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Abstract. We study ergodic properties of stochastic geometric wave equations on a par-
ticular model with the target being the 2D sphere while considering only solutions which are
independent of the space variable. This simplification leads to a degenerate stochastic equa-
tion in the tangent bundle of the 2D sphere. Studying this equation, we prove existence and
non-uniqueness of invariant probability measures for the original problem and obtain also
results on attractivity towards an invariant measure. We also present a structure-preserving
numerical scheme to approximate solutions and provide computational experiments to mo-
tivate and illustrate the theoretical results.
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1. Introduction

Wave equations subject to random excitations have been largely studied in the

last fourty years for their applications in physics, relativistic quantum mechanics

or oceanography, see e.g. [12]–[15], [18], [19], [27]–[30], [34]–[40]. The mathematical

research has paid attention predominantly to stochastic wave equations whose solu-

tions took values in Euclidean spaces, however many physical theories and models

in modern physics such as harmonic gauges in general relativity, nonlinear σ-models

The research of the fourth named author was supported by the GAČR Grant number
P201/10/0752. This work was partially supported by the Australian Research Council
Discovery Project DP120101886.
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in particle systems, electro-vacuum Einstein equations or Yang-Mills field theory re-

quire the target space of the solutions to be a Riemannian manifold, see e.g. [21]

and [41]. Stochastic wave equations with values in Riemannian manifolds were first

studied in [11] (see also [10]) where existence and uniqueness of global strong so-

lutions were proved for equations defined on the one-dimensional Minkowski space

R
1+1 and arbitrary Riemannian manifold. Later, in [9], global existence was proved

for equations on a general Minkowski space R1+d with the target space being re-

stricted to homogeneous spaces (for instance, a sphere) and, in [10], global existence

of weak solutions was proved for equations on R
1+1 with an arbitrary target. The

last two works admitted rougher noises than in [11], but for the price of not dealing

with the question of uniqueness and of worse spatial regularity of the solutions.

In the present paper, we intend to open the door and enter into the study of

ergodic properties of solutions of these equations. In particular, we are interested

in existence and uniqueness (or multitude) of invariant measures of the Markov

semigroup associated with solutions of a stochastic geometric equation and we also

want to address the questions of ergodic properties and of the rates of convergence

to an attracting law, if there is any.

This goal, however, seems to be fairly complicated and too ambitious to achieve

at once, hence we will proceed a minori ad majus and study just space independent

solutions of a damped stochastic geometric wave equation in the 2D sphere. This

particular exemplary equation is, in our opinion, quite illustrative to understand

what one can expect in the general case. In this way, the stochastic equation will

reduce to a degenerate second order stochastic differential equation with values in

the tangent bundle TS2. We will prove that there exist plenty of invariant mea-

sures and that the system always converges in total variation to a limit law. If we

however restrict the state space to a suitable submanifold in TS2 then there exists

just one unique invariant measure (the normalized surface measure on this submani-

fold) which attracts every initial distribution in total variation with an exponential

rate.

A further goal of this paper is to construct a numerical scheme for solving a class of

SDEs on manifolds—the geodesic equation on the sphere S2 with stochastic forcing.

A convergent discretization in space and time for a first order stochastic Landau-

Lifshitz-Gilbert equation where solutions take values in S
2 is proposed in [3], [4];

the present case is however very different, and the structure preserving discretiza-

tion given in Section 6.1 is inspired by the “discrete Lagrange multiplier” strategy

developed in [6].

Computational examples for the stochastic geodesic equation on the sphere are

provided in Section 6.2 to motivate long-time asymptotics, which is then studied

analytically in the later sections.
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2. Notation and conventions

If Y is a topological space, we will denote by Bb(Y ) the space of real bounded

Borel functions on Y , by Cb(Y ) the space of real bounded continuous functions on Y ,

by B(Y ) the Borel σ-algebra over Y . We will work on a probability space (Ω,F ,P)

equipped with a filtration (Ft) such that F0 contains all P-negligible sets in F

and W will be a standard (Ft)-Wiener process. Throughout this paper, all initial

conditions are assumed to be F0-measurable.

3. The problem

Let M be a compact m-dimensional Riemannian manifold embedded in a Eu-

clidean space Rn. Denote by TpM the tangent space at p ∈M , by NpM = (TpM)⊥

the normal space at p ∈M , by TM =
⋃

p∈M

TpM and T
kM =

⋃
p∈M

(TpM)k the tangent

bundle and the k-tangent bundle of M , respectively, by Sp : TpM × TpM → NpM ,

p ∈ M the second fundamental form of M in R
n, and let W be, for simplicity,

a one-dimensional Wiener process. According to [11], the general Cauchy problem

for a stochastic geometric wave equation has the form

dut =

(
∆u−

m∑

i=1

Su(uxi
, uxi

) + Su(ut, ut) + Fu(Du)

)
dt+Gu(Du) dW(3.1)

u ∈M, (u(0), ut(0)) ∈ TM(3.2)

where F is a drift, G a diffusion andDu denotes the (m+1)-tuple (ut, ux1
, . . . , uxm

) in

the equation (3.1). For the equation to make sense, it is required that F : Tm+1M →
TM and G : Tm+1M → TM are Borel measurable and that Fp(X0, . . . , Xm) and

Gp(X0, . . . , Xm) belong to the tangent space TpM for every p ∈ M and every

X0, . . . , Xm ∈ TpM .

In case M is the unit sphere in R
3 then the second fundamental form satisfies

Sp(X,Y ) = −〈X,Y 〉p. If we set Fp(X0, X1, X2) = −X0/2, Gp(X0, X1, X2) = p×X0

then the equation (3.1) with the constraints (3.2) has the form

(3.3) dut =
(
∆u+ (|∇u|2 − |ut|2)u−

1

2
ut

)
dt+ u× ut dW, |u| = 1, u(0) ⊥ ut(0).

If we consider just space independent solutions, i.e. solutions independent of the

spatial variables, then (3.3) reduces to an Itô SDE

(3.4) du′ =
(
−|u′|2u− 1

2
u′
)
dt+ (u× u′) dW, |u| = 1, u(0) ⊥ u′(0),
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or, equivalently, to a Stratonovich SDE

(3.5) du′ = −|u′|2u dt+ (u× u′) ◦ dW, |u| = 1, u(0) ⊥ u′(0),

which is the stochastic geodesic equation for the unit sphere.1 Let us rewrite (3.5)

to two equations of first order equations

(3.6) dz = f(z) dt+ g(z) ◦ dW, z ∈ TS2, z(0) ∈ TS2,

where TS2 ⊆ R
6 is the tangent bundle of S2, i.e. TS2 = {(u, v) : |u| = 1, u ⊥ v},

and

(3.7) z =

(
u

v

)
, f(z) =

(
v

−|v|2u

)
, g(z) =

(
0

u× v

)
.

Remark 3.1. Observe that the restrictions of f and g to TS2 are vector fields on

the manifold TS2. Hence (3.6) is a correctly defined stochastic differential equation

on the manifold TS2, cf. [26], Chapter V.

The equation (3.4) and its equivalent formulations (3.5), (3.6) will be the object

of study of the present paper. It is also important to realize while reading the paper

that (3.4) is a particular case of the stochastic geometric wave equation (3.1)–(3.2).

4. Basic properties of solutions of the SDE

We will study existence of global solutions, dependence on initial conditions, some

further qualitative properties of solutions of the equation (3.6) and the Feller property

of the associated Markov semigroup.

4.1. Global existence. The nonlinearities of the equation (3.6) are locally Lip-

schitz on R
6, hence, by the standard existence result (see e.g. [26], Lemma 2.1), the

equation (3.6) considered without the constraint,

(4.1) dz = f(z) dt+ g(z) ◦ dW, z(0) ∈ TS2,

has a unique local solution z in R
6 defined up to an explosion time τ > 0, i.e.,

(4.2) lim sup
t↑τ

|z(t)| = ∞ a.s. on [τ <∞].

1 The geodesic equation for the unit sphere has the form u′′ = −|u′|2u, |u| = 1,
u′(0) ⊥ u(0).
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Proposition 4.1. The solution to (4.1) is unique, global and satisfies z = (u, v) ∈
TS2, i.e. it is a solution to the equation (3.6). Moreover, |v(t)| = |v(0)| for every
t > 0 a.s.

P r o o f. Applying the Itô formula to |u|2, we obtain that φ = |u|2 − 1 satisfies

a.s. on [0, τ) the ODE

(4.3) φ′′ = −2|v|2φ− 1

2
φ′, φ(0) = 0, φ′(0) = 0.

Hence, by the uniqueness of the solutions to the equation (4.3), we obtain that φ = 0

on [0, τ), consequently, |u| = 1 on [0, τ) a.s. In particular, differentiating |u|2 = 1,

we obtain that u ⊥ v = 0 on [0, τ) a.s. Now, applying the Itô formula to |v|2, we
obtain that ϕ = |v|2 satisfies on [0, τ) a.s. the equation

ϕ′ = −(1 + 2〈u, v〉)|v|2 + |u× v|2.

The right hand side equals

−(1 + 2〈u, v〉)|v|2 + |u|2|v|2 − 〈u, v〉2 = 0

as u ⊥ v and |u| = 1 a.s. Hence |v| is pathwise constant. In particular, τ = ∞ a.s.
by (4.2). �

4.2. The Markov and the Feller properties. Define Y = R
n. It is well known

that if f̃ , g̃ are C∞ vector fields on R
n with a compact support and uξ denotes the

solution of the equation

(4.4) dX = f̃(X) dt+ g̃(X) ◦ dW, X(0) = ξ

for an F0-measurable Y -valued random variable ξ then the solutions of the equa-

tion (4.4) possess the Markov property and define a Feller semigroup2 on Y by which

we mean that

(a) the transition function

qt,x(A) = P[ux(t) ∈ A], t > 0, x ∈ Y, A ∈ B(Y )

is jointly measurable in (t, x) ∈ [0,∞)× Y for every A ∈ B(Y ),

2 We allow here a little inaccuracy. More precisely, the semigroup is defined on the space
of bounded Borel functions on Y .
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(b) the endomorphisms on Bb(Y )

Qtϕ(x) = Eϕ(ux(t)), t > 0, x ∈ Y, ϕ ∈ Bb(Y )

possess the semigroup property, i.e., Qt ◦Qs = Qt+s for every t, s > 0,

(c) Qtϕ is continuous on Y whenever t > 0 and ϕ ∈ Cb(Y ),

(d) E[ϕ(uξ(t));Fs] = (Qt−sϕ)(u
ξ(s)) holds a.s. for every ϕ ∈ Bb(Y ), 0 6 s 6 t and

an F0-measurable Y -valued random variable ξ,

see e.g. [17], Section 9.2.1. In fact, (a) and (c) follow simply from the fact that

(4.5) Qtϕ(x) is jointly continuous in (t, x) on [0,∞)× Y if ϕ ∈ Cb(Y ),

see again [17], Section 9.2.1, for the proof of (4.5), and the semigroup property (b)

follows from the Markov property (d).

