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Abstract. Consider the difference equation

∆x(n) +
m
∑

i=1

pi(n)x(τi(n)) = 0, n > 0

[

∇x(n)−
m
∑

i=1

pi(n)x(σi(n)) = 0, n > 1

]

,

where (pi(n)), 1 6 i 6 m are sequences of nonnegative real numbers, τi(n) [σi(n)], 1 6

i 6 m are general retarded (advanced) arguments and ∆ [∇] denotes the forward (backward)
difference operator ∆x(n) = x(n + 1) − x(n) [∇x(n) = x(n) − x(n − 1)]. New oscillation
criteria are established when the well-known oscillation conditions

lim sup
n→∞

m
∑

i=1

n
∑

j=τ(n)

pi(j) > 1

[

lim sup
n→∞

m
∑

i=1

σ(n)
∑

j=n

pi(j) > 1

]

and

lim inf
n→∞

m
∑

i=1

n−1
∑

j=τi(n)

pi(j) >
1

e

[

lim inf
n→∞

m
∑

i=1

σi(n)
∑

j=n+1

pi(j) >
1

e

]

are not satisfied. Here τ (n) = max
16i6m

τi(n) [σ(n) = min
16i6m

σi(n)]. The results obtained

essentially improve known results in the literature. Examples illustrating the results are
also given.

Keywords: difference equation; retarded argument; advanced argument; oscillatory solu-
tion; nonoscillatory solution
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1. Introduction

Consider the difference equation with several variable arguments of the form

(E) ∆x(n) +

m
∑

i=1

pi(n)x(τi(n)) = 0

[

∇x(n) −
m
∑

i=1

pi(n)x(σi(n)) = 0

]

,

for every n ∈ N0 [n ∈ N], where (pi(n)), 1 6 i 6 m are sequences of nonnegative real

numbers, (τi(n)), 1 6 i 6 m are sequences of integers such that

(1.1) τi(n) 6 n− 1, n ∈ N0, and lim
n→∞

τi(n) = ∞, 1 6 i 6 m,

(σi(n)), 1 6 i 6 m are sequences of integers such that

(1.2) σi(n) > n+ 1, n ∈ N, 1 6 i 6 m,

∆ denotes the forward difference operator ∆x(n) = x(n + 1)− x(n) and ∇ denotes
the backward difference operator ∇x(n) = x(n)− x(n− 1).

If τi(n) = n− ki and σi(n) = n+ ki, where ki > 0, 1 6 i 6 m, then equation (E)

reduces to the difference equation with several constant arguments of the form

(E′) ∆x(n) +

m
∑

i=1

pi(n)x(n− ki) = 0

[

∇x(n) −
m
∑

i=1

pi(n)x(n+ ki) = 0

]

.

Strong interest in equation (E) is motivated by the fact that it represents a dis-

crete analogue of the differential equation with several variable arguments (see, for

example, [7], [11] and the references cited therein)

x′(t) +
m
∑

i=1

pi(t)x(τi(t)) = 0

[

x′(t)−
m
∑

i=1

pi(t)x(σi(t)) = 0

]

,

for every t > 0 [t > 1], where, for every i ∈ {1, . . . ,m}, pi is a nonnegative continuous
real-valued function in the interval [0,∞), τi is a continuous real-valued function on

[0,∞) such that τi(t) 6 t, t > 0 and lim
t→∞

τi(t) = ∞, and σi is a continuous real-valued

function on [1,∞) such that σi(t) > t, t > 1.

By a solution of the retarded difference equation (E), we mean a sequence of real

numbers (x(n))n>−w which satisfies (E) for all n > 0. Here, w = − min
n>0, 16i6m

τi(n).

It is clear that for each choice of real numbers c−w, c−w+1, . . . , c−1, c0, there exists

a unique solution (x(n))n>−w of (E) which satisfies the initial conditions x(−w) =

c−w, x(−w + 1) = c−w+1, . . . , x(−1) = c−1, x(0) = c0.
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By a solution of the advanced difference equation (E), we mean a sequence of real

numbers (x(n))n>0 which satisfies (E) for all n > 1.

A solution (x(n))n>−w (or (x(n))n>0) of the difference equation (E) is called oscil-

latory, if the terms x(n) of the sequence are neither eventually positive nor eventually

negative. Otherwise, the solution is said to be nonoscillatory.

For the general theory of difference equations the reader is referred to the mono-

graphs [1], [13], [14].

In the last few decades, the asymptotic and oscillatory behavior of the solutions of

difference equations has been extensively studied. See, for example, [2]–[12], [15]–[21]

and the references cited therein. Most of these papers concern the special case of

the equation (E′) with m = 1, while a small number of the papers deal with the

general case of the equation (E) with m = 1, in which the arguments (n− τi(n))n>0,

(σi(n)− n)n>1, 1 6 i 6 m are variable.

