Czechoslovak Mathematical Journal

Mića S. Stanković; Milan L. Zlatanović; Nenad O. Vesić
Basic equations of G-almost geodesic mappings of the second type, which have the property of reciprocity

Czechoslovak Mathematical Journal, Vol. 65 (2015), No. 3, 787-799
Persistent URL: http://dml.cz/dmlcz/144443

Terms of use:

© Institute of Mathematics AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

BASIC EQUATIONS OF G-ALMOST GEODESIC MAPPINGS OF THE SECOND TYPE, WHICH HAVE THE PROPERTY OF RECIPROCITY

Mića S. Stanković, Milan L. Zlatanović, Nenad O. Vesić, Niš

(Received July 29, 2014)

Abstract. We study G-almost geodesic mappings of the second type $\pi_{\theta}(e), \theta=1,2$ between non-symmetric affine connection spaces. These mappings are a generalization of the second type almost geodesic mappings defined by N. S. Sinyukov (1979). We investigate a special type of these mappings in this paper. We also consider e-structures that generate mappings of type ${\underset{\theta}{2}}_{2}(e), \theta=1,2$. For a mapping ${\underset{\theta}{2}}^{2}(e, F), \theta=1,2$, we determine the basic equations which generate them.

Keywords: non-symmetric affine connection; almost geodesic mapping; G-almost geodesic mapping; property of reciprocity; almost geodesic mapping of the second type

MSC 2010: 53B05, 53B20, 53C15

1. InTRODUCTION

Let us consider two N-dimensional differentiable manifolds $G A_{N}$ and $G \bar{A}_{N}$ and a differentiable mapping $f: G A_{N} \rightarrow G \bar{A}_{N}$. We can consider these manifolds together with this mapping system of local coordinates. Namely, if $f: M \in G A_{N} \rightarrow$ $\bar{M} \in G \bar{A}_{N}$ and if (\mathcal{U}, φ) is the local chart around the point M then $\varphi(M)=x=$ $\left(x^{1}, \ldots, x^{N}\right) \in E^{N}$. In this case, we define mapping $\bar{\varphi}=\varphi \circ f^{-1}$ for the coordinate mapping in $G \bar{A}_{N}$, and then

$$
\bar{\varphi}(\bar{M})=\left(\varphi \circ f^{-1}\right)(f(M))=\varphi(M)=x=\left(x^{1}, \ldots, x^{N}\right) \in E^{N}
$$

The points M and $\bar{M}=f(M)$ have the same local coordinates in this case. If the connection coefficients $L_{j k}^{i}(x)$ and $\bar{L}_{j k}^{i}(x)$ of the affine connections introduced

[^0] Republic of Serbia, Grant No. 174012.
in $G A_{N}$ and $G \bar{A}_{N}$, respectively, are non-symmetric in lower indices then $G A_{N}$ and $G \bar{A}_{N}$ are general affine connection spaces.

One says that the reciprocal mapping $f: G A_{N} \rightarrow G \bar{A}_{N}$ is geodesic, [17], [16] if geodesics of the space $G A_{N}$ pass to geodesics of the space $G \bar{A}_{N}$. Generalizing the concept of a geodesic mapping between Riemannian spaces and symmetric affine connection ones, Sinyukov [18] introduced the following notions:

A curve $l: x^{h}=x^{h}(t)$ is called an almost geodesic line if its tangential vector $\lambda^{h}(t)=\mathrm{d} x^{h} / \mathrm{d} t \neq 0$ satisfies the equation

$$
\bar{\lambda}_{(2)}^{h}=\bar{a}(t) \lambda^{h}+\bar{b}(t) \bar{\lambda}_{(1)}^{h},
$$

where $\bar{\lambda}_{(1)}^{h}=\lambda_{\| p}^{h} \lambda^{p}, \bar{\lambda}_{(2)}^{h}=\bar{\lambda}_{(1) \| p}^{h} \lambda^{p}$. Here $\bar{a}(t)$ and $\bar{b}(t)$ are functions of a parameter t and $\|$ denotes the covariant derivative with regard to the connection in \bar{A}_{N}.

Definition 1.1. A mapping f of a symmetric affine connection space A_{N} onto a space \bar{A}_{N} is called an almost geodesic mapping if any geodesic line of the space A_{N} is mapped into an almost geodesic line of the space \bar{A}_{N}.

A lot of research papers and monographs [1]-[23] have been dedicated to the theory of geodesic mappings of Riemannian spaces, affine connected ones and their generalizations. Sinyukov [18] and Mikeš [1], [2], [12], [13], [23] gave some other significant contributions to the study of almost geodesic mappings of affine connected spaces and singled out three types $\pi_{1}, \pi_{2}, \pi_{3}$ of almost geodesic mappings between affine connected spaces without torsion.