Moreover, if ϕ ∈ C2(Y ) with derivatives of order 0, 1, 2 bounded then

(4.6) ̺(t, x) = Qtϕ(x) belongs to C
1,2([0,∞)× Y )

with ̺, ∂̺/∂t, ∂̺/∂xi, ∂
2̺/∂xi∂xj bounded for every i, j ∈ {1, . . . , n} and it is

a solution to the backward Kolmogorov equation

(4.7)
∂U

∂t
=

n∑

i=1

f̃i
∂U

∂xi
+
1

2

n∑

i=1

n∑

j=1

g̃i
∂

∂xi

(
g̃j
∂U

∂xj

)
, U(0, x) = ϕ(x) for every x ∈ Y

unique in the class C1,2([0,∞)× Y ), see e.g. [17], Section 9.3.

Unfortunately, the coefficients of the equation (3.6) are not compactly supported

so we cannot simply conclude that the solutions of (3.6) possess the Markov property

and define a Feller semigroup in the sense (a)–(d) above. Yet, it is true, as it will be

shown below.

Notation 4.2. From now on, zξ denotes the solution of (3.6) with the initial

condition ξ, pt,x(A) = P[zx(t) ∈ A] and Ptϕ(x) = Eϕ(zx(t)) are defined for ϕ ∈
Bb(TS

2), t > 0, x ∈ TS2 and A ∈ B(TS2).

Proposition 4.3. The solutions of (3.6) satisfy the Markov property and define

a Feller semigroup on TS2. In fact, Ptϕ(x) is jointly continuous in (t, x) on [0,∞)×
TS2 for every ϕ ∈ Cb(TS

2) and

E[ϕ(zξ(t));Fs] = (Pt−sϕ)(z
ξ(s)) a.s.
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holds for every ϕ ∈ Bb(TS
2), 0 6 s 6 t and every initial TS2-valued initial condi-

tion ξ.

P r o o f. Let us prove the joint continuity assertion first. Assume that (tn, xn) →
(t, x) in [0,∞) × TS2 and let supn |xn| 6 l. Let f̃ , g̃ be compactly supported C∞

vector fields on R
6 such that f = f̃ and g = g̃ on the ball of radius l in R

6. Now

|zxn(t)| = |xn| 6 l and |zx(t)| = |x| 6 l holds for every t > 0 a.s. by Proposition 4.1

and hence zxn , zx are also solutions to the equation

dX = f̃(X) dt+ g̃(X) ◦ dW.

So, if ϕ ∈ Cb(TS
2) and ϕ̃ ∈ Cb(R

6) is any extension of ϕ (which always exists by the

Tietze theorem) then

lim
n→∞

Ptnϕ(xn) = lim
n→∞

Eϕ̃(zn(tn)) = Eϕ̃(z(t)) = Ptϕ(x)

by (4.5).

To prove the Markov property, let ξ = (ξ1, ξ2) be a TS2-valued initial condition

and define ξk = (ξ1, ξ21[|ξ2|6k]). Then ξk take values in TS
2 and by Proposition 4.1,

|zξk(t)| = |ξk| 6
√
1 + k2. Let f̃ , g̃ be compactly supported C∞ vector fields on R

6

such that f = f̃ and g = g̃ on the ball of radius
√
1 + k2 in R

6 and define Qtφ(y) =

Eφ(uy(t)) for φ ∈ Bb(R
6), y ∈ R

6, t > 0 and uy the solutions to dX = f̃(X) dt +

g̃(X)◦dW , X(0) = y. By the first part of the proof, we know that Ptϕ(x) = Qtϕ̃(x)

holds for every x ∈ TS2 such that |x| 6
√
1 + k2, ϕ ∈ Bb(TS

2), ϕ̃ ∈ Bb(R
6), ϕ = ϕ̃

on TS2 and t > 0.

Now zξk = uξk and if we define Ak = [|ξ2| 6 k] and ϕ̃ ∈ Bb(R
6) extends ϕ ∈

Bb(TS
2) then

1Ak
E[ϕ(zξ(t));Fs] = E[1Ak

ϕ(zξ(t));Fs]

= E[1Ak
ϕ(zξk(t));Fs] = 1Ak

E[ϕ(zξk(t));Fs]

= 1Ak
E[ϕ̃(uξk(t));Fs] = 1Ak

(Qt−sϕ̃)(u
ξk(s))

= 1Ak
(Pt−sϕ)(z

ξk(s)) = 1Ak
(Pt−sϕ)(z

ξ(s)) a.s.

by the Markov property of solutions of the equation (4.4). To obtain the result, let

k → ∞. �
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5. Multitude of invariant measures

Now we are ready to prove that the equation (3.6) and, consequently, also the

equation (3.3) have many invariant measures due to the geometric nature of the

equation.

Definition 5.1. Let Y be a Polish space, rt,x(·) probability measures on B(Y )

indexed by (t, x) ∈ [0,∞) × Y such that rt,x(A) is jointly measurable in (t, x) on

[0,∞)× Y for every A ∈ B(Y ) and the operators

Rtϕ(x) =

∫

Y

ϕdrt,x, ϕ ∈ Bb(Y ), t > 0

possess the semigroup property on Bb(Y ). We introduce the adjoint endomorphisms

R∗
t acting on the space of probability measures on B(Y ):

R∗
t ν(A) =

∫

Y

rt,x(A) dν(x), t > 0, A ∈ B(Y ).

A probability measure ν on B(Y ) is called invariant provided that

R∗
t ν = ν for all t > 0 and A ∈ B(Y ).

A probability measure on B(Y ) is called ergodic provided that it is an extreme point

in the convex set of invariant probability measures.

Remark 5.2. To make the meaning of the above definition clear, apply the

Markov property in Proposition 4.3 with s = 0. If ξ is an F0-measurable TS
2-valued

random variable with a distribution ν then P ∗
t ν is the law of z

ξ(t).

At this moment, we introduce subsets of the tangent bundle TS2

(5.1) Mr = {(u, v) ∈ TS2 : |v| = r}, r > 0.

Remark 5.3 (Invariance). If r > 0 and x ∈ Mr then z
x(t) ∈ Mr for every t > 0

a.s. If |u| = 1 then z(u,0)(t) = (u, 0) for every t > 0 a.s. These conclusions follow

directly from Proposition 4.1.

Corollary 5.4. Let r > 0. For every t > 0, Pt is an endomorphism on Bb(Mr).
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Corollary 5.5. Let x ∈M0. Then δx is an invariant measure.

We are going to prove that there is more to see than what was disclosed by

Corollary 5.5, on the sets Mr as far as invariant measures are concerned.

Remark 5.6. Observe that, for every r > 0, the mappings f and g in (3.7)

are vector fields on the manifold Mr. In particular, Proposition 4.1 is now a direct

consequence of the general result [26], Theorem 1.1, Chapter V.

In view of Remark 5.6, we can introduce the following second order differential

operator on Mr.

Definition 5.7. Define the second order differential operator

(5.2) Aϕ = f(ϕ) +
1

2
g(g(ϕ))

for ϕ ∈ C2(Mr) for r > 0.

The next result follows from [26], Chapter V, Theorem 3.1, but, rather than check-

ing the assumptions in [26], Chapter V, Section 3, we will give, for our purposes and

for the reader’s comfort, the short proof here.

Proposition 5.8. Let r > 0 and let ϕ ∈ C2(Mr). Then ̺(t, x) = Ptϕ(x) belongs

to C1,2([0,∞)×Mr) and satisfies the backward Kolmogorov equation

(5.3)
∂̺

∂t
= A̺ on [0,∞)×Mr, ̺(0, ·) = ϕ.

On the other hand, if ̺ ∈ C1,2([0,∞)×Mr) satisfies (5.3) then ̺(t, x) = Ptϕ(x) on

[0,∞)×Mr.

P r o o f. Let k ∈ N and let f̃ and g̃ be C∞ vector fields on R6 such that f̃ = f and

g̃ = g on the centered ball in R
6 of radius R =

√
1 + r2. Denote by ux the solution

of dX = f̃(X) dt + g̃(X) ◦ dW , X(0) = x and let Qt be the associated Markov

operators. Let ϕ̃ ∈ C2(R6) be a compactly supported extension of ϕ. Then zx = ux

for every x ∈Mr by Proposition 4.1, J(t, x) = Qtϕ̃(x) ∈ C1,2([0,∞)× R
6) by (4.6),

hence J(t, x) = ̺(t, x) for (t, x) ∈ [0,∞)×Mr. In particular, ̺ ∈ C1,2([0,∞)×Mr)

and (5.3) holds by (4.7).

To prove the converse assertion, extend ̺ to a function in C1,2([0,∞) × R
6), let

t > 0 and apply the Itô formula to ̺(t− r, zx(r)) for r ∈ [0, t], obtaining

ϕ(zx(t)) = ̺(0, zx(t)) = ̺(t, x) +

∫ t

0

g(̺)(t− r, zx(r)) dW.

Taking expectations on both sides yields the claim. �
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The next assertion is obvious if Q ∈ R
3 ⊗ R

3 is a unitary matrix with detQ = 1

due to the invariance of the equation (3.6) for positively oriented unitary matrices.

But it also holds if detQ = −1. To prove this, we are going to use the uniqueness of

the solutions of the backward Kolmogorov equation.

Corollary 5.9. Let Q be a 3 × 3-unitary matrix. Denote Q̃ = diag[Q,Q] ∈
R

6 ⊗ R
6. Then

p(t, Q̃x, A) = p(t, x, [Q̃ ∈ A])

holds for every (t, x) ∈ [0,∞)×Mr, every A ∈ B(Mr) and every r > 0.

P r o o f. Let ϕ ∈ C2(Mr) and define ̺(t, x) = Ptϕ(x) for (t, x) ∈ [0,∞) ×Mr.

