ
(h)
1 + σ

(h)
2

)

, h = 0, 1, 2,

where

σ
(h)
1 = ζ2h3 χ3(x1) + ζh3 χ̄3(x1) + ζ2h3 χ3(x2) + ζh3 χ̄3(x2),

σ
(h)
2 = ζh3 χ3(x1)χ3(x2) + χ3(x1)χ̄3(x2) + χ̄3(x1)χ3(x2) + ζ2h3 χ̄3(x1)χ̄3(x2).
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Since σ
(0)
1 +σ

(1)
1 +σ

(2)
1 = 0 and σ

(0)
2 +σ

(1)
2 +σ

(2)
2 = 3(χ3(x1)χ̄3(x2)+ χ̄3(x1)χ3(x2)),

the sum of the three products
2
∏

i=1

IAk
(xi) is (1/3)(1+χ3(x1)χ̄3(x2)+ χ̄3(x1)χ3(x2)),

and thus the sum over b in the whole field F2m , with the exclusion of b = z31 and

b = z32 , is

N2(2) =
1

3

(

2m − 2 +
∑

b6=z3
1, z

3
2

(

χ3(b+ z31)χ̄3(b + z32) + χ̄3(b+ z31)χ3(b + z32)
)

)

.

Let S denote the above summation, then S can be evaluated in closed form: by the

substitution b = z31 + η, since χ3 is a nontrivial cubic character, we have

S =
∑

η 6=0, z3
1+z3

2

(χ3(η)χ̄3(η + z31 + z32) + χ̄3(η)χ3(η + z31 + z32)) = −2,

as the summation of each of the two parts gives −1 (z31 + z32 6= 0 by hypothesis). In

conclusion,

N2(2) =
1

3
(2m − 4),

so that we have

Proposition 3.1. M2(2) = (2m − 1)/3.

⊲ Case p− 2, t = 3: In this case

3
∏

i=1

IAh
(b + z3i ) =

1

27
(1 + σ

(h)
1 + σ

(h)
2 + σ

(h)
3 ), h = 0, 1, 2,

where

σ
(h)
1 = ζ2h3 χ3(x1) + ζh3 χ̄3(x1) + ζ2h3 χ3(x2) + ζh3 χ̄3(x2) + ζ2h3 χ3(x3) + ζh3 χ̄3(x3),

σ
(h)
2 = ζh3 χ3(x1)χ3(x2) + χ3(x1)χ̄3(x2) + χ̄3(x1)χ3(x2) + ζ2h3 χ̄3(x1)χ̄3(x2)

+ ζh3 χ3(x2)χ3(x3) + χ3(x2)χ̄3(x3) + χ̄3(x2)χ3(x3) + ζ2h3 χ̄3(x2)χ̄3(x3)

+ ζh3 χ3(x3)χ3(x1) + χ3(x3)χ̄3(x1) + χ̄3(x3)χ3(x1) + ζ2h3 χ̄3(x3)χ̄3(x1),

σ
(h)
3 = χ3(x1)χ3(x2)χ3(x3) + χ̄3(x1)χ̄3(x2)χ̄3(x3) + ζ2h3 χ̄3(x1)χ3(x2)χ3(x3)

+ ζ2h3 χ3(x1)χ̄3(x2)χ3(x3) + ζ2h3 χ3(x1)χ3(x2)χ̄3(x3)

+ ζh3 χ̄3(x1)χ̄3(x2)χ3(x3) + ζh3 χ3(x1)χ̄3(x2)χ̄3(x3) + ζh3 χ̄3(x1)χ3(x2)χ̄3(x3).

We thus have

σ0
1 + σ1

1 + σ2
1 = 0,

σ0
2 + σ1

2 + σ2
2 = 3(χ3(x1)χ̄3(x2) + χ̄3(x1)χ3(x2) + χ3(x2)χ̄3(x3)

+ χ̄3(x2)χ3(x3) + χ3(x3)χ̄3(x1) + χ̄3(x3)χ3(x1)),

σ0
3 + σ1

3 + σ2
3 = 3(χ3(x1)χ3(x2)χ3(x3) + χ̄3(x1)χ̄3(x2)χ̄3(x3)).
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In the summation over b of the sum of the three products, the values of b = z31 , z
3
2 , z

3
3

should be excluded. Thus we must compute

N2(3) =
1

9

(

2m − 3 +
1

3

∑

b6=z3
1 ,z

3
2,z

3
3

[(σ0
2 + σ1

2 + σ2
2) + (σ0

3 + σ1
3 + σ2

3)]

)

.