In a general affine connection space $G A_{N}$, with non-symmetric affine connection L, one can define four kinds of a covariant derivative [15], [14]. Let us denote a covariant derivative of a kind $\theta(\theta=1, \ldots, 4)$ with regard to affine connections of $G A_{N}$ and $G \bar{A}_{N}$ by $\left.\right|_{\theta}$ and $\|_{\theta}$, respectively.

For example, a tensor a_{j}^{i} in $G A_{N}$ satisfies

$$
a_{j \mid m}^{i}=a_{j, m}^{i}+L_{\alpha m}^{i} a_{j}^{\alpha}-L_{j m}^{\alpha} a_{\alpha}^{i} \quad \text { and } \quad a_{j \mid m}^{i}=a_{j, m}^{i}+L_{m \alpha}^{i} a_{j}^{\alpha}-L_{m j}^{\alpha} a_{\alpha}^{i}
$$

Thus, in the case of a space with a non-symmetric affine connection we can define two kinds of almost geodesic lines and two kinds of almost geodesic mappings [20]-[19].

Definition 1.2. A curve $l: x^{h}=x^{h}(t)$ on $G \bar{A}_{N}$ is called [20]-[19] a G-almost geodesic line of the first kind if its tangent vector $\lambda^{h}(t)=\mathrm{d} x^{h} / \mathrm{d} t \neq 0$ satisfies the equation
 rameter t.

Definition 1.3. A curve $l: x^{h}=x^{h}(t)$ is called a G-almost geodesic line of the second kind if its tangential vector $\lambda^{h}(t)=\mathrm{d} x^{h} / \mathrm{d} t \neq 0$ satisfies the equation

$$
{\underset{2}{\lambda}}^{h}{ }_{(2)}=\underset{2}{\bar{a}}(t) \lambda^{h}+\underset{2}{\bar{b}}(t) \bar{\lambda}^{h}{ }_{(1)},
$$

where $\bar{\lambda}^{h}{ }_{(1)}=\lambda_{\left.\right|_{2}}^{h} \lambda^{\alpha}, \bar{\lambda}_{2}^{h}{ }_{(2)}=\bar{\lambda}_{2}^{h}{ }_{(1)| |}{ }_{2} \lambda^{\alpha},{ }_{2}(t)$ and ${ }_{2}(t)$ are functions of a parameter t.
Definition 1.4. A mapping f of the space $G A_{N}$ onto a space $G \bar{A}_{N}$ is called a G-almost geodesic mapping of the first kind if any geodesic line of the space $G A_{N}$ turns into an almost geodesic line of the first kind of the space $G \bar{A}_{N}$.

Definition 1.5. A mapping f is called a G-almost geodesic mapping of the second kind if any geodesic line of the space $G A_{N}$ turns into almost geodesic line of the second kind of the space $G \bar{A}_{N}$.

We can put

$$
P_{i j}^{h}(x)=\bar{L}_{i j}^{h}(x)-L_{i j}^{h}(x),
$$

where $L_{i j}^{h}(x), \bar{L}_{i j}^{h}(x)$ are connection coefficients of the spaces $G A_{N}$ and $G \bar{A}_{N}, N>2$, together with the mapping f system of local coordinates, and $P_{i j}^{h}$ is a deformation tensor. From [20], it follows that the succeeding results hold:

Theorem 1.1. A mapping f of the space $G A_{N}$ onto $G \bar{A}_{N}$ is a G-almost geodesic mapping of the first kind if and only if the deformation tensor $P_{i j}^{h}$ satisfies the conditions

$$
\begin{equation*}
\left(P_{\alpha \beta \mid \gamma}^{h}+P_{\delta \alpha}^{h} P_{\beta \gamma}^{\delta}\right) \lambda^{\alpha} \lambda^{\beta} \lambda^{\gamma}=\underset{1}{b} P_{\alpha \beta}^{h} \lambda^{\alpha} \lambda^{\beta}+\underset{1}{a} \lambda^{h} \tag{1.1}
\end{equation*}
$$

identically, where $\underset{1}{a}$ and $\underset{1}{b}$ are functions.
Theorem 1.2. A mapping f of the space $G A_{N}$ onto $G \bar{A}_{N}$ is a G-almost geodesic mapping of the second kind if and only if the deformation tensor $P_{i j}^{h}$ satisfies the conditions

$$
\begin{equation*}
\left(P_{\alpha \beta \mid \gamma}^{h}+P_{\alpha \delta}^{h} P_{\beta \gamma}^{\delta}\right) \lambda^{\alpha} \lambda^{\beta} \lambda^{\gamma}=\underset{2}{b} P_{\alpha \beta}^{h} \lambda^{\alpha} \lambda^{\beta}+{ }_{2}^{a} \lambda^{h} \tag{1.2}
\end{equation*}
$$

identically, where $\underset{2}{a}$ and $\underset{2}{b}$ are functions.
We are going to present basic equations of G-almost geodesic mappings of the type $\pi_{\theta}^{\pi_{2}}(e), \theta=1,2$, between non-symmetric affine connection spaces $\mathbb{G} \mathbb{A}_{N}$ and $\mathbb{G} \overline{\mathbb{A}}_{N}$ in this paper.