Then ̺ verifies (5.3). Now define ̺(t, x) = ̺(t, Q̃x) for (t, x) ∈ [0,∞) ×Mr, which

we can do since Q̃ is a diffeomorphism on Mr. Then ̺ ∈ C1,2([0,∞)×Mr) and

∂̺

∂t
(t, x)−A̺(t, x) = ∂̺

∂t
(t, Q̃x)−A̺(t, Q̃x) = 0 on [0,∞)×Mr, ̺(0, ·) = ϕ(Q̃·).

So, from the uniqueness part of Proposition 5.8, we obtain that

(5.4) Ptϕ(Q̃x) = Pt(ϕ ◦ Q̃)(x) on [0,∞)×Mr.

By density of C2(Mr) in C(Mr) we get that (5.4) holds for every ϕ ∈ C(Mr) and

consequently for every ϕ ∈ Bb(Mr). �

Now we are ready to describe some analytic properties of the Markov semigroup

(Pt) on Mr.

Theorem 5.10. Let r > 0. Then (Pt) is a C0-semigroup on C(Mr), Pt[C
2(Mr)] ⊆

C2(Mr), C
2(Mr) is contained in the domain of the infinitesimal generator A of (Pt)

and A = A on C2(Mr).

P r o o f. The C0 property follows from the joint continuity in Proposition 4.3 and

the invariance of C2(Mr) under the mappings Pt, t > 0, from Proposition 5.8. By

the Itô formula,

Ptϕ(x) = ϕ(x) +

∫ t

0

Ps(Aϕ)(x) ds, t > 0, x ∈Mr,

so ϕ belongs to the domain of the infinitesimal generator A of (Pt) and Aϕ = Aϕ.
�
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Corollary 5.11. Let r > 0. Then there exists an invariant measure with the

support in Mr.

P r o o f. Let θ be a Borel probability measure with a support in Mr. The semi-

group (Pt) is Feller on Bb(TS
2), the average probability measures T−1

∫ T

0 P ∗
s θ ds are

supported in Mr, hence they are tight and therefore any of its weak cluster points is

an invariant probability measure according to the Krylov-Bogolyubov theorem, see

e.g. Corollary 3.1.2 in [16]. �

We have proved so far that the tangent bundle TS2 decomposes to invariant sets

TS2 =
⋃

x∈M0

{x} ∪
⋃

r>0

Mr,

where on each of these sets there exists an invariant measure.

6. Numerical simulations

We present a numerical scheme to approximate problem (3.6). It is the consequent

simulations that lead us to conjecture that (P ∗
t ) restricted to Mr attracts every

initial distribution on Mr to the normalized surface measure on Mr. In particular,

this would mean that the normalized surface measure on Mr is the unique invariant

measure on Mr, cf. Corollary 5.11.

6.1. Numerical approximation. Let Ik := {tn}Nn=0 denote an equi-distant mesh

of size k > 0 covering [0, T ]. The following Algorithm A gives a non-dissipative,

symmetric discretization of (3.4) with solutions {(Un, V n) ; n > 0}. We denote
dtϕ

n+1 := (ϕn+1 − ϕn)/k. Throughout this section, C > 0 denotes a constant which

does not depend on k and T .

Algorithm A. Let (U0, V 0) be such that (U0, V 0) = 0, |U0| = 1, |V 0| = r, and

define U−1 := U0 − kV 0. For every n > 0, find the R3+3+1-valued random variable

(Un+1, V n+1, λn+1) such that

V n+1 − V n = k
λn+1

2
(Un+1 + Un−1)(6.1)

+
1

4
(Un+1 + Un−1)× (V n+1 + V n)∆n+1W,

dtU
n+1 = V n+1,
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where ∆n+1W :=W (tn+1)−W (tn) ∼ N (0, k), and

(6.2) λn+1 =





0 for
1

2
(Un+1 + Un−1) = 0,

− (V n, V n+1)

∣∣ 1
2 (U

n+1 + Un−1)
∣∣2 for 1

2 (U
n+1 + Un−1) 6= 0 and n > 1,

− (V 0, V 1)− 1
2 |V 0|2

∣∣ 1
2 (U

1 + U−1)
∣∣2 for 1

2 (U
1 + U−1) 6= 0 and n = 0.

For our simulations, we use (U0, V 0) := (u(0), v(0)). Next, we show the existence of

a sequence of triples {(Un+1, V n+1, λn+1) ; 0 6 n 6 N − 1} which solves (6.1)–(6.2).
Definition (6.2) of the discrete Lagrange multiplier λn+1 ensures that |Un+1| = 1

for n > 0; here, the definition of λ1 according to (6.2)3 accounts for the fact that

1 6= |U−1| 6 1 + rk in general. Finally, |V n+1| = |V 1| = |V 0| + Ck for all n > 0

is valid, so that the solutions {(Un, V n) ; 0 6 n 6 N} of Algorithm A inherit the
properties of the solutions {(u(t), v(t)) ; t ∈ [0, T ]} of (3.5) stated in Proposition 4.1.

Proposition 6.1. Let k 6 k0(r) be sufficiently small. For every n > 0 there ex-

ists an R3+3+1-valued random variable (Un+1, V n+1, λn+1) which solves (6.1)–(6.2).

Moreover, the iterates satisfy |Un+1| = |U0|, and |V n+1| = |V 1| for 1 6 n 6 N − 1,

where
∣∣|V 1| − |V 0|

∣∣ 6 Ck.

The proof is by induction, and uses Brouwer’s fixed point argument to show ex-

istence, and a proper “testing” of (6.1) in combination with the definition (6.2) to

verify the given properties.

P r o o f. Induction assumption. Fix n > 1; for the sake of better presentation,

we consider n = 0 at the end of the proof. Let {(U l, V l) ; 0 6 l 6 n} be a solution
of (6.1)–(6.2) which satisfies |U l| = 1 for 0 6 l 6 n and |V l| = r̃ := |V 1| 6 2r for

1 6 l 6 n. Further, let k 6 k0(r̃) be such that k|V l| 6 1/4.

Step 1. Construction of (Un+1, V n+1, λn+1). In a preparatory step, we define

An+1 := (Un+1 + Un−1)/2 and rewrite the leading term in (6.1) as

(6.3) V n+1 − V n =
1

k
(Un+1 − 2Un + Un−1) =

2

k
(An+1 − Un).

Hence, (6.1) may be rewritten as

2

k
(An+1 − Un) = kλn+1An+1 +

1

2
An+1 × (V n+1 + V n)∆n+1W(6.4)

= kλn+1An+1 +An+1 ×
(
V n − 1

k
Un
)
∆n+1W.
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Obviously, we have found (Un+1, V n+1) once An+1 is constructed, which is a zero of

the mapping Fω
0,n : R

3 → R
3,

(6.5) Fω
0,n(Ã) :=

2

k
(Ã− Un)− kλ̃0,nÃ− Ã×

(
V n − 1

k
Un
)
∆n+1W,

where according to (6.3),

(6.6) λ̃0,n ≡ λ̃0,n(Ã) := −|V n|2 + 2k−1(V n, Ã− Un)

|Ã|2
.

Since Fω
0,n : R

3 → R
3 is not a continuous mapping, we consider a modification Fω

ε,n

with some 1/8 6 ε 6 1/4, where λ̃0,n in Fω
0,n is replaced by

(6.7) λ̃ε,n ≡ λ̃ε,n(Ã) := −|V n|2 + 2k−1(V n, Ã− Un)

max{ε, |Ã|2}
.

(a) Solvability of Fω
ε,n(Ã) = 0 for every 1/8 6 ε 6 1/4. The map Fω

ε,n : R
3 → R

3

is continuous. Moreover, by computing

2

k
(Ã− Un, Ã) >

2

k
(|Ã| − |Un|)|Ã|,

−k(λ̃ε,nÃ, Ã) > −k|V n|2 − 2|V n|(|Ã|+ |Un|),

we may conclude by the induction assumption that there exists a deterministic num-

ber Rn := Rn(r̃) > 0 such that for k 6 k̃0(r̃) we have

(Fω
ε,n(Ã), Ã) > 0 ∀Ã ∈ {A ∈ R

3 : |A| > Rn}.

By Brouwer’s fixed point theorem, there exists Ã∗ such that Fω
ε,n(Ã

∗) = 0 where

1/8 6 ε 6 1/4. We now show that Ã∗ also solves Fω
0,n(Ã

∗) = 0 provided k 6 k0(r) 6

k̃0(r̃). For this purpose, we use the definitions

(6.8) Un+1
ε := 2Ã∗ − Un−1 and V n+1

ε :=
1

k
(Un+1

ε − Un)

to write (see (6.1))

(6.9) V n+1
ε −V n = k

λn+1
ε

2
(Un+1

ε +Un−1)+
1

4
(Un+1

ε +Un−1)×(V n+1
ε +V n)∆n+1W,

where

(6.10) λn+1
ε := − (V n, V n+1

ε )

max{ε, | 12 (U
n+1
ε + Un−1)|2}

= − 1

k

(V n, [Un+1
ε + Un−1]− [Un + Un−1])

max{ε, | 12 (U
n+1
ε + Un−1)|2}

.
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It now suffices to show that 1
2 6 |(Un+1

ε + Un−1)/2|2 = max{ε, | 12 (Un+1
ε + Un−1)|2},

since in this case λ̃ε,n(Ã
∗) = λ̃0,n(Ã

∗).

(b) Ã∗ also satisfies Fω
0,n(Ã

∗) = 0 provided k 6 k0(r̃). By (6.9), the inverse

triangle inequality, the induction assumption, and for k 6 k0(r̃),

∣∣∣
1

2
(Un+1

ε + Un−1)
∣∣∣ =

∣∣∣
k

2
V n+1
ε +

1

2
(Un + Un−1)

∣∣∣ =
∣∣∣
k

2
(V n+1

ε + V n) + Un−1
∣∣∣(6.11)

> |Un−1| −
(k
2
|V n|+ k

2
|V n+1

ε |
)

> 1− 1

4
− k

2
|V n+1

ε |.

It remains to show that k|V n+1
ε |/2 6 1/4. For this purpose, multiply (6.9) with

V n+1
ε + V n and use the binomial formula to get

|V n+1
ε |2 − |V n|2 = k

λn+1
ε

2
(Un+1

ε + Un−1, V n+1
ε + V n)(6.12)

= k
λn+1
ε

2
(kV n+1

ε + Un + Un−1, V n+1
ε + V n).