Therefore, two types of summations must be evaluated, namely

S2 =
∑

b6=z3
1 ,z

3
2,z

3
3

χ3(b+z
3
1)χ̄3(b+z

3
2) and S3 =

∑

b6=z3
1 ,z

3
2,z

3
3

χ3(b+z
3
1)χ3(b+z

3
2)χ3(b+z

3
2),

the remaining ones being obtained by symmetry or complex conjugation. Consid-

ering S2, and defining for short y1 = z32 + z33 , y2 = z31 + z33 , and y3 = z32 + z31 , we

have
S2 = −χ3(y2)χ̄3(y1) +

∑

b6=z3
1 ,z

3
2

χ3(b + z31)χ̄3(b+ z32)

= −χ3(y2)χ̄3(y1) +
∑

x 6=0,y3

χ3(x)χ̄3(x+ y3),

thus S2 = −χ3(y2)χ̄3(y1)− 1. Considering S3 we have

S3 =
∑

b6=z3
1 ,z

3
2,z

3
3

χ3(b+ z31)χ3(b+ z32)χ3(b+ z33) =
∑

x 6=0,y2,y3

χ3(x)χ3(x+ y3)χ3(x+ y2),

thus, with the change of variable x = 1/z, since the character is cubic we obtain

S3 =
∑

z 6=0,1/y2,1/y3

χ3(1 + zy3)χ3(1 + zy2)

=
∑

X 6=1,0,1+y3/y2

χ3(X)χ3

(

X
y2
y3

+ 1 +
y2
y3

)

,

S3 = χ3(y2)χ̄3(y3)
∑

X 6=1,0,1+y3/y2

χ3(X)χ3

(

X + 1 +
y3
y2

)

= −1 + χ3(y2)χ̄3(y3)
∑

X 6=0,1+y3/y2

χ3(X)χ3

(

X + 1 +
y3
y2

)

= −1 + χ̄3(y2)χ̄3(y3)χ̄3(y1)
∑

x∈F2m

χ3(x)χ3(x+ 1).

In conclusion, we obtain

N2(3) =
1

9
[2m − 11− (−2)m/2[χ3(y1y2y3) + χ̄3(y1y2y3)]− (χ3(y1y

2
2) + χ3(y

2
1y2)

+ χ3(y2y
2
3) + χ3(y

2
2y3) + χ3(y3y

2
1) + χ3(y

2
3y1))].

283



Note that, if z1 = 0 (which corresponds to choosing b in one particular coset), then

y2 and y3 are cubes, and the number of solutions is

N2(3) =
1

9
(2m − 13− [(−2)m/2 + 2][χ3(y1) + χ̄3(y1)]).

Finally, we focus our interest on the maximum over the zi and obtain

Proposition 3.2.

M2(3) =















1

9
(2m + 2m/2 − 2) for m/2 even,

1

9
(2m + 2m/2+1 + 1) for m/2 odd.

Let us now deal with the case p > 2:

⊲ Case p > 2, t = 2: In this case, we have

2
∏

i=1

IBh
(b+ z2i ) =

1

4
(1 + σ

(h)
1 + σ

(h)
2 ), h = 0, 1,

where σ
(h)
1 = (−1)hχ2(x1) + (−1)hχ2(x2), and σ

(h)
2 = χ2(x1)χ2(x2).

Since σ
(0)
1 + σ

(1)
1 = 0 and σ

(0)
2 + σ

(1)
2 = 2(χ2(x1)χ2(x2)), the sum over b in the

whole field Fpm , with the exclusion of b = −z21 and b = −z22 , is

Np(2) =
1

2

(

pm − 2 +
∑

b6=−z2
1 ,−z2

2

χ2(b+ z21)χ2(b + z22)

)

.