In 1989 Erbe and Zhang [10], in 1999 Tang and Yu [19], and in 2001 Tang and

Zhang [20] proved that either of the following conditions

m
∑

i=1

(

lim inf
n→∞

pi(n)
) (ki + 1)

(ki)ki

ki+1

> 1,(1.3)

lim inf
n→∞

m
∑

i=1

(ki + 1

ki

)ki+1
n+ki
∑

j=n+1

pi(j) > 1,(1.4)

or

(1.5) lim sup
n→∞

m
∑

i=1

n+ki
∑

j=n

pi(j) > 1,

implies that all solutions of the retarded difference equation (E′) oscillate, while in

2002 Li and Zhu [15] proved that if

(1.6) lim inf
n→∞

m
∑

i=1

(ki + 1

ki

)ki+1 n−1
∑

j=n−ki

pi(j) > 1,

then all solutions of the advanced difference equation (E′) oscillate.

Set

τ(n) = max
16i6m

τi(n), n ∈ N0,(1.7)

σ(n) = min
16i6m

σi(n), n ∈ N.(1.8)
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In 2005 Yan, Meng and Yan [21], and in 2006 Berezansky and Braverman [5]

proved that if

(1.9) lim inf
n→∞

n−1
∑

j=τ(n)

m
∑

i=1

pi(j)
(n− τi(j) + 1

n− τi(j)

)n−τi(j)+1

> 1,

or

(1.10) lim sup
n→∞

m
∑

i=1

pi(n) > 0 and lim inf
n→∞

m
∑

i=1

n−1
∑

j=τ(n)

pi(j) >
1

e
,

then all solutions of the retarded difference equation (E) oscillate.

Recently, Chatzarakis, Pinelas and Stavroulakis [9] proved that if

(1.11) lim sup
n→∞

m
∑

i=1

n
∑

j=τ(n)

pi(j) > 1

[

lim sup
n→∞

m
∑

i=1

σ(n)
∑

j=n

pi(j) > 1

]

,

or, lim sup
n→∞

m
∑

i=1

pi(n) > 0 and

(1.12) lim inf
n→∞

m
∑

i=1

n−1
∑

j=τi(n)

pi(j) >
1

e

[

lim inf
n→∞

m
∑

i=1

σi(n)
∑

j=n+1

pi(j) >
1

e

]

,

then all solutions of equation (E) oscillate.

Very recently, Chatzarakis et al. [7] established the following theorem.

Theorem 1.1 (See [7], Theorems 2.1 and 3.1). Assume that the sequences (τi(n))

[(σi(n))], 1 6 i 6 m are increasing, (1.1), [(1.2)] holds, and

(1.13) α = min{αi : 1 6 i 6 m},

where

(1.14) αi = lim inf
n→∞

n−1
∑

j=τi(n)

pi(j)

[

αi = lim inf
n→∞

σi(n)
∑

j=n+1

pi(j)

]

.

If 0 < α 6 1/e, and

(1.15) lim sup
n→∞

m
∑

i=1

n
∑

j=τ(n)

pi(j), lim sup
n→∞

m
∑

i=1

σ(n)
∑

j=n

pi(j) > 1− (1−
√
1− α)2,

then all solutions of (E) oscillate.
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If, additionally,

(1.16) pi(n) > 1−
√
1− α for all large n, 1 6 i 6 m

and

lim sup
n→∞

m
∑

i=1

n
∑

j=τ(n)

pi(j), lim sup
n→∞

m
∑

i=1

σ(n)
∑

j=n

pi(j)(1.17)

> 1− α

(

1

3
√
1− α+ α− 2

− 1

)

,

then all solutions of (E) oscillate.

In this paper, our main objective is to improve the upper bound of the ratio

x(n+ 1)/x(τ(n)) [x(n− 1)/x(σ(n))] for possible nonoscillatory solutions (x(n))n>−k

[(x(n))n>0] of equation (E) and derive new oscillation conditions for all solutions

of (E). Examples illustrating the results are also given.

2. Oscillation criteria

In this section, first a lemma is presented, which will be used in the proof of our

main results. This lemma is an extension of Lemma 2.1 in [8] for the case of the

difference equation (E) with several retarded or advanced arguments.

Lemma 2.1 (cf. [8]). Assume that the sequences (τi(n)), [(σi(n))], 1 6 i 6 m

are increasing, (1.1), [(1.2)] holds, (τ(n)), [(σ(n))] is defined by (1.7), [(1.8)] (x(n))

is a nonoscillatory solution of (E), and α is defined by (1.13).

If 0 < α 6 −1 +
√
2, then

(2.1) lim inf
n→∞

x(n+ 1)

x(τ(n))
, lim inf

n→∞

x(n− 1)

x(σ(n))
>

1− α−
√
1− 2α− α2

2
.

If, additionally,

(2.2) pi(n) >
α

2
for all large n, 1 6 i 6 m,

then

(2.3) lim inf
n→∞

x(n+ 1)

x(τ(n))
, lim inf

n→∞

x(n− 1)

x(σ(n))
> 2

1−
√
1− 2α− α2

2 + α
− α.
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P r o o f. The proof below refers to the retarded difference equation (E). The proof

for the advanced difference equation (E) follows by a similar procedure and is omit-

ted.