Note that since |a|/max{ε, |a|2} 6 1/
√
ε, we get by (6.10)2

k

2
|λn+1

ε | 6
( 1√

ε
+

1

2ε
(|Un|+ |Un−1|)

)
|V n| 6 1√

ε

(
1 +

1√
ε

)
r̃ := Cεr̃,

so that the following bound follows from (6.12):

|V n+1
ε |2 6 r̃2 + Cεr̃

(
k
[
1 +

1

2

]
|V n+1

ε |2 + k

2
|V n|2

)
(6.13)

+
1

2
|V n+1

ε |2 + C2
ε

2
r̃2|Un + Un−1|2

+
Cε

2
r̃(|Un + Un−1|2 + |V n|2).

Consequently, by induction assumption, for k 6 k0(r̃), and since 1/8 6 ε 6 1/4,

(6.14)
1

4
|V n+1

ε |2 6 C(1 + r̃)2.

Therefore, we may choose k 6 k0(r̃) sufficiently small to validate k|V n+1
ε |/2 6 1/4.

By the arguments given before, this settles the existence of a triple (Un+1, V n+1,

λn+1) which solves (6.1)–(6.2) for the index n+ 1.
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Step 2. Properties of (Un+1, V n+1). We start with showing |Un+1| = 1. Taking

the scalar product of (6.1)1 with (Un+1 + Un−1)/(2k), using (6.1)2, the binomial

formula, and elementary calculations lead to

λn+1
∣∣∣
1

2
(Un+1 + Un−1)

∣∣∣
2

=
1

2
(dtV

n+1, Un+1 + Un−1)(6.15)

=
1

2k2
(|Un+1|2 + 2(Un+1, Un−1)− 2(Un+1, Un)− 2(Un, Un−1) + |Un−1|2)

=
1

2k2
(|Un+1|2 − 2k(Un+1, V n)− 2(Un, Un−1) + |Un−1|2).

By induction assumption, the last term may be replaced by the identity |Un−1|2 =

|Un|2 = 1. Hence, (6.15) is equal to

=
1

2k2
(|Un+1|2 − |Un|2 − 2k(Un+1, V n)− 2(Un, Un−1) + 2|Un|2)

=
1

2k2
(|Un+1|2 − |Un|2 − 2k(Un+1, V n) + 2k(Un, V n))

=
1

2k2
(|Un+1|2 − 1− 2k2(V n+1, V n)).

The definition of λn+1 in (6.2) then implies |Un+1| = 1.

In order to verify |V n+1| = r̃, we take the scalar product of (6.1)1 with V
n+1 +

V n = (Un+1 − Un−1)/k and use the binomial formula:

(6.16) |V n+1|2 − |V n|2 =
λn+1

2
(|Un+1|2 − |Un−1|2) = 0.

This settles the inductive argument for n > 1.

Modifications for n = 0.

Step 1′. In order to construct a triple (U1, V 1, λ1), we proceed as in Step 1, with

the following exceptions in (6.6), (6.7), (6.10):

λ̃ε,0 := −
1
2 |V 0|2 + 2k−1(V 0, Ã− U0)

max{ε, |Ã|2}
, λ1ε := − (V 0, V 1

ε )− 1
2 |V 0|2

max{ε, | 12 (U1
ε + U−1)|2} .

The estimate of |V 1
ε |2 6 C(1+ r)2 6 C(1+ r̃)2 in (6.14) follows accordingly since the

additional term −|V 0|2/2 in the nominator of λ1ε has modulus r2/2. The remaining
arguments from Step 1 now apply to establish the existence of the triple (U1, V 1, λ1).

Note, in particular, that according to (6.11) we have

(6.17)
∣∣∣
1

2
(U1 + U−1)

∣∣∣ >
1

2
.
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Step 2′. A slightly modified version of (6.15) leads to the calculation3

λ1
∣∣∣
1

2
(U1 + U−1)

∣∣∣
2

=
1

2
(dtV

1, U1 + U−1)

=
1

2k2
(|U1|2 − 2k(U1, V 0)− 2(U0, U−1) + |U−1|2)

=
1

2k2
(|U1|2 − 2k(U1, V 0)− 2|U0|2 + 2k(U0, V 0) + |U−1|2)

=
1

2k2
((|U1|2 − |U0|2)− 2k2(V 1, V 0)− |U0|2 + |U−1|2)

=
1

2k2
((|U1|2 − 1)− 2k2(V 1, V 0)− |U0|2 + |U0|2

− 2k(V 0, U0) + k2|V 0|2)

=
1

2k2
((|U1|2 − 1)− 2k2(V 1, V 0) + k2|V 0|2),

so that |U1| = 1 now follows from (6.2)3.

Next, we proceed as in (6.16) to bound |V 1|. By the definition of U−1, and

(U0, V 0) = 0, we have

(6.18) |U−1|2 = (U0 − kV 0, U0 − kV 0)

= |U0|2 − 2k(V 0, U0) + k2|V 0|2 = |U0|2 + k2|V 0|2.

Taking the scalar product of (6.1)1 with V
1 + V 0 = k−1(U1 − U−1) and employing

(6.18), and |U1| = |U0| = 1, we obtain

(6.19) |V 1|2 − |V 0|2 =
λ1

2
(|U1|2 − |U−1|2) = k2

λ1

2
|V 0|2.

In order to bound |λ1| we use (6.17) and the triangle and Young’s inequalities:

(6.20) |λ1| 6 4
(
|V 0||V 1|+ 1

2
|V 0|2

)
6 (2|V 1|2 + 4|V 0|2).

Using (6.20) we get from (6.19) that

(6.21) |V 1|2 6 |V 0|2 + k2|V 0|2(|V 1|2 + 2|V 0|2).

Since |V 0| = r, it follows from (6.21) that for k 6 k0(r)

(6.22) |V 1|2 6 |V 0|2 + k2
3r4

1− r2k20
6

(
|V 0|+ k

√
3r4

1− r2k20

)2
.

Hence, it follows from (6.22) that
∣∣|V 1| − |V 0|

∣∣ 6 C(r)k. The modulus of |V 1| is
then exactly preserved for n > 0, see (6.16). �

3 Note that |U−1|2 = |kV 0 − U0|2 need not be 1. By the binomial formula, and since
(U0, V 0) = 0.
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6.2. Numerical experiments. We use Algorithm A to provide simulations

for (3.4) in the form

du̇ = −|u̇|2u dt+
√
D(u× u̇) ◦ dW,

where D is a fixed constant that controls the intensity of the noise term. Instead of

(6.2), we use an equivalent form

(6.23) λn+1 =
−k−1(V n, Un+1 + Un−1) + 1

2k
−2(1− |Un−1|2)

| 12 (Un+1 + Un−1)|2 , n > 0.

The above formula is equivalent to the formulation (6.2); since |U l|2 = 1,

l > 0 we obtain for n > 0 that −(V n, Un+1 + Un−1)/k + (1− |Un−1|2)/(2k2) =

−(V n, Un+1 + Un−1)/k = −(V n, V n+1) + (V n, Un + Un−1)/k = −(V n, V n+1). The

equivalence for n = 0 follows similarly by recalling that (U0, V 0) = 0. The formula-

tion (6.23) is more convenient for numerical computations, since in this reformulation

the round off errors and errors due to inexact solution of the nonlinear system (6.1)

do not accumulate over time in the constraint |Un| = 1. The solution of the nonlin-

ear scheme (6.1)–(6.23) is obtained up to machine accuracy by a simple fixed-point

algorithm, cf. [5].

The stochastic process {(Un, V n), n > 0} is computed by the classical Monte-
Carlo sampling algorithm; we denote by Nmc the number of simulated sample paths

of the corresponding stochastic process. In order to obtain an approximation of the

marginal probability density function of the stochastic process {Un, n > 0}, the unit
sphere S2 is divided into segments ωij ⊂ S

2 associated with points

xij =
(
sin
( iπ
16

)
cos
( jπ
16

)
, sin

( iπ
16

)
sin
( jπ
16

)
, cos

( iπ
16

))
,

i = 0, . . . , 16, j = 0, . . . , 31 such that ωij = {x ∈ S
2 ; xij = argmin

xlm

|x−xlm|}. For the
above partition of the sphere, at a fixed time level tn = nk, we construct a piecewise

constant empirical probability density function f̂n(x) : S
2 → R of Un ∈ S

2 as

f̂n(x)|ωij
= f̂n(xij) =

#{l ; Un,l ∈ ωij}
|ωij |N

for i = 0, . . . , 16, j = 0, . . . , 31, where #Ω denotes the cardinality of the set Ω

and {Un,l, n > 0} is the l-th realization (sample path) of the stochastic process
{Un, n > 0}.
The marginal probability density function f̂n of {Un, n > 0} was constructed as

the average of Nmc = 20000 sample paths. For all computations in this section we
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take the time step size k = 0.001 and the initial conditions U0 = (0, 1, 0), V 0 =

(1, 0, 0). The marginal probability density function f̂0 associated with the above

initial conditions is a Dirac delta function concentrated at U0.

In Figure 1 we display the computed probability density f̂n for D = 1, T = 60

at different time levels. Initially the probability density function is advected in the

direction of the initial velocity V 0 and is simultaneously being diffused. For early

times, the diffusion seems to act predominantly in the direction perpendicular to the

initial velocity. In Figure 2 we display the time averaged marginal probability density

function f̄ over the last 100 time levels (i.e., we compute f̄(x) = 1
100

T/k∑
T/k−100

f̂n(x)),

the function tn → E[Un] and a zoom at tn → E[Un] near the center of the sphere.

Figure 1. Approximate marginal probability density f̂n of {Un, n > 0} for D = 1 at times
tn = 0, 1, 1.5, 2.1, 4.3, 5.5, 10, 60.

The evolution of the probability density {f̂n, n > 0} for D = 10, T = 60 is shown

in Figure 3. Similarly to the previous experiment the probability density function

diffuses and becomes uniform for large times. Some advection in the direction of

the initial velocity can still be observed, however, the overall process has a predom-

inantly diffuse character. We observe a damping effect which is due to the effects

of the random forcing term, see Figure 7. In Figure 4 we display the time averaged

probability density function f̄ , the function tn → E[Un] and a zoom at tn → E[Un]

for n > 0 near the center.

Figure 6 contains the computed functions of tn → E[Un] for D = 0.1 and D = 100.