Let S denote the above summation: we evaluate it in closed form by substituting

b = η − z21 ; since χ2 is a nontrivial quadratic character, we have

S =
∑

η 6=0,z2
1−z2

2

χ2(η)χ2(η + z22 − z21) = −1,

the summation being independent of the term z22−z21 , which is nonzero by hypothesis.
In conclusion

Np(2) =
1

2
(pm − 3),

so that we have

Proposition 3.3. Mp(2) =
1
2 (p

m − 1).
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⊲ Case p > 2, t = 3: In this case

3
∏

i=1

IBh
(b+ z2i ) =

1

8
(1 + σ

(h)
1 + σ

(h)
2 + σ

(h)
3 ), h = 0, 1,

where σ
(h)
1 = (−1)hχ2(x1) + (−1)hχ2(x2) + (−1)hχ2(x3), σ

(h)
2 = χ2(x1)χ2(x2) +

χ2(x1)χ2(x3) + χ2(x2)χ2(x3), and σ
(h)
3 = (−1)hχ2(x1)χ2(x2)χ2(x3).

Since σ0
1 +σ

1
1 = 0, σ0

2 +σ
1
2 = 2(χ2(x1)χ2(x2)+χ2(x1)χ2(x3)+χ2(x2)χ2(x3)), and

σ0
3 + σ1

3 = 0, the summation over b of the sum of the two products, where the values

of b equal to −z21 ,−z22 , and −z23 are excluded, becomes

Np(3) =
1

4

(

pm − 3 +
∑

b6=−z2
1,−z2

2,−z2
3

[χ2(x1)χ2(x2) + χ2(x1)χ2(x3) + χ2(x2)χ2(x3)]

)

.

We thus need to evaluate only one type of summation, namely

S2 =
∑

b6=−z2
1 ,−z2

2,−z2
3

χ2(b+ z21)χ2(b + z22)

=
∑

η 6=0, z2
1−z2

2 , z
2
1−z2

3

χ2(η)χ2(η + z22 − z21)

= −1− χ2(z
2
1 − z23)χ2(z

2
2 − z23),

the remainder being obtained by symmetry. In conclusion, we obtain

Np(3) =
1

4
[pm − 6− (χ2(z

2
1 − z23)χ2(z

2
2 − z23) + χ2(z

2
1 − z22)χ2(z

2
3 − z22)

+ χ2(z
2
3 − z21)χ2(z

2
2 − z21))].

And, if we consider the maximum, we have

Proposition 3.4.

Mp(3) =











1
4 (p

m − 1), p = 4k + 1,

1
4 (p

m + 1), p = 4k + 3, m odd,

1
4 (p

m − 1), p = 4k + 3, m even.

3.2. Bounds. As the number of equations in system 3.1 or 3.3 becomes larger,

exact computations become less meaningful for our purpose, as it would then be

necessary to consider estimates and bounds of rather cumbersome expressions. We

285



will thus shift our interest to a general upper bound for the function Np(t); we will

first deal with the case p = 2, then the case p > 2.

⊲ Case p = 2: Consider equation (3.2) written as

(3.5) N2(t) =
1

3t

∑

b∈F2m

b6∈{z3
i }

[P0 +P1 +P2],

where

Pk = 3t
t
∏

i=1

IAk
(xi) = 1 + σ

(k)
1 + σ

(k)
2 + . . .+ σ

(k)
t , k = 0, 1, 2,

xi being b+ z3i , and each σ
(k)
j is a sum of monomials which are products of the same

number j of distinct variables (characters) χ3(xi) or χ̄3(xi), possibly times ζ3 or ζ
2
3 .

In particular, the number of addends in σ
(k)
j is 2j

(

t
j

)

.