Define for n 6 t < n+ 1, n ∈ N0, 1 6 i 6 m

qi(t) = pi(n) and ϕi(t) = τi(n).

Clearly, qi, ϕi, 1 6 i 6 m are nonnegative real-valued functions on the interval

[0,∞), which are continuous on each of the intervals (n, n+ 1) for n = 0, 1, . . . We

can immediately see that

ϕi(t) < t for all t > 0, and lim
t→∞

ϕi(t) = ∞, 1 6 i 6 m

and the functions ϕi are increasing on [0,∞).

Suppose that

(2.4) ϕ(t) = max
16i6m

ϕi(t) = max
16i6m

τi(n) = τ(n) for n 6 t < n+ 1.

(Clearly, the function ϕ is increasing.)

Let (x(n))n>−w be a solution of the retarded difference equation (E). We define

y(t) = x(n) + (∆x(n))(t − n), n 6 t < n+ 1, n = −w,−w + 1, . . .

It is obvious that y(n) = x(n) for all n > −w. Moreover, it is easy to verify that the

real-valued function y is continuous on the interval [−w,∞). Also, we see that y is

continuously differentiable on each of the intervals (n, n+1) for n = −w,−w+1, . . .

with

y′(t) = ∆x(n) for n < t < n+ 1, n = −w,−w + 1, . . .

Furthermore, as (x(n))n>−w satisfies (E) for all n > 0, we can easily conclude that

the function y satisfies

(2.5) y′(t) +

m
∑

i=1

qi(t)y(ϕi(t)) = 0 for n < t < n+ 1, n = 0, 1, . . .

Since the solution (x(n))n>−w of (E) is nonoscillatory, it is either eventually pos-

itive or eventually negative. As (−(x(n)))n>−w is also a solution of (E), we may

restrict ourselves only to the case where x(n) > 0 for all large n. Let n1 > −w be

an integer such that x(n) > 0 for all n > n1. Then, there exists n2 > n1 such that

x(τi(n)) > 0 for all n > n2, 1 6 i 6 m. In view of this, equation (E) becomes

∆x(n) = −
m
∑

i=1

pi(n)x(τi(n)) 6 0, n > n2,
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which means that the sequence (x(n)) is eventually decreasing. Furthermore, it is

not difficult to conclude that the function y is positive on the interval [n1,∞) and

that y is decreasing on [n2,∞).

Consider an arbitrary real number ε with 0 < ε < αi, where αi is defined by

(1.14). Then we can choose an integer n0 > n2 such that τi(n) > n2 for n > n0, and

n−1
∑

j=τi(n)

pi(j) > αi − ε > α− ε, n > n0, 1 6 i 6 m.

For any point t > n0, there exists an integer n > n0 such that n 6 t < n + 1, and

consequently

∫ t

ϕi(t)

qi(s) ds =

∫ t

τi(n)

qi(s) ds >

∫ n

τi(n)

qi(s) ds =
n−1
∑

j=τi(n)

pi(j) > αi − ε,

or

(2.6)

∫ t

ϕi(t)

qi(s) ds > α− ε, t > n0, 1 6 i 6 m.

Now we shall show that for each point t > n0, there exists a t∗ > t such that

ϕi(t
∗) < t, and

(2.7)

∫ t∗

t

qi(s) ds = α− ε.

Indeed, let us consider an arbitrary point t > n0. Set

fi(̺) =

∫ ̺

t

qi(s) ds for ̺ > t.

We see that fi(t) = 0. Moreover, it is not difficult to show that (2.6) guarantees that
∫

∞

0
qi(s) ds = ∞ and, in particular,

∫

∞

t
qi(s) ds = ∞, i.e., lim

̺→∞

fi(̺) = ∞. Thus,
as the function fi is continuous on the interval [t,∞), there always exists a point

t∗ > t such that fi(t
∗) = α − ε, i.e., such that (2.7) is satisfied. Using (2.6) (for the

point t∗) as well as (2.7), we obtain

∫ t

ϕi(t∗)

qi(s) ds =

∫ t∗

ϕi(t∗)

qi(s) ds−
∫ t∗

t

qi(s) ds > (α− ε)− (α − ε) = 0,

which means that ϕi(t
∗) < t.
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Now, we choose an integer n3 > n0 such that τi(n) > n0 for all n > n3. Let us

consider an arbitrary point t > n3. Then there exists a t
∗ > t such that ϕi(t

∗) < t,

and (2.7) holds. From (2.5) it follows that

(2.8) y(t) = y(t∗) +

m
∑

i=1

∫ t∗

t

qi(s)y(ϕi(s)) ds.

Let s be any point with t 6 s 6 t∗. As the function ϕ is increasing on [0,∞), we have

n0 6 ϕ(t) 6 ϕ(s) 6 ϕ(t∗) < t, and n2 6 ϕ(u) 6 ϕ(t) for every u with ϕ(s) 6 u 6 t.