The respective probability densities asymptotically converge towards the uniform

distribution for large times.
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Figure 2. Time averaged marginal probability density f̄ of {Un, n > 0} (left), tn → E[Un]
(middle), and a zoom at E[Un] with a sphere with radius 0.01 (right), D = 1.

Figure 3. Approximate probability density f̂n of {Un, n > 0} for D = 10 at tn = 0, 0.9,
1.2, 2, 3.1, 8, 10, 60.

Figure 4. Time averaged marginal probability density f̄ of {Un, n > 0} (left), tn → E[Un]
(middle), and a zoom at tn → E[Un] for n > 0 with a sphere with radius 0.01
(right), D = 10.
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Figure 5. The partition of the submanifold M1 of TS2: ωi in light gray, a segment γ
j
i in

black, the dark gray arc indicates the elements of M
j
i starting from a point in

the down-right corner of ωi.

Figure 6. The function tn → E[Un] (left), and a zoom near the center with a sphere with
radius 0.01 (right) for D = 100 (black line), D = 0.1 (gray line).

In Figure 7 we show the graphs of the time evolution of the approximate error

En
max : tn → max

x∈S2

∣∣f̂n(x) − fS
2
∣∣ for D = 0.01, 0.1, 1, 10, 100 with fS

2

being the uni-

form distribution on the unit sphere. The quantity En
max serves as a measure of the

speed of convergence towards the uniform probability distribution fS
2

. Note that

the oscillations in the error graphs are due to the approximation of the probability

density. The numerical experiments provide evidence that the probability densities

for all D converge towards the uniform probability density fS for t→ ∞. The prob-
ability density evolutions for decreasing values of D have an increasingly “advective”

character, and the evolutions for increasing values have an increasingly “diffusive”

character. It is also interesting to note that the convergence in time towards the
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Figure 7. Evolution of En
max, n > 0 for different values of the coefficient D.

uniform distribution becomes slower for increasing and decreasing values of D when

compared with the fastest converging evolutions for D = 1 or D = 10.

In the final experiment we study the long time behavior of the pair {(Un, V n),

n > 0} forD = 1, Nmc = 20000. To this end, we introduce a partition of the manifold

M1 defined in (5.1). First, we consider a partition of the unit sphere into segments

{ωi, i = 1, . . . , 6} associated with the points x̃i = (±1, 0, 0), (0,±1, 0), (0, 0,±1) in

such a way that x ∈ S
2 belongs to ωi if and only if |x − x̃i| = min

16j66
|x − x̃j |. Next,

we denote by Ti the tangent planes to points x̃i. Fixing an i ∈ {1, . . . , 6}, the
orthogonal projections of vectors {x̃1, . . . , x̃6} onto the tangent plane Ti delimit 4
sectors on Ti. We subsequently halve each sector obtaining thus 8 equiangular sectors

γ1i , . . . , γ
8
i in Ti. Now we introduce the following partition of M1 into 6× 8 segments

(see Figure 5): a point (p, ξ) ∈ TS2 belongs to M j
i if p ∈ ωi and the orthogonal

projection of ξ onto the tangent plane Ti belongs to the sector γ
j
i . The approximate

probability density function f̂n
M1
of {(Un, V n), n > 0} is computed analogously to

the marginal probability density function f̂n of {Un, n > 0}. It can be verified by
symmetries of this partition that the normalized surface volume of each M j

i is equal

to 1/48. For n = 60000 (i.e., at time tn = 60) we have for i = 1, . . . , 6, j = 1, . . . , 8

that #{l ; Un,l ∈ ωi} ∈ (3380, 3260) ≈ Nmc/6 = 3333 and that #{l ; (Un,l, V n,l) ∈
M j

i } ∈ (386, 455) ≈ Nmc/6/8 = 417, see Figure 8 left and Figure 8 right, respectively.

This result indicates that the pointwise probability measure for (Un, V n), n > 0

converges to the invariant measure ν which is the uniform measure on the set M1.

Figure 9 reveals that the (suitably rescaled) approximate error En
M1,max =

∣∣f̂n
M1

− ν
∣∣

for {(Un, V n), n > 0} has evolution similar to the corresponding error En
max for U

n.

Moreover, it seems that the convergence of the error in time is exponential, see

Figure 9.
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Figure 8. Probability density function f̂nM1
of {(Un, V n), n > 0} at time T = 60 (left and

middle), and the evolution of tn →
∫
ωi

E[V n], i = 1, . . . , 6, n > 0 (right).
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Figure 9. Time evolutions of En
M1,max (rescaled) and En

max, n > 0.

7. Invariant measures on Mr, r > 0

It is known that equations on manifolds with non-degenerate diffusions have

a unique invariant probability law, that this invariant measure is absolutely continu-

ous with respect to the surface measure, and the density is C∞-smooth and strictly

positive, see e.g. [2] or [26], Proposition 4.5. Unfortunately, the equation (3.6) onMr

has a degenerate diffusion—there is just one vector field g in the diffusion but Mr is

a 3-dimensional manifold. In other words, there is not enough noise in the equation

in order the above cited results on the nice ergodic behavior could be applied in

our case. We must therefore proceed in another way to confirm the conjectures of

Section 6.

Convention 7.1. In the present section, we restrict the operators (Pt) and (P ∗
t )

to the invariant space Mr where r > 0 is fixed. More precisely, the operators (Pt)

are understood as endomorphisms on Bb(Mr) and (P ∗
t ) are endomorphisms on the
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space of probability measures on B(Mr), cf. Theorem 5.10. Also Mr is understood

as a submanifold in R
6.

Notation 7.2. We denote by λr the normalized surface (Riemannian) measure

on Mr.

7.1. Uniqueness. We are going to prove, using the geometric version of the

Hörmander theorem A.3, that λr is the unique invariant measure on Mr. But let us

first, before we proceed with the study of the qualitative properties of the adjoint

Markov semigroup (P ∗
t ), establish some further geometric properties of the drift and

the diffusion vector fields f and g defined in (3.7).

Lemma 7.3. Mr is a connected 3-dimensional submanifold in R
6 and the vector

fields f and g on Mr satisfy

[g, f ] =

(
u× v

0

)
, [f, [g, f ]] = r2g, [g, [g, f ]] = −f, div f = div g = div[g, f ] = 0

where [·, ·] is the Jacobi bracket.

P r o o f. Obviously, any (p, ξ1) and (p, ξ2) in Mr can be connected by a rotation

curve in the circle {(p, ξ) : ξ ⊥ p, |ξ| = r} and if |p| = |q| = 1 and γ : [a, b] → S
2

is a curve connecting p and q with |γ̇| = r then Γ = (γ, γ̇) is a curve connecting

(p, γ̇(a)) and (q, γ̇(b)) in Mr. Altogether, any two points in Mr can be connected by

an at most two times broken curve.

Observe that f , g and [g, f ] are orthogonal tangent vector fields onMr. If we define

E1 = f/(r2 + r4)1/2, E2 = g/r, E3 = [G,F ]/r then {E1, E2, E3} is an othonormal
frame on Mr and

div Y =

3∑

j=1

〈dEj
Y,Ej〉R6 = 0, Y ∈ {f, g, [f, g]}

where dXY (p) = lim
t→0

t−1[Y (p+ tX)− Y (p)]. �

Notation 7.4. Let S1, . . . , Sm be vector fields on a manifold M . Denote by

(S1, . . . , Sm) the smallest algebra for the Jacobi bracket [X,Y ] = XY − Y X that

contains {S1, . . . , Sm} and denote

L (S1, . . . , Sm)(p) = {Sp : S ∈ L (S1, . . . , Sm)} ⊆ TpM, p ∈M.

Corollary 7.5. L (f, g)(z) = TzMr holds for every z ∈Mr.

639



The following result is known4 but we can give its straight analytic proof in few

lines now.

Proposition 7.6. A probability measure ν on B(Mr) is invariant if and only if

(7.1)

∫

Mr

Ah dν = 0 for every h ∈ C2(Mr)

where the operator A was defined in (5.2).

P r o o f. This is an immediate consequence of the C0-semigroup property of (Pt)

on C(Mr), the invariance of C
2(Mr) under the mappings (Pt), t > 0, the fact that

Pt ◦ A = A ◦ Pt on C
2(Mr) for every t > 0, and the density of C2(Mr) in Bb(Mr)

which was all proved in Theorem 5.10. �

Proposition 7.7. Let R ∈ C2(Mr). Then the measure dν = R dλr satisfies (7.1)

if and only if R is constant on Mr.

P r o o f. Using the standard formulae

∫

Mr

Y h dλr = −
∫

Mr

h div Y dλr, div(hY ) = Y (h) + h div Y

that hold for any smooth vector field Y on Mr and any smooth function h on Mr,

applying Lemma 7.3 and Proposition 7.6 and using the fact that C2(Mr) is dense in

L1(Mr, λr), we get that ν satisfies (7.1) if and only if the identity

(7.2) fR =
1

2
g(gR)

holds on Mr. But

∫

Mr

R
(
fR− 1

2
g(gR)

)
dλr =

1

2

∫

Mr

|gR|2 dλr

as f and g are divergence-free, so we conclude that (7.2) holds if and only if gR =

fR = 0. If R is constant, this equality surely holds. For the converse implication, by

definition of the Lie bracket, [g, f ]R = 0 holds. Since fz, gz and [g, f ]z span TzMr

for every z ∈ Mr by Lemma 7.3, we obtain that R is locally constant. But Mr is

connected by Lemma 7.3, hence R is constant. �

4 See e.g. (4.58) on page 292 in [26].
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Theorem 7.8. λr is the unique invariant probability measure on Mr.

P r o o f. Let ν be an invariant measure. Since (7.1) holds and the geometric

version of the Hörmander theorem A.3 is applicable due to Corollary 7.5, we conclude

that ν has a smooth density R with respect to λr. But then R = 1 on Mr by

Proposition 7.7. �

8. The transition probabilities on Mr, r > 0

In this section, we continue the study of the Markov semigroup (Pt) and its adjoint

semigroup (P ∗
t ) restricted to Mr as set forth in Convention 7.1, with r > 0 fixed.

We are going to show that the transition probabilities pt,x restricted to B(Mr) for

x ∈ Mr are absolutely continuous with respect to the normalized surface measure

λr on Mr for every (t, x) ∈ (0,∞) × Mr and that the density p(t, x, ·) satisfies
p ∈ C∞((0,∞)×Mr ×Mr). The density p(t, x, ·) should be denoted by pr(t, x, ·) to
indicate the dependence on r > 0 but we will not use this notation since r is fixed

in this section and we will not use the densities elsewhere in this paper.