2. G-ALMOST GEODESIC MAPPINGS OF THE SECOND TYPE

Sinyukov (see [18]) introduced almost geodesic mapping of the second type π_{2} for affine connection spaces without torsion with the condition

$$
b=\frac{b_{\gamma \delta} \lambda^{\gamma} \lambda^{\delta}}{\sigma_{\alpha} \lambda^{\alpha}},
$$

where $\sigma_{\alpha} \lambda^{\alpha} \neq 0$ and $b_{\gamma \delta}$ is a twice covariant tensor.
Analogously, a G-almost geodesic mapping of the first kind of a non-symmetric affine connection space is an almost geodesic mapping of the second type π_{1} if the function $\underset{1}{b}$ satisfies the condition

$$
\underset{1}{b}=\frac{b_{\gamma \delta} \lambda^{\gamma} \lambda^{\delta}}{\sigma_{\alpha} \lambda^{\alpha}}
$$

where $\sigma_{\alpha} \lambda^{\alpha} \neq 0$ and ${\underset{1}{\gamma} \delta}$ is a twice covariant tensor.
Let

$$
P_{\alpha \beta}^{h} \lambda^{\alpha} \lambda^{\beta}=2 \sigma_{\alpha} \lambda^{\alpha} F_{\beta}^{h} \lambda^{\beta}+2 \psi_{\alpha} \lambda^{\alpha} \lambda^{h}
$$

Then

$$
\left(P_{\alpha \beta}^{h}-2 \sigma_{\alpha} F_{\beta}^{h}-2 \psi_{\alpha} \delta_{\beta}^{h}\right) \lambda^{\alpha} \lambda^{\beta} \equiv 0,
$$

wherefrom

$$
P_{\underline{i j}}^{h}=\psi_{i} \delta_{j}^{h}+\psi_{j} \delta_{i}^{h}+\sigma_{i} F_{j}^{h}+\sigma_{j} F_{i}^{h} .
$$

Here, ψ_{i} and σ_{i} are vectors, F_{j}^{i} is a tensor, $\underline{i j}$ denotes a symmetrization with division, $\underset{\vee}{i j}$ denotes an anti-symmetrization with division and δ_{i}^{h} is the Kronecker symbol. We can put $P_{\stackrel{i j}{ }}^{h}=\xi_{i j}^{h}$.

Then

$$
\begin{equation*}
P_{i j}^{h}=\psi_{i} \delta_{j}^{h}+\psi_{j} \delta_{i}^{h}+\sigma_{i} F_{j}^{h}+\sigma_{j} F_{i}^{h}+\xi_{i j}^{h} \tag{2.1}
\end{equation*}
$$

In the equation (2.1), magnitudes ψ_{i}, σ_{i} are covariant vectors, F_{i}^{h} is a tensor and $\xi_{i j}^{h}$ is an anti-symmetric tensor.

After substituting the equation (2.1) in the equation (1.1), we conclude that

$$
\begin{equation*}
\underset{\substack{i \mid j \\ 1}}{h}+F_{\substack{1 \\ 1}}^{h}+F_{\delta}^{h} F_{i}^{\delta} \sigma_{j}+F_{\delta}^{h} F_{j}^{\delta} \sigma_{i}+\xi_{\delta i}^{h} F_{j}^{\delta}+\xi_{\delta j}^{h} F_{i}^{\delta}=\mu_{i} F_{j}^{h}+\nu_{j} F_{i}^{h}+\nu_{i} \delta_{j}^{h}+\nu_{j} \delta_{i}^{h} \tag{2.2}
\end{equation*}
$$

where μ_{i} and ν_{i} are covariant vectors.
Conditions (2.1) and (2.2) are the basic equations of the mapping π_{1}.