Thus, by taking into account the fact that the function y is decreasing on [n2,∞),

from (2.5) we obtain

y(ϕ(s)) = y(t) +

m
∑

i=1

∫ t

ϕ(s)

qi(u)y(ϕi(u)) du

> y(t) +
m
∑

i=1

∫ t

ϕ(s)

qi(u)y(ϕ(u)) du > y(t) +
m
∑

i=1

(
∫ t

ϕ(s)

qi(u) du

)

y(ϕ(t))

= y(t) +

m
∑

i=1

(
∫ s

ϕ(s)

qi(u) du−
∫ s

t

qi(u) du

)

y(ϕ(t)).

So, by applying (2.6) (for the point s), we get

(2.9) y(ϕ(s)) > y(t) +

(

m(α− ε)−
m
∑

i=1

∫ s

t

qi(u) du

)

y(ϕ(t)).

As this inequality holds true for all s with t 6 s 6 t∗, combining (2.8) and (2.9) we

have

y(t) = y(t∗) +

m
∑

i=1

∫ t∗

t

qi(s)y(ϕi(s)) ds > y(t∗) +

m
∑

i=1

∫ t∗

t

qi(s)y(ϕ(s)) ds(2.10)

> y(t∗) +

m
∑

i=1

∫ t∗

t

qi(s)

(

y(t) +

(

m(α− ε)−
m
∑

i=1

∫ s

t

qi(u) du

)

y(ϕ(t))

)

ds

= y(t∗) +

( m
∑

i=1

∫ t∗

t

qi(s) ds

)

y(t) +

{

m(α− ε)

m
∑

i=1

∫ t∗

t

qi(s) ds

−
m
∑

i=1

m
∑

i=1

∫ t∗

t

qi(s)

(
∫ s

t

qi(u) du

)

ds

}

y(ϕ(t))

or

y(t) > y(t∗) +m(α− ε)y(t)

+

{

m2(α − ε)2 −
m
∑

i=1

m
∑

i=1

∫ t∗

t

qi(s)

(
∫ s

t

qi(u) du

)

ds

}

y(ϕ(t)).
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Noting the known formula

∫ t∗

t

qi(s)

(
∫ s

t

qi(u) du

)

ds =

∫ t∗

t

qi(u)

(
∫ t∗

u

qi(s) ds

)

du

or
∫ t∗

t

qi(s)

(
∫ s

t

qi(u) du

)

ds =

∫ t∗

t

qi(s)

(
∫ t∗

s

qi(u) du

)

ds,

we have

∫ t∗

t

q(s)

(
∫ s

t

q(u) du

)

ds(2.11)

=
1

2

{
∫ t∗

t

q(s)

(
∫ s

t

q(u) du

)

ds+

∫ t∗

t

q(s)

(
∫ t∗

s

q(u) du

)

ds

}

=
1

2

∫ t∗

t

q(s)

(
∫ s

t

q(u) du+

∫ t∗

s

q(u) du

)

ds

=
1

2

∫ t∗

t

q(s)

(
∫ t∗

t

q(u) du

)

ds =
1

2

(
∫ t∗

t

q(s) ds

)2

=
1

2
(α− ε)2.

Combining (2.10) and (2.11) we have

y(t) > y(t∗) +m(α− ε)y(t) +
(

m2(α− ε)2 − m2

2
(α− ε)2

)

y(ϕ(t)).

Since m > 1, the last inequality guarantees that

(2.12) y(t) > y(t∗) + (α− ε)y(t) +
1

2
(α− ε)2y(ϕ(t)).

Therefore

(2.13) y(t) >
(α− ε)2

2(1− (α− ε))
y(ϕ(t)) = λ1y(ϕ(t)), t > n3,

where λ1 = (α − ε)2/(2(1− (α − ε))).

Let us again consider an arbitrary point t > n3. Then there exists a t
∗ > t such

that ϕ(t∗) < t, and (2.7) holds. Then (2.12) is also fulfilled. Moreover, in view of

(2.13) (for the point t∗), we have

y(t∗) > λ1y(ϕ(t
∗)) > λ1y(t)

and hence (2.12) yields

y(t) > λ1y(t) + (α− ε)y(t) +
1

2
(α− ε)2y(ϕ(t))
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or

(1− (α− ε)− λ1)y(t) >
1

2
(α− ε)2y(ϕ(t)).

This implies, in particular, that 1− (α− ε)− λ1 > 0. Consequently,

y(t) >
(α− ε)2

2(1− (α − ε)− λ1)
y(ϕ(t)) = λ2y(ϕ(t)), t > n3,

where λ2 = (α − ε)2/(2(1− (α − ε)− λ1)).

Following the above procedure, we can inductively construct a sequence of positive

real numbers (λν)ν>1 with

1− (α− ε)− λν > 0, ν = 1, 2, . . .

and

λν+1 =
(α − ε)2

2(1− (α− ε)− λν)
, ν = 1, 2, . . .

such that

(2.14) y(t) > λνy(ϕ(t)), t > n3, ν = 1, 2, . . .