An expert could be simply advised to apply the abstract results based on the

geometric Hörmander theorem in [24], Theorem 3, but we prefer to guide the reader

through, to explain the actual structure of the problem better.

For, let us define the adjoint operator

(8.1) A∗h = −f(h) + 1

2
g(g(h)), h ∈ C2(Mr)

to the operator A defined in (5.2). Indeed, by Lemma 7.3,

(8.2)

∫

Mr

(Ah1)h2 dλr =

∫

Mr

h1A∗h2 dλr, h1, h2 ∈ C2(Mr)

as f and g are divergence-free on Mr.

Theorem 8.1. The transition probabilities pt,x are absolutely continuous with

respect to the normalized surface measure λr on Mr for every (t, x) ∈ (0,∞)×Mr,

and the density p(t, x, ·) satisfies p ∈ C∞((0,∞)×Mr ×Mr).

P r o o f. Consider the Riemannian manifold N = (0,∞) ×Mr ×Mr and define

the Radon measure

Γ(A) =

∫ ∞

0

∫

Mr

∫

Mr

1A(t, x, z) dpt,x(z) dλr(x) dt

= E

∫ ∞

0

∫

Mr

1A(t, x, z
x(t)) dt dλr(x), A ∈ B(N).
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Every function h ∈ C∞(N) has variables (t, x, z) and we are going to indicate by Az

that the operator A is applied to the variable z and by A∗
x that the operator A∗ is

applied to the variable x of the function h(t, x, z).

By the Itô formula,

(8.3)

∫ ∞

0

∫

Mr

(∂H
∂t

+AH
)
dpt,x dt = 0, H ∈ C∞

comp((0,∞)×Mr)

holds for every x ∈Mr, hence

(8.4)

∫

N

(∂h
∂t

+Azh
)
dΓ = 0, h ∈ C∞

comp(N).

Let h1 ∈ C∞
comp(0,∞), h2, h3 ∈ C∞(Mr) and define H(t, x) = h1(t)h2(x), h(t, x, z) =

h1(t)h2(x)h3(z) and v(t, x) = Pth3(x). Then

∫

N

(∂h
∂t

+A∗
xh
)
dΓ =

∫ ∞

0

∫

Mr

(∂H
∂t

+A∗H
)
v dλr dt

=

∫ ∞

0

∫

Mr

H
(
−∂v
∂t

+Av
)
dλr dt = 0

by (5.3) and the duality (8.2). In fact,

(8.5)

∫

N

(∂h
∂t

+A∗
xh
)
dΓ = 0, h ∈ C∞

comp(N)

by a density argument as shown in Proposition B.1.

Altogether we have obtained that

∫

N

(
2
∂h

∂t
+A∗

xh+Azh
)
dΓ = 0, h ∈ C∞

comp(N).

In order to apply the geometric Hörmander theorem A.3, we define the vector fields

Y (t, x, z) =




2

−f(x)
f(z)


 , X1(t, x, z) =




0

g(x)

0


 , X2(t, x, z) =




0

0

g(z)




where the vector field Y corresponds to the operator h 7→ 2∂h/∂t− fx(h) + fz(h),

the vector field X1 to the operator h 7→ gx(h) and the vector field X
2 to the operator
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h 7→ gz(h). Defining also h = [g, f ] on Mr, we get by Lemma 7.3 that

[Y,X1] =




0

h(x)

0



 , [Y,X2] = −




0

0

h(z)



 , [X1, X2] = 0, [Y, [Y,X1]] = −r2X1,

[Y, [Y,X2]] = −r2X2, [X1, [Y,X1]] = −




0

f(x)

0



 , [X1, [Y,X2]] = 0,

[X2, [Y,X1]] = 0, [X2, [Y,X2]] =




0

0

f(z)


 , [[Y,X1], [Y,X2]] = 0.

At this stage we see that

L (Y,X1, X2)(t, x, z) = R× TxMr × TzMr = T(t,x,z)N, (t, x, z) ∈ N,

so the geometric Hörmander theorem A.3 is applicable and Γ has a smooth density

p ∈ C∞(N) with respect to dt⊗ λr ⊗ λr.

Let ϕ ∈ C(Mr). Then, by the standard measure theoretical properties of integrals,

(8.6) Ptϕ(x) =

∫

Mr

ϕ(z)p(t, x, z) dλr(z)

holds for dt ⊗ λr a.e. (t, x). But since both sides are continuous in (t, x) (the right

hand side by Theorem 5.10), the identity (8.6) holds for every (t, x) ∈ (0,∞)×Mr.

By standard procedure, we extend (8.6) to hold for every ϕ ∈ Bb(Mr) and every

(t, x) ∈ (0,∞)×Mr. �

The following result recasts Corollary 5.9 in terms of the transition densities.

Corollary 8.2. Let Q be a 3× 3-unitary matrix. Denote Q̃ = diag[Q,Q]. Then

p(t, x, y) = p(t, Q̃x, Q̃y)

holds for every (t, x, y) ∈ (0,∞)×Mr ×Mr.

P r o o f. We just realize that Q̃ is a measure preserving diffeomorphism on Mr

(as a restriction of an isometry on R
6) and then apply Corollary 5.9. �

9. Controlability in Mr, r > 0

In this section, we are going to examine the supports of the probability measures

pt,x on B(Mr) for x ∈ Mr. Again, in this section, the Markov semigroup (Pt) and

its adjoint semigroup (P ∗
t ) are restricted to Mr as in Convention 7.1, with r > 0

fixed.
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Theorem 9.1. Let t > 2π/r. Then supp pt,x =Mr holds for every x ∈Mr.

9.1. General support result. Let x ∈ Mr and denote by V
x,a the solutions of

the ordinary differential equation

(9.1) X ′ = f(X) + a(t)g(X), X(0) = x

on Mr where a ∈ L1
loc([0,∞)) and f and g are defined in (3.7).

Remark 9.2. It can be checked analogously as in the proof of Proposition 4.1

that the solutions V x,a take values in Mr and are therefore global.

The next lemma tells us that, to describe the support of the probabilities pt,x for

x ∈ Mr, it is sufficient and necessary to study solutions of the ordinary differential

equation (9.1).

Lemma 9.3. Let t > 0 and x ∈Mr. Then

(9.2) supp pt,x = {V x,a(t) : a ∈ L1(0, t)}Mr

.

P r o o f. Let f̃ , g̃ be smooth compactly supported vector fields on R6 and denote

by µ the law of the solution of the equation

(9.3) dX = f̃(X) + g̃(X) ◦ dW, X(0) = x

on B(C([0, t];R6)). Let also a ∈ L1(0, t) and denote by va the solution of

(9.4) X ′ = f̃(X) + a(t)g̃(X), X(0) = x.

Then, according to the Support theorem of Stroock and Varadhan [42] (see also [1],

[7], [8], [22], [31] for generalizations or shorter proofs),

suppµ = {va : a ∈ L1(0, t)}

where the closure and the support are taken in C([0, t];R6). Since van → va uni-

formly on [0, t] if an → a in L1(0, t) and A is a dense subset in L1(0, t), it also holds

that

suppµ = {va : a ∈ A}.

To get back to our problem (3.6), let f̃ , g̃ be smooth compactly supported vector

fields on R
6 such that f̃ = f and g̃ = g on the centered ball in R

6 of the radius
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R = |x|. Then the solution X coincides with zx being the solution of (3.6) with
zx(0) = x. Also, by uniqueness, V x,a = va. Thus we conclude that

(9.5) supp(Law zx) = {V x,a : a ∈ L1(0, t)}

where both the support and the closure are taken in C([0, t];Mr) being a closed

subset of C([0, t];R6).

Now consider the projection πt : C([0, t];Mr) → Mr : ξ 7→ ξ(t). Since πt is con-

tinuous,

πt[supp(Law zx)] = supp(Lawπt(z
x)) = supp pt,x,

and by continuity of πt and (9.5), we also have

πt[supp(Law zx)] = πt[{V x,a : a ∈ L1(0, t)}] = πt[{V x,a : a ∈ L1(0, t)}]
= {V x,a(t) : a ∈ L1(0, t)}.

�

9.2. The control problem. In view of Lemma 9.3, it remains to prove that the

ordinary differential equation (9.1) can be controlled to hit every point in Mr after

time 2π/r. It turns out that it is necessary to enter deeper into the geometry of the

2D sphere.

For, consider the equation (9.1) with a constant control a ∈ R

(9.6) w′′ = −|w′|2w + aw × w′

and with the initial condition w(0) = p, w′(0) = ξ for x = (p, ξ) ∈ Mr. It can be

guessed (and consequently checked) from the rotational symmetries of (9.6) that the

unique solution has the form

wx,a(t) =
a

b
Ex,a

1 +
r

b
Ex,a

2 cos(bt) +
r

b
Ex,a

3 sin(bt),(9.7)

Ex,a
1 =

a

b
p+

1

b
p× ξ, Ex,a

2 =
r

b
p− a

rb
p× ξ, Ex,a

3 =
1

r
ξ

where b =
√
r2 + a2. Since {Ex,a

1 , Ex,a
2 , Ex,a

3 } is orthonormal with det(Ex,a
1 , Ex,a

2 ,

Ex,a
3 ) = 1, we deduce that wx,a is a parametrization of a circle on S

2 with the

derivative of constant length r.

645



Lemma 9.4. A C2-smooth curve such that |w|R3 = 1 and |w′|R3 = r satisfies the

equation (9.6) for some control a ∈ R if and only if it parametrizes a non-degenerate

circle5 on S
2.

Hence, solutions of (9.6) can be regarded as oriented circles in S
2.

Notation 9.5. In the sequel, we are going to consider pairs (K,Y ) where K is

a non-degenerate circle in S2, i.e. K is understood as a one-dimensional submanifold

in S
2, and Y is a vector field on the manifold K with |Yp| = r for every p ∈ K,

i.e. Y determines an orientation of the manifold K. Such pairs are going to be called

“oriented circles” in S
2 for simplicity.

Remark 9.6. Any non-degenerate circle K in S
2 can be described in a unique

way as K = (v + P ) ∩ S
2 where P is a two-dimensional subspace in R

3, v ∈ R
3 is

perpendicular to P and |v| < 1. Here the vector v is the center of the circle K and

P is the plane of the circle. Obviously, if v̄ ∈ R
3 then K = (v̄ + P ) ∩ S

2 if and only

if v̄ − v ∈ P . Also

TzK = {p ∈ P : p ⊥ z} = {p ∈ P : p ⊥ (z − v)}, z ∈ K.