Define σj = σ
(0)
j +σ

(1)
j +σ

(2)
j for every j = 1, . . . , t; then σj contains fewer addends

than any σ
(k)
j , since all monomials multiplied by either ζ3 or ζ

2
3 are canceled out with

monomials multiplied by 1, and the surviving monomials are multiplied by 3 (see also

the examples above). In particular, σ1 is zero; σ2 is a sum of monomials of the form

χ3(xi)χ̄3(xl) (i, l distinct), whose total number is 2
(

t
2

)

; σ3 is a sum of monomials

of the form χ3(xi)χ3(xl)χ3(xm) (i, l, m all distinct), whose total number is 2
(

t
3

)

;

and σ4 is a sum of monomials of the form χ3(xi)χ3(xl)χ̄3(xm)χ̄3(xs) (i, l,m, s all

distinct), whose total number is 6
(

t
4

)

. In general, the number of surviving monomials

of degree j can be computed by considering that each monomial is a product of n1

characters and n2 complex conjugate characters; thus n1 + n2 = j. Supposing that

χ3(xi) are multiplied by ζ3 and χ̄3(xh) are multiplied by ζ
2
3 , the surviving mono-

mial satisfies the condition n1 + 2n2 = 0 mod 3. Therefore, the admissible values of

0 6 n2 6 j satisfy the condition n2 = 2j mod 3: if e = 2j mod 3 and e ∈ {0, 1, 2},

the number of surviving monomials is
(

t
j

)

aj , where aj =
⌊(j−e)/3⌋

∑

h=0

(

j
e+3h

)

, with

{aj}Z>1 = 2, 2, 6, 10, 22, 42, 86, 170, 342, . . . matching the sequence A078008 in [16]

with the first two terms disregarded. We observe now that the product of j char-

acters, whose arguments are distinct linear functions of b, can be interpreted as a

single character whose argument is a polynomial f(b) with j distinct roots: by [15],

Theorem 2C′, each sum of these characters is upper bounded by (j − 1)
√
2m, so

that

N2(t) 6
1

3t−1

[

2m − t+

t
∑

j=2

aj(j − 1)

(

t

j

)√
2m

]

.
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The summation above is evaluated as follows, using the expression aj =
1
3

2
∑

h=0

ζ−he
3 ×

(1 + ζh3 )
j for the sequence aj as can be found in [3], [6]:

t
∑

j=2

aj(j − 1)

(

t

j

)

=

t
∑

j=2

1

3

2
∑

h=0

ζ−he
3 (1 + ζh3 )

j(j − 1)

(

t

j

)

=
1

3

2
∑

h=0

t
∑

j=2

ζ−he
3 (1 + ζh3 )

j(j − 1)

(

t

j

)

.

Now, observing that e = −j mod 3 and ζ3 is a cubic root of unity, we may substitute

ζhj3 for ζ
−he
3 and write (ζh3 + ζ2h3 )j for ζhj3 (1 + ζh3 )

j in the last expression, which we

then write as

1

3

2
∑

h=0

t
∑

j=0

(ζh3 + ζ2h3 )j(j − 1)

(

t

j

)

+ 1

= 1 +
1

3

2
∑

h=0

( t
∑

j=0

j(ζh3 + ζ2h3 )j
(

t

j

)

−
t

∑

j=0

(ζh3 + ζ2h3 )j
(

t

j

))

.

Using the binomial sum and its derivative, we finally obtain

t
∑

j=2

aj(j − 1)

(

t

j

)

= 1 +
1

3

2
∑

h=0

(t(ζh3 + ζ2h3 )(1 + ζh3 + ζ2h3 )t−1 − (1 + ζh3 + ζ2h3 )t),

that is
t

∑

j=2

aj(j − 1)

(

t

j

)

= 1 +
1

3
[2t 3t−1 − 3t],

because (1 + ζh3 + ζ2h3 ) is 3 when h = 0 and is 0 otherwise. In conclusion

(3.6) N2(t) 6
1

3t−1

[

2m +
√
2m − t+ 3t−2(2t− 3)

√
2m

]

,

where we see that, when 3t−2(2t− 3)
√
2m − t+

√
2m ≪ 2m, roughly t≪ m/2, then

N2(t) ≃ 2m/3t−1.