As λ1 > 0, we obtain

λ2 =
(α− ε)2

2(1− (α− ε)− λ1)
>

(α− ε)2

2(1− (α− ε))
= λ1,

i.e., λ2 > λ1. By an easy induction, one can immediately see that the sequence

(λν)ν>1 is strictly increasing. Furthermore, by taking into account the fact that the

function y is decreasing on [n2,∞) and using (2.14) (for t = n3), we get

y(n3) > λνy(ϕ(n3)) > λνy(n3), ν = 1, 2, . . .

Therefore, for each integer ν > 1, we have λν < 1. This ensures that the sequence

(λν)ν>1 is bounded. Since (λν)ν>1 is a strictly increasing and bounded sequence of

positive real numbers, it follows that lim
ν→∞

λν exists as a positive real number.

Set Λ = lim
ν→∞

λν . Then (2.14) gives

(2.15) y(t) > Λy(ϕ(t)), t > n3.

Because of the definition of (λν)ν>1, it holds that

Λ =
(α− ε)2

2(1− (α− ε)− Λ)
,
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i.e.,

Λ =
1− (α− ε)±

√

1− 2(α− ε)− (α− ε)2

2
.

Therefore

Λ >
1− (α− ε)−

√

1− 2(α− ε)− (α − ε)2

2

and consequently (2.15) yields

(2.16) y(t) >
1− (α− ε)−

√

1− 2(α− ε)− (α− ε)2

2
y(ϕ(t)), t > n3.

Let n be an arbitrary integer with n > n3. Then, by (2.15),

y(t) >
1− (α− ε)−

√

1− 2(α− ε)− (α− ε)2

2
y(ϕ(t)) for n 6 t < n+ 1.

But, y(ϕ(t)) = y(τ(n)) = x(τ(n)) for n 6 t < n+ 1. So,

y(t) >
1− (α− ε)−

√

1− 2(α− ε)− (α− ε)2

2
x(τ(n)) for n 6 t < n+ 1

and therefore

lim
t→(n+1)−0

y(t) >
1− (α− ε)−

√

1− 2(α− ε)− (α− ε)2

2
x(τ(n)).

Note that lim
t→(n+1)−0

y(t) = y(n+ 1) = x(n+ 1). We have thus proved that

(2.17) x(n+ 1) >
1− (α− ε)−

√

1− 2(α− ε)− (α− ε)2

2
x(τ(n)), n > n3.

Finally, we see that (2.17) is written as

x(n+ 1)

x(τ(n))
>

1− (α − ε)−
√

1− 2(α− ε)− (α− ε)2

2
, n > n3

and consequently

lim inf
n→∞

x(n+ 1)

x(τ(n))
>

1− (α− ε)−
√

1− 2(α− ε)− (α − ε)2

2
.

The last inequality holds true for all real numbers ε with 0 < ε < α. Hence, we

obtain (2.1).
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Next, we consider the particular case where (2.2) holds. Then

pi(n) >
α− ε

2
for all large n, 1 6 i 6 m.

In view of (2.1), it is clear that x(n+1)> 1
2 (1−(α−ε)−

√

1−2(α−ε)−(α−ε)2)x(τ(n)).

Thus, from (E) we have

x(n) = x(n+ 1) +

m
∑

i=1

pi(n)x(τi(n)) > x(n+ 1) +

m
∑

i=1

pi(n)x(τ(n))

>
1− (α− ε)−

√

1− 2(α− ε)− (α − ε)2

2
x(τ(n)) +

α− ε

2
x(τ(n)),

or

(2.18) x(n) >
1−

√

1− 2(α− ε)− (α− ε)2

2
x(τ(n)).

Summing up (E) from τ(n) to n − 1, and using the fact that the function x is

decreasing and the function τ (as defined by (1.7)) is increasing, we have

x(τ(n)) = x(n) +
m
∑

i=1

n−1
∑

j=τ(n)

pi(j)x(τi(j)) > x(n) +
m
∑

i=1

n−1
∑

j=τ(n)

pi(j)x(τ(j))

> x(n) + x(τ(n − 1))

m
∑

i=1

n−1
∑

j=τ(n)

pi(j),

which, in view of (1.14) and (1.13), gives

(2.19) x(τ(n)) > x(n) + (α− ε)x(τ(n − 1)).

Combining inequalities (2.18) and (2.19), we obtain

x(n) >
1−

√

1− 2(α− ε)− (α− ε)2

2
(x(n) + (α− ε)x(τ(n − 1))),

or
x(n)

x(τ(n − 1))
> 2

1−
√

1− 2(α− ε)− (α− ε)2

2 + (α− ε)
− (α− ε),

and, for large n, we have

x(n+ 1)

x(τ(n))
> 2

1−
√

1− 2(α− ε)− (α− ε)2

2 + (α− ε)
− (α − ε).