If we define θ =
√
1− |v|2, {p1, p2} is an orthonormal basis in P and

Yz =
r

θ
[−〈z, p1〉p2 + 〈z, p2〉p1], z ∈ K

then {Y,−Y } are the only two vector fields on K of length r.

Lemma 9.7. Let x = (p, ξ) ∈Mr and define the circle on S
2

K = (p+ span{Ex,a
2 , Ex,a

3 }) ∩ S
2

in the notation of (9.7) and the vector field on K of length r

Y (z) = −b〈z, Ex,a
3 〉Ex,a

2 + b〈z, Ex,a
2 〉Ex,a

3 , z ∈ Kx,a

where b =
√
r2 + a2. Then K is the orbit of wx,a and Y (wx,a) = (wx,a)′ holds on R.

The following technical result tells us that we can move continuously from one

element in Mr to another, along two oriented circles in S
2 with just one “switch”

from one circle to the other.

5 Here “non-degenerate” means that the radius of the circle is strictly positive.
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Proposition 9.8. In the terminology of Definition 9.5, let (K,Y ) be an oriented

circle in S2 and let (p, ξ) ∈Mr satisfy p /∈ K. Then there exist z ∈ K and an oriented

circle (T,B) in S
2 such that z, p ∈ T , Bz = Yz and Bp = ξ.

P r o o f. Denote by Qz the vector space generated by {p−z, Yz} for z ∈ K. Since

p−z and Yz are linearly independent, Qz is two-dimensional. Now Tz = (p+Qz)∩S
2

is a non-degenerate circle in S
2 as it contains two distinct points p, z ∈ S

2. Fixing

z ∈ K, we are going to show that there exists a vector field B of length r on Tz such

that Bz = Yz. For, if we define

Rz = r2(p− z)− 〈p− z, Yz〉Yz , z ∈ K

then Rz 6= 0 by the linear independence of {p− z, Yz} and we can set Vz = Rz/|Rz|.
So {Vz, r−1Yz} is an orthonormal basis in Qz. Let qz be the orthogonal projection

of p onto Qz and define pz = p − qz, θz =
√
1− |pz|2. So T = (pz + Qz) ∩ S

2.

According to Remark 9.6,

Bz(τ) =
1

θz
[〈τ, Yz〉Vz − 〈τ, Vz〉Yz ], τ ∈ Tz

is a vector field of length r on Tz. Since z − p and z− pz belong to Qz and pz ⊥ Qz,

we have z = pz + 〈z, Vz〉Vz + r−2〈z, Yz〉Yz = pz + 〈z, Vz〉Vz as z ⊥ Yz, hence

1 = |z|2 = |pz|2 + 〈z, Vz〉2, θz = |〈z, Vz〉|.

But

|Rz |〈z, Vz〉 = 〈z,Rz〉 = r2〈z, p− z〉 = r2(〈z, p〉 − 1) 6 0

so we conclude that θz = −〈z, Vz〉. From this we obtain that Bz(z) = −θ−1
z 〈z, Vz〉×

Yz = Yz . Eventually, Bz(p) = [〈p, Yz〉Vz − 〈p, Vz〉Yz ]/θz. It remains to prove that
the mapping L : K → {ζ ∈ TpS

2 : |ζ| = r} defined by L(z) = Bz(p) is a surjection.

Since K and {ζ ∈ TpS
2 : |ζ| = r} are homeomorphic with S

1 and L is continuous,

it is sufficient to prove that L is locally injective by Proposition C.1. Here we can

easily see that Lz spans the one-dimensional vector space Qz ∩ {p}⊥.
So let us study the injectivity of L. Let K = (v + U) ∩ S

2 where U is a two-

dimensional subspace in R
3, v ⊥ U and |v| < 1. Let z1 ∈ K. Then there exists

an orthonormal basis u1, u2 in U such that z1 = v + ξu1 where 1 = |v|2 + ξ2 and

Y (z1) = ru2. If z2 ∈ K satisfies z1 6= z2 then there exists a unique ∆ ∈ (−π, π] \ {0}
such that

z2 = v + ξu1 cos∆ + ξu2 sin∆

and, consequently,

Y (z2) = r[−u1 sin∆ + u2 cos∆].
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Then Qz1 ∩Qz2 is a one-dimensional space spanned by

A = (z1 − p) sin∆ +
ξ

r
(1− cos∆)Y (z1) = (z2 − p) sin∆− ξ

r
(1 − cos∆)Y (z2).

Obviously, the vector A belongs also to {p}⊥ if and only if

(9.8) ψ(∆) :=
sin∆

1− cos∆
=

ξ〈p, u2〉
1− 〈p, z1〉

.

Now ψ : (−π, π] \ {0} → R is a bijection and the right hand side of (9.8) is bounded

by a constant Cp,K irrespective of z1, z2, u1 or u2, as p /∈ K. So ∆ satisfying the

identity (9.8) must verify |∆| > εp,K > 0 and, consequently, |z1 − z2| > ε′p,K > 0. In

particular, L is locally injective and, consequently, L is surjective. The identity (9.8)

then also implies that

{z ∈ K \ {z1} : L(z) ∈ {−L(z1), L(z1)}} = {z ∈ K \ {z1} : dimQz1 ∩Qz ∩{p}⊥ = 1}

contains exactly one element z2 which, by surjectivity of L, must satisfy L(z1) =

−L(z2). In particular, L is injective. �

9.3. Proof of Theorem 9.1. Let (p1, ξ1), (p3, ξ3) ∈ Mr. We are going to show

that, choosing a suitable piecewise constant control a in the equation (9.1), we can

reach (p3, ξ3) from (p1, ξ1) by the solution (9.1) with this control a in any time

T > 2π/r. We are going to proceed in steps.

First let a1 = 0 and move (p1, ξ1) along the solution of (9.6) with the constant

control a1 to some (p2, ξ2) in a very short time just to arrange p2 6= p3.

Next let a2 be an extremely large constant control so that the orbit K2 of the

solutionw(p2,ξ2),a2 does not contain p3. This can be done by choosing a large control a

as the diameter of the orbit is 2r/
√
r2 + a2 by (9.7). This solution defines an oriented

circle (K2, Y2) in S
2 and p3 /∈ K2. Hence, by Proposition 9.8, there exists an oriented

circle (K3, Y3) in S
2 such that z ∈ K2 ∩K3, p3 ∈ K3, Y2(z) = Y3(z) and Y3(p3) = ξ3.

This circle K3 is associated with a control a3 ∈ R.

Let a be the piecewise constant control with steps a1, a2 and a3 at times τ1, τ2
and τ3 so that the solution X to (9.1) with this control satisfies X(0) = (p1, ξ1),

X(τ1) = (p2, ξ2), X(τ2) = (z, Y2(z)) = (z, Y3(z)) and X(τ3) = (p3, ξ3). Now τ1 was

as small as we wanted, τ2 − τ1 too because a2 was large and the periodicity of the

solutions to (9.1) with a constant control a is 2π/
√
r2 + a2 by (9.7). Hence τ3 − τ2 is

not larger that 2π/r since we do not let the solution run the full period. Altogether,

τ3 < T .

Let a4 ∈ R be a control such that T − τ3 ∈ {2πk/
√
r2 + a24 : k > 0} and let a = a4

on (τ3, T ]. Then X(T ) = X(τ3) = (p3, ξ3). In other words, we let the solution revolve

to wait for the time T , to wind up at the point of the departure (p3, ξ3). �
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10. Exponential ergodicity in Mr, r > 0

In this section, again, we consider the Markov semigroup (Pt) and its adjoint

semigroup (P ∗
t ) restricted to Mr as in Convention 7.1, with r > 0 fixed. We are

going to prove the exponential convergence to the invariant measure λr in total

variation via the Doeblin theorem and a minorization condition due to [32] and [33].

Lemma 10.1. The transition densities satisfy p > 0 on (2π/r,∞)×Mr ×Mr.

P r o o f. We develop the idea of [33], Section 5.2, and the proof of [32], Lemma 2.3.

According to Theorem 8.1, the transition densities p(t, x, ·) are smooth in all three
variables. Let t1 > 2π/r and t2 > 0 satisfy t = t1 + t2. Let also x0, y0 ∈Mr be such

that p(t2, ·, ·) > ε on a neighbourhood Ox0
× Oy0

for some ε > 0. Then, from the

Chapman-Kolmogorov identity,

p(t, x, y) =

∫

Mr

p(t1, x, z)p(t2, z, y) dλr(z)

> εp(t1, x, Ox0
) > 0, x ∈Mr, y ∈ Oy0

since the support of pt1,x is Mr by Theorem 9.1. Now if p(t, x1, y1) = 0 for some

x1, y1 ∈ Mr, let Q ∈ R
3 ⊗ R

3 be one of the two unitary matrices for which Q̃ =

Q ⊗ Q = diag[Q,Q] satisfies Q̃y1 = y0. Then 0 = p(t, x1, y1) = p(t, Q̃x1, y0) by

Corollary 8.2, which is a contradiction. �

Theorem 10.2. There exist positive constants cr, αr such that

(10.1) ‖P ∗
t ν − λr‖ 6 cre

−αrt‖ν − λr‖, t > 0

holds for every probability measure ν on B(Mr), where ‖·‖ is the norm in total
variation on Mr.

P r o o f. Set τ = 4π/r. According to Lemma 10.1, there exists ε > 0 such that

pτ,x(A) > ελr(A) holds for every x ∈ Mr and every A ∈ B(Mr). Hence, by the

Doeblin theorem6, (P ∗
t ) has a unique invariant probability measure µ on Mr and

there exist positive constants cr and αr such that

‖P ∗
t ν − µ‖ 6 cre

−αrt‖ν − µ‖, t > 0

holds for every probability measure ν on B(Mr). But λr is the unique invariant

probability measure on Mr by Theorem 7.8. �

6 See e.g. [20], Theorem 4, for a particularly simple proof of the Doeblin theorem.
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11. Invariant measures and attractivity on TS2

In this last section, we are going to study the global dynamics on the full target

space TS2. We will identify the set of invariant probability measures on B(TS2), the

set of ergodic probability measures on B(TS2), and it will be shown that the dual

Markov semigroup is always attractive.

Notation 11.1. Extend λr from B(Mr) to B(TS2) in the unique way to obtain

a probability measure on B(TS2), i.e. A 7→ λr(A∩Mr). Let us denote this extension

still by λr.