⊲ Case p > 2: In the case p > 2, consider equation (3.4) written as

(3.7) Np(t) =
1

2t

∑

b∈Fpm

b6∈{−z2
i }

[Q0 +Q1],
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where

Qk = 2t
t
∏

i=1

IBk
(xi) = 1 + σ

(k)
1 + σ

(k)
2 + . . .+ σ

(k)
t , k = 0, 1,

xi being b+ z2i , and each σ
(k)
j is a sum of monomials which are products of the same

number j of distinct variables (characters) χ2(xi). In particular, only σ
(k)
j ’s with

even subscripts occur, and clearly they are the elementary symmetric functions of

t variables; thus the number of addends in σ
(k)
j is

(

t
j

)

. The same argument used

for the upper bound N2(t) also applies here. In this case, the sum of products of j

characters is bounded as (j − 1)
√
pm by [15], Theorem 2C′, so that

Np(t) 6
1

2t−1

[

pm − t+

t
∑

j=2

(j − 1)

(

t

j

)√
pm

]

,

which, after some manipulation, can be written as

(3.8) Np(t) 6
1

2t−1
[pm − t+ [2t−1(t− 2) + 1]

√
pm],

and we see that, when [2t−1(t − 2) + 1]
√
pm − t ≪ pm, roughly t ≪ (m/2) log2 p,

then Np(t) ≃ pm/2t−1.

4. Deterministic splitting II: fixed N

This section examines the smallest t such that the algorithm succeeds in at most

1 or 2 attempts: we will call these t1 and t2, respectively.

Clearly, t1 = lm+1, since there are exactly lm elements belonging to a given coset;

then, if t > lm, the algorithm succeeds at the first attempt.

To evaluate t2, we must examine the number of representations of a b 6= 0 in the

field as the sum of an element in a given coset and an element in another (possibly

the same) given coset (see also [9], [10], [12]). We then consider the maximum M of

such numbers, over b 6= 0 in the field and over all possible pairs of cosets, so that

t2 is 1 + M. This follows from considering equation (3.1): the worst-case scenario

occurs when all roots are in the same coset, and when, by adding a b to all of them,

one gets elements again belonging to a common coset.

For the case of the cubic character,M can be calculated as

M = max
i,j,b

∑

z 6=0,b

1 + ζ2j3 χ3(z) + ζj3 χ̄3(z)

3

1 + ζ2i3 χ3(b+ z) + ζi3χ̄3(b+ z)

3
,
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which is the maximum over i, j, b of the expression

1

9
[2m − 2− χ3(b)(ζ

2i
3 + ζ2j3 )− χ̄3(b)(ζ

i
3 + ζj3)− ζ2i+j

3 − ζi+2j
3

− (−2)m/2(ζ2i+2j
3 χ̄3(b) + ζi+j

3 χ3(b))],

where we have again exploited the relations
∑

x∈F2m

χ3(x) = 0,
∑

x∈F2m

χ3(x)χ̄3(x+ b) =

−1 and
∑

x∈F2m

χ3(x)χ3(x + 1) = Gm(1, χ3) = −(−2)m/2 ([4], [14], [18]). Then we

have

Proposition 4.1. For the cubic character,

M =

{

1
9 (2

m + 2m/2 − 2) for m/2 even,

1
9 (2

m + 2m/2+1 + 1) for m/2 odd.

For the case of the quadratic character, we consider similarly

M = max
i,j,b

∑

z 6=0,b

1 + (−1)jχ2(z)

2

1 + (−1)iχ2(b− z)

2

= max
i,j,b

{1

4
(pm − 2− χ2(b)(−1)i − χ2(b)(−1)j − (−1)i+jχ2(−1))

}

,

hence we have

Proposition 4.2. For the quadratic character

M =











1
4 (p

m − 1), p = 4k + 1,

1
4 (p

m + 1), p = 4k + 3, m odd,

1
4 (p

m − 1), p = 4k + 3, m even.

R em a r k 4.1. It is interesting to notice that M, which is the maximum t such

that it is still possible to fail to split a polynomial of degree t with two attempts, is

equal to the maximum number of attempts needed to split a polynomial of degree 3.

Similarly, lm is at the same time the maximum t such that it is possible to fail to split

a polynomial of degree t at the first attempt and the maximum number of attempts

needed to split a polynomial of degree 2 (cf. also [13]).
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