Hence,

lim inf
n→∞

x(n+ 1)

x(τ(n))
> 2

1−
√

1− 2(α− ε)− (α− ε)2

2 + (α− ε)
− (α − ε),

which, for arbitrarily small values of ε, implies (2.3).

The proof of the lemma is complete. �
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Our main result is the following theorem.

Theorem 2.1. Assume that the sequences (τi(n)) [(σi(n))], 1 6 i 6 m are

increasing, (1.1), [(1.2)] holds, (τ(n)) [(σ(n))] is defined by (1.7) [(1.8)], and define

α by (1.13).

If 0 < α 6 1/e, and

lim sup
n→∞

m
∑

i=1

n
∑

j=τ(n)

pi(j) > 1− 1− α−
√
1− 2α− α2

2
(2.20)

[

lim sup
n→∞

m
∑

i=1

σ(n)
∑

j=n

pi(j) > 1− 1− α−
√
1− 2α− α2

2

]

,

then all solutions of (E) oscillate.

If, additionally, (2.2) holds and

lim sup
n→∞

m
∑

i=1

n
∑

j=τ(n)

pi(j) > 1−
(

2
1−

√
1− 2α− α2

2 + α
− α

)

(2.21)

[

lim sup
n→∞

m
∑

i=1

σ(n)
∑

j=n

pi(j) > 1−
(

2
1−

√
1− 2α− α2

2 + α
− α

)]

,

then all solutions of (E) oscillate.

P r o o f. The proof below refers to the retarded difference equation (E). The proof

for the advanced difference equation (E) follows by a similar procedure and is omit-

ted.

Assume, for the sake of contradiction, that (x(n))n>−w is a nonoscillatory solution

of (E). Then it is either eventually positive or eventually negative. As (−x(n))n>−w

is also a solution of (E), we may restrict ourselves only to the case where x(n) > 0

for all large n. Let n1 > −w be an integer such that x(n) > 0 for all n > n1. Then,

there exists n2 > n1 such that x(τi(n)) > 0, for all n > n2, 1 6 i 6 m. In view of

this, equation (E) becomes

∆x(n) = −
m
∑

i=1

pi(n)x(τi(n)) 6 0, n > n2,

which means that the sequence (x(n)) is eventually decreasing.

Summing up (E) from τ(n) to n, and using the fact that the function x is decreasing

and the function τ (as defined by (1.7)) is increasing, we obtain, for every n > n2

x(τ(n)) = x(n+ 1) +

m
∑

i=1

n
∑

j=τ(n)

pi(j)x(τi(j)) > x(n+ 1) + x(τ(n))

m
∑

i=1

n
∑

j=τ(n)

pi(j).
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Consequently,
m
∑

i=1

n
∑

j=τ(n)

pi(j) 6 1− x(n+ 1)

x(τ(n))
, n > n2,

which gives

(2.22) lim sup
n→∞

m
∑

i=1

n
∑

j=τ(n)

pi(j) 6 1− lim inf
n→∞

x(n+ 1)

x(τ(n))
.

First, assume that 0 < α 6 1/e (clearly, α < −1 +
√
2). Then by Lemma 2.1,

inequality (2.1) is fulfilled, and so (2.22) leads to

lim sup
n→∞

m
∑

i=1

n
∑

j=τ(n)

pi(j) 6 1− 1− α−
√
1− 2α− α2

2
,

which contradicts condition (2.20).

Next, let us suppose that (2.2) holds. Then Lemma 2.1 ensures that (2.3) is

satisfied. Thus, from (2.22), it follows that

lim sup
n→∞

m
∑

i=1

n
∑

j=τ(n)

pi(j) 6 1−
(

2
1−

√
1− 2α− α2

2 + α
− α

)

,

which contradicts condition (2.21).

The proof of the theorem is complete. �

R em a r k 2.1. It is easy to see that

2
1−

√
1− 2α− α2

2 + α
− α >

1− α−
√
1− 2α− α2

2

> α

(

1

3
√
1− α+ α− 2

− 1

)

> (1−
√
1− α)2.

Therefore, when (2.2) holds, then condition (2.21) is weaker than conditions (2.20),

(1.17) and (1.15).

R em a r k 2.2. When α → 0, then all the above mentioned conditions (2.21),

(2.20), (1.17) and (1.15) reduce to

lim sup
n→∞

m
∑

i=1

n
∑

j=τ(n)

pi(j) > 1

[

lim sup
n→∞

m
∑

i=1

σ(n)
∑

j=n

pi(j) > 1

]

,
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that is, to condition (1.11). However, the improvement is clear when

α → 1

e
≃ 0.367879441.

For illustrative purposes we give the values of the lower bound on the above condi-

tions when α = 0.367879441:

(1.15): 0.957999636,

(1.17): 0.879366479,

(2.20): 0.863457014,

(2.21): 0.826495955.

That is, our conditions (2.20) and (2.21) essentially improve (1.11), (1.15) and

(1.17).

3. Examples

We illustrate the significance of our results by the following examples.