Definition 11.2. If ν is a probability measure on TS2, we define the probability

measures

ν∗(U) = ν{(p, ξ) ∈ TS2 : |ξ| ∈ U}, U ∈ B([0,∞)),

ν̄(A) = ν(A ∩M0) +

∫

(0,∞)

λr(A ∩Mr) dν∗, A ∈ B(TS2)

in the notation of (5.1).

Remark 11.3. One can check by the definition of λr that the mapping r 7→
λr(A ∩ Mr) is Borel measurable on (0,∞) for every A ∈ B(TS2) by the Fubini

theorem.

Theorem 11.4. Let z be a solution of (3.6) on TS2 with an initial distribution ν

on B(TS2). Then the laws of z(t) converge in total variation on TS2 to ν̄ as t→ ∞.
Moreover, ν is invariant for (3.6) if and only if ν = ν̄ and {δx, λr : x ∈ M0, r > 0}
is the set of ergodic probability measures for (3.6).

P r o o f. Let F : [0,∞) × B(TS2) → [0, 1] be a regular version of a conditional

probability measure ν(· ; |ξ| = r) on B(TS2) for r > 0, i.e., F (r, ·) is a probability
measure on B(TS2) for every r > 0, F (·, A) is Borel measurable on [0,∞) for every

A ∈ B(TS2) and

(11.1) ν(A ∩ {(p, ξ) : |ξ| ∈ U}) =
∫

U

F (r, A) dν∗(r)

holds for every A ∈ B(TS2) and U ∈ B[0,∞). The equality (11.1) implies that

(11.2)

∫

TS2

h(|ξ|, p, ξ) dν(p, ξ) =
∫

[0,∞)

(∫

TS2

h(r, y) dFr(y)

)
dν∗(r)
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holds for every bounded measurable h : [0,∞) × TS2 → R. In particular, setting

h(r, p, ξ) = 1[r=|ξ|], we obtain that ν∗(O) = 1 where O = {r > 0: F (r,Mr) = 1}.
So (11.2) implies that

(P ∗
t ν)(A) =

∫

TS2

p(t, x, A) dν =

∫

O

(∫

Mr

p(t, x, A) dFr(x)

)
dν∗(r)

=

∫

O

(P ∗
t Fr)(A ∩Mr) dν∗(r)

= ν(A ∩M0) +

∫

O∩(0,∞)

(P ∗
t Fr)(A ∩Mr) dν∗(r)

holds for every t > 0 and A ∈ B(TS2). By a contradiction argument, we get that

P ∗
t ν converge in total variation on TS

2 to ν̄, by Theorem 10.2.

To prove the invariance part of the claim, realize that
∫

TS2

h dν̄ =

∫

M0

h dν +

∫

(0,∞)

(∫

Mr

h dλr

)
dν∗

holds for every bounded measurable h : TS2 → R by the definition of the measure ν̄.

Hence, setting h(x) = p(t, x, A), we get that

(P ∗
t ν̄)(A) = ν(A ∩M0) +

∫

(0,∞)

λr(A ∩Mr) dν∗ = ν̄(A)

holds for every A ∈ B(TS2) by Theorem 7.8. In particular, ν̄ is invariant. If ν is

invariant then ν = lim
t→∞

P ∗
t ν = ν̄ by the first part of the proof.

Concerning the ergodic measures (according to Definition 5.1), the probability

measures {δx, λr : x ∈M0, r > 0} are invariant by the second part of the proof and
ergodicity follows from Remark 11.5 as ergodic probability measures are the extremal

points of the set of all invariant probability measures (see e.g. Proposition 3.2.7

in [16]). Indeed, the probability measure νa is ergodic for (3.6) if and only if a is an

extremal point in the convex set of probability measures on B(M0 ∪̇ (0,∞)). This

occurs if and only if a is a Dirac measure, i.e. either a = δx for some x ∈M0 (hence

νa = δx) or a = δr for some r > 0 (hence νa = λr). �

Remark 11.5. Invariant measures for (3.6) can be uniquely described as measures

νa(A) = a(A ∩M0) +

∫

(0,∞)

λr(A ∩Mr) da, A ∈ B(TS2)

where a is a Borel probability measure on the Polish space7 X = M0 ∪̇ (0,∞), i.e.,

G ⊆ X is open if and only if G∩M0 is open in M0 and G∩ (0,∞) is open in (0,∞).

7 Topological spaces that can be metrized by a complete separable metric are called Polish
spaces.
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X is Polish as so are M0 and (0,∞). The assignment a 7→ νa is a bijection onto the

set of invariant probability measures.

Appendix A: Lie algebra

Let U be an open set on a C∞-manifold.

⊲ The set L of all smooth tangent vector fields on U is a vector space with the

Jacobi bracket. Any vector subspace of L closed under the Jacobi bracket is

called a Lie algebra.

⊲ If X is a set of smooth tangent vector fields on U , then we denote by L (X ) the

smallest Lie algebra containing X .
⊲ If A ⊆ L and p ∈ U , then we define A(p) = {Ap : A ∈ A}.

Proposition A.1. Define L0 = span{X} and Ln = span{Ln−1∪{[A,B] : A,B ∈
Ln−1}}. Then

⋃
Ln = L (X ).

Proposition A.2. Let X1, . . . , Xm, Y ∈ L and let fi ∈ C∞(U). Then

L (X1, . . . , Xm, Y )(p) = L

(
X1, . . . , Xm, Y +

m∑

j=1

fjXj

)
(p), p ∈ U.

P r o o f. Let us write A1 = {X1, . . . , Xm, Y }, A2 =
{
X1, . . . , Xm, Y +

m∑
j=1

fjXj

}
,

C
i =

{ K∑

k=1

hkLk : hk ∈ C∞(U), Lk ∈ L (Ai), K ∈ N

}
.

Apparently, C i is a Lie algebra for i ∈ {1, 2}, Ai ⊆ C j whenever {i, j} = {1, 2},
hence L (Ai) ⊆ C j whenever {i, j} = {1, 2}. But then

L (Ai)(p) ⊆ C
j(p) ⊆ L (Aj)(p).

�
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Theorem A.3 (Hörmander). LetM be a Riemannian manifold with a countable

topological basis, let X1, . . . , Xm, Y be smooth vector fields onM , let Z be a smooth

function on M and let µ be a Radon measure on B(M) such that

(11.3)

∫

M

{
Zh+ Y (h) +

m∑

i=1

X i(X i(h))

}
dµ = 0, h ∈ C∞

comp(M)

and

span{Lp : L ∈ L (X1, . . . , Xm, Y )} = TpM, p ∈M.

Then µ has a C∞-smooth density with respect to the Riemannian measure on M .

P r o o f. Let ϕ : O → U be a diffeomorphism from an open set O ⊆ R
d onto an

open set U ⊆M , denote by φ the inverse of ϕ, define θ(A) = µ[ϕ[A]] for A ∈ B(O),

decompose X i
ϕ =

d∑
j=1

xij∂
j
ϕ, Yϕ =

d∑
j=1

yj∂
j
ϕ on O and define z = Z(ϕ) and

Q = −y + 2
m∑

i=1

(div xi)xi, S = z − div y +
m∑

i=1

div[(div xi)xi].

Then (A.1) implies for smooth functions h with compact support in U (which always

satisfy the identity h = Φ ◦ φ on U for some Φ ∈ C∞
comp(O)) that

(11.4)

∫

O

{
zΦ+

d∑

j=1

yj
∂Φ

∂zj
+

m∑

i=1

d∑

j=1

d∑

k=1

xij
∂

∂zj

(
xik
∂Φ

∂zk

)}
dθ = 0, Φ ∈ C∞

comp(O),

i.e.,

Sθ +Q(θ) +

m∑

i=1

xi(xi(θ)) = 0

holds in the sense of distributions on O. According to Proposition A.2,

span{Lz : L ∈ L (x1, . . . , xm, y)}
= span{Lz : L ∈ L (x1, . . . , xm, Q)} = R

d, z ∈ O.

Hence, by the Hörmander theorem [23], θ is absolutely continuous with respect to the

Lebesgue measure and the density ̺ belongs to C∞(O). If we define L =
√
det gij

on U then

ν(B) =

∫

O

1B(ϕ)̺ dx =

∫

B

̺(φ)

L
dx, B ∈ B(U).

By a localization argument, we obtain that µ has a density R ∈ C∞(M) with respect

to dx. �
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Appendix B: Density of product functions

Proposition B.1. Let M be a compact submanifold in R
m. Then

P = span{h1(t)h2(x)h3(z) : h1 ∈ C∞
comp(0,∞), h2, h3 ∈ C∞(M)}

is dense in the space C∞
comp((0,∞) × M × M) in the following sense. Let h ∈

C∞
comp((0,∞)×M ×M). Then there exist χn ∈ P such that

χn → h and Xm . . . X1χn → Xm . . . X1h

uniformly on (0,∞)×M×M for every vector fields X1, . . . , Xm on (0,∞)×M×M .

P r o o f. Let 0 < a < b be such that the support of h is contained in (a, b)×M×M
and extend h to a smooth compactly supported function in R×R

m ×R
m. This can

be done by standard methods of local extensions and a partition of unity as M is

assumed to be compact. Denote by h1 such an extension. The support of h1 fits in

some large cube Q = (−N,N)1+m+m and we can replicate h1 to each cube 2Nk+Q

for k ∈ Z
1+m+m to obtain a smooth 2N -periodic function h2 such that h1 = h2 in Q.

Now we can apply Fejér’s theorem on Fourier series to find a sequence of functions

ξn ∈ span{v1(t)v2(x)v3(z) : v1 ∈ C∞
2N-per(0,∞), h2, h3 ∈ C∞

2N-per(R
m)}

such that ξn → h2 in C
∞(R1+m+m). If ̺ ∈ C∞(R) has support in (0,∞) and ̺ = 1

on [a, b] then we can define χn(t, x, z) = ̺(t)ξn(t, x, z). The restrictions of χn to

(0,∞)×M ×M belong to P and approximate h in the asserted sense. �

Appendix C: Continuous surjections between circles

Proposition C.1. Let f : S
1 → S

1 be continuous and locally injective. Then f

is a surjection.

P r o o f. Since S1 is compact and f is continuous, f [S1] is also a compact. But

local injectivity of f implies that f [S1] is open. Hence f is a surjection as S1 is

connected. �
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