E x am p l e 3.1. Consider the difference equation with three retarded arguments

(3.1) ∆x(n) + p1(n)x(n − 1) + p2(n)x(n− 2) + p3(n)x(n− 3) = 0, n > 0,

where

p1(2n) =
7

100
, p1(2n+ 1) =

4

10
,

p2(3n) = p2(3n+ 1) =
5

100
, p2(3n+ 2) =

35

100
,

p3(4n) = p3(4n+ 1) = p3(4n+ 2) =
3

100
, p3(4n+ 3) =

98

1000
.

Here m = 3, τ1(n) = n− 1, τ2(n) = n− 2, τ3(n) = n− 3 and τ(n) = n− 1. It is easy

to see that

α1 = lim inf
n→∞

n−1
∑

j=n−1

p1(j) =
7

100
= 0.07,

α2 = lim inf
n→∞

n−1
∑

j=n−2

p2(j) = 2 · 5

100
= 0.1,

α3 = lim inf
n→∞

n−1
∑

j=n−3

p3(j) = 3 · 3

100
= 0.09.
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Thus

α = min{αi : 1 6 i 6 3} = min{0.07, 0.1, 0.09}= 0.07 <
1

e
.

Also,

lim sup
n→∞

3
∑

i=1

n
∑

j=n−1

pi(j) = lim sup
n→∞

( n
∑

j=n−1

p1(j) +

n
∑

j=n−1

p2(j) +

n
∑

j=n−1

p3(j)

)

=
7

100
+

4

10
+

5

100
+

35

100
+

3

100
+

98

1000
= 0.998.

Observe that

0.998 > 1− 1− α−
√
1− 2α− α2

2
≃ 0.997358086,

that is, condition (2.20) of Theorem 2.1 is satisfied and therefore all solutions of

equation (3.1) oscillate.

Observe, however, that

0.998 < 1,

0.998 < 1− (1−
√
1− α)2 ≃ 0.998730152,

lim inf
n→∞

3
∑

i=1

n−1
∑

j=τ(n)

pi(j) = lim inf
n→∞

( n−1
∑

j=n−1

p1(j) +
n−1
∑

j=n−1

p2(j) +
n−1
∑

j=n−1

p3(j)

)

=
7

100
+

5

100
+

3

100
= 0.15 <

1

e
,

lim inf
n→∞

3
∑

i=1

n−1
∑

j=n−ki

pi(j) = lim inf
n→∞

( n−1
∑

j=n−1

p1(j) +

n−1
∑

j=n−2

p2(j) +

n−1
∑

j=n−3

p3(j)

)

=
7

100
+ 2 · 5

100
+ 3 · 3

100
= 0.26 <

1

e
,

lim inf
n→∞

3
∑

i=1

(ki + 1

ki

)ki+1
n+ki
∑

j=n+1

pi(j)

= lim inf
n→∞

(

(2

1

)2 n+1
∑

j=n+1

p1(j) +
(3

2

)3 n+2
∑

j=n+1

p2(j) +
(4

3

)4 n+3
∑

j=n+1

p2(j)

)

= 22 · 7

100
+
(3

2

)3

· 2 · 5

100
+
(4

3

)4

· 3 · 3

100
= 0.901944444< 1,

3
∑

i=1

(

lim inf
n→∞

pi(n)
) (ki + 1)

(ki)ki

ki+1

=
7

100
· 2

2

11
+

5

100
· 3

3

22
+

3

100
· 4

4

33

= 0.901944444< 1,
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lim inf
n→∞

n−1
∑

j=τ(n)

3
∑

i=1

pi(j)
(n− τi(j) + 1

n− τi(j)

)n−τi(j)+1

=
(2

1

)2

· 7

100
+
(3

2

)3

· 5

100
+
(4

3

)4

· 3

100
= 0.543564814 < 1,

and therefore none of the conditions (1.11), (1.15), (1.10), (1.12), (1.4), (1.3) and

(1.9) is satisfied.

E x am p l e 3.2. Consider the difference equation with two retarded arguments

(3.2) ∆x(n) + p1(n)x(n− 2) + p2(n)x(n − 1) = 0, n > 0,

where

p1(3n) = p1(3n+ 1) =
1

10
, p1(3n+ 2) =

1

2
, n > 0,

p2(2n) =
7

100
, p2(2n+ 1) =

3273

10000
, n > 0.

Here m = 2, τ1(n) = n− 2, τ2(n) = n− 1 and τ(n) = n− 1. It is easy to see that

α1 = lim inf
n→∞

n−1
∑

j=n−2

p1(j) = 2 · 1

10
= 0.2,

α2 = lim inf
n→∞

n−1
∑

j=n−1

p2(j) =
7

100
= 0.07.

Thus

α = min{αi : 1 6 i 6 2} = min{0.2, 0.07} = 0.07 <
1

e
.

Furthermore, it is clear that

pi(n) >
α

2
= 0.035 for all large n, 1 6 i 6 2,

pi(n) > 1−
√
1− α ≃ 0.035634923 for all large n, 1 6 i 6 2.

Also,

lim sup
n→∞

2
∑

i=1

n
∑

j=n−1

pi(j) = lim sup
n→∞

( n
∑

j=n−1

p1(j) +
n
∑

j=n−1

p2(j)

)

=
1

10
+

1

2
+

7

100
+

3273

10000
= 0.9973.

Observe that

0.9973 > 1−
(

2
1−

√
1− 2α− α2

2 + α
− α

)

≃ 0.997262002,
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that is, conditions (2.2) and (2.21) of Theorem 2.1 are satisfied and therefore all

solutions of equation (3.2) oscillate.

Observe, however, that

0.9973 < 1,

lim inf
n→∞

3
∑

i=1

n−1
∑

j=τ(n)

pi(j) = lim inf
n→∞

( n−1
∑

j=n−1

p1(j) +

n−1
∑

j=n−1

p2(j)

)

=
1

10
+

7

100
= 0.17 <

1

e
,

lim inf
n→∞

2
∑

i=1

n−1
∑

j=τi(n)

pi(j) = lim inf
n→∞

( n−1
∑

j=n−2

p1(j) +
n−1
∑

j=n−1

p2(j)

)

= 2
1

10
+

7

100
= 0.27 <

1

e
,

0.9973 < 1− (1−
√
1− α)2 ≃ 0.998730152,

0.9973 < 1− α

(

1

3
√
1− α+ α− 2

− 1

)

≃ 0.997317675,

lim inf
n→∞

2
∑

i=1

(ki + 1

ki

)ki+1 n−1
∑

j=n−ki

pi(j) = lim inf
n→∞

((3

2

)3

2
1

10
+ 22

7

100

)

= 0.955 < 1,

0.9973 < 1− 1− α−
√
1− 2α− α2

2
≃ 0.997358086,

lim inf
n→∞

n−1
∑

j=τ(n)

2
∑

i=1

pi(j)
(n− τi(j) + 1

n− τi(j)

)n−τi(j)+1

=
(3

2

)3 1

10
+
(2

1

)2 7

100
= 0.61754 < 1,

and therefore none of the conditions (1.11), (1.10), (1.12), (1.15), (1.17), (1.6), (2.20)

and (1.9) is satisfied.

E x am p l e 3.3. Consider the advanced difference equation

(3.3) ∇x(n)− p1(n)x(n + 2)− p2(n)x(n+ 1) = 0, n > 1

where

p1(3n) = p1(3n+ 1) =
1

10
, p1(3n+ 2) =

1

2
, n > 1

p2(2n) =
8

100
, p2(2n+ 1) =

3164

10000
, n > 1.
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Here m = 2, σ1(n) = n+ 2, σ2(n) = n+ 1 and σ(n) = n+ 1. It is easy to see that

α1 = lim inf
n→∞

n+2
∑

j=n+1

p1(j) = 2 · 1

10
= 0.2,

α2 = lim inf
n→∞

n+1
∑

j=n+1

p2(j) =
8

100
= 0.08.

Thus

α = min{αi : 1 6 i 6 2} = min{0.2, 0.08} = 0.08 <
1

e
.

Furthermore, it is clear that

pi(n) >
α

2
= 0.04 for all large n, 1 6 i 6 2,

pi(n) > 1−
√
1− α ≃ 0.040833695 for all large n, 1 6 i 6 2.

Also,

lim sup
n→∞

2
∑

i=1

σ(n)
∑

j=n

pi(j) = lim sup
n→∞

(n+1
∑

j=n

p1(j) +

n+1
∑

j=n

p2(j)

)

=
1

10
+

1

2
+

8

100
+

3164

10000
= 0.9964.

Observe that

0.9964 > 1−
(

2
1−

√
1− 2α− α2

2 + α
− α

)

≃ 0.996362477,

that is, conditions (2.2) and (2.21) of Theorem 2.1 are satisfied and therefore all

solutions of equation (3.3) oscillate.

Observe, however, that

0.9964 < 1,

lim inf
n→∞

2
∑

i=1

n+ki
∑

j=n+1

pi(j) = lim inf
n→∞

( n+2
∑

j=n+1

p1(j) +

n+1
∑

j=n+1

p2(j)

)

= 0.2 + 0.08 = 0.28 <
1

e
,

0.9964 < 1− (1−
√
1− α)2 ≃ 0.998332609,

0.9964 < 1− α

(

1

3
√
1− α+ α− 2

− 1

)

≃ 0.996448991,

lim inf
n→∞

2
∑

i=1

(ki + 1

ki

)ki+1 n−1
∑

j=n−ki

pi(j) = lim inf
n→∞

((3

2

)3

2
1

10
+ 22

8

100

)

= 0.995 < 1,

0.9964 < 1− 1− α−
√
1− 2α− α2

2
≃ 0.996508488,
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and therefore none of the conditions (1.11), (1.12), (1.15), (1.17), (1.6) and (2.20) is

satisfied.

A c k n ow l e d g em e n t. The authors would like to thank the referee for the

constructive remarks which improved the presentation of the paper.
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