A G-almost geodesic mapping of the second kind is a G-almost geodesic mapping of the second type π_{2} if it satisfies the following condition for the function $\underset{2}{b}$ in (1.2):

$$
\underset{2}{b}=\frac{b_{\gamma \delta} \lambda^{\gamma} \lambda^{\delta}}{\sigma_{\alpha} \lambda^{\alpha}}
$$

where $\sigma_{\alpha} \lambda^{\alpha} \neq 0$ and ${ }_{2}{ }_{\gamma \delta}$ is a twice covariant tensor.
Using the method from the previous case, we get

$$
\begin{align*}
F_{i j}^{h}+\underset{j \mid i}{h}+F_{\delta}^{h} F_{i}^{\delta} \sigma_{j}+F^{h} & \delta F_{j}^{\delta} \sigma_{i}+\xi_{i \delta}^{h} F_{j}^{\delta}+\xi_{j \delta}^{h} F_{i}^{\delta} \tag{2.3}\\
& =\mu_{i} F_{j}^{h}+\mu_{j} F_{i}^{h}+\nu_{i} \delta_{j}^{h}+\nu_{j} \delta_{i}^{h}
\end{align*}
$$

where μ_{i}, ν_{i} are covariant vectors.
Conditions (2.1) and (2.3) are the basic equations of G-almost geodesic mappings of the type π_{2}.

Remark 2.1. If $\sigma_{i} \equiv 0$ in the equation (2.1) then almost geodesic mappings are reduced to the geodesic ones. On the other hand, if $\psi_{i} \equiv 0$, then this mapping is a canonical almost geodesic one (see [21]). In the case $\sigma_{i} \equiv 0$ and $\psi_{i} \equiv 0$, we have a trivial almost geodesic mapping. We are working with nontrivial almost geodesic mappings only in the sequel.

3. The property of reciprocity of G-almost geodesic mappings of THE SECOND TYPE

A mapping $f: G A_{N} \rightarrow G \bar{A}_{N}$ of the type π_{1} has the property of reciprocity, if its inverse mapping $f^{-1}: G \bar{A}_{N} \rightarrow G A_{N}$ (provided it exists) is of the π_{1} type, and f^{-1} corresponds to the same tensor F_{i}^{h}, see also [21]. Since the inverse mapping $f^{-1}: G \bar{A}_{N} \rightarrow G A_{N}$ satisfies

$$
\bar{P}_{i j}^{h}=-P_{i j}^{h},
$$

we can put the following in the equation (2.1):

$$
\bar{\psi}_{i}=-\psi_{i}, \quad \bar{\sigma}_{i}=-\sigma_{i}, \quad \bar{F}_{i}^{h}=F_{i}^{h}, \quad \bar{\xi}_{i j}^{h}=-\xi_{i j}^{h} .
$$

A mapping $f: G A_{N} \rightarrow G \bar{A}_{N}$ of the type π_{1} has the property of reciprocity if and only if the tensor F_{i}^{h} of the space $G \bar{A}_{N}$ satisfies the equation of the form (2.2), i.e.,

$$
\begin{equation*}
F_{\substack{i \| j) \\ 1}}^{h}-F_{\alpha}^{h} F_{(i}^{\alpha} \sigma_{j)}-\xi_{\alpha(i}^{h} F_{j)}^{\alpha}=\bar{\mu}_{(i} F_{j)}^{h}+\bar{\nu}_{(i} \delta_{j)}^{h} \tag{3.1}
\end{equation*}
$$

where ($i j$) is a symmetrization without division with respect to i and j, and $\|_{1}$ is a covariant derivative of the first kind in $G \bar{A}_{N}$. Inserting a covariant derivative of the first kind in $G A_{N}$ into the equation (3.1) we get

$$
F_{\alpha}^{h} F_{(i}^{\alpha} \sigma_{j)}+\xi_{\alpha(i}^{h} F_{j)}^{\alpha}=\overline{\bar{\mu}}_{(i} F_{j)}^{h}+\overline{\bar{\nu}}_{(i} \delta_{j)}^{h},
$$

where vectors $\overline{\bar{\mu}}_{i}, \overline{\bar{\nu}}_{i}$ are expressed by $\mu_{i}, \nu_{i}, \bar{\mu}_{i}, \bar{\nu}_{i}, \psi_{i}, \sigma_{i}, F_{i}^{h}$. Since $\sigma \neq 0$, we get

$$
\begin{equation*}
F_{\alpha}^{h} F_{i}^{\alpha}=p \delta_{i}^{h}+q F_{i}^{h}, \tag{3.2}
\end{equation*}
$$

where p and q are functions.
Based on the facts given above, we have:

Theorem 3.1. The relation (3.2) expresses the necessary and sufficient condition for a mapping $\pi_{1}: G A_{N} \rightarrow G \bar{A}_{N}$ to have the property of reciprocity.

The equations (2.1) and (2.2) are invariant under the mapping π_{1} of a tensor

$$
\widetilde{F}_{i}^{h}=r F_{i}^{h}+s \delta_{i}^{h}, \quad r \neq 0 .
$$

Then we have

$$
\widetilde{F}_{\alpha}^{h} \widetilde{F}_{i}^{\alpha}=\tilde{p} \delta_{i}^{h}+\tilde{q} \widetilde{F}_{i}^{h},
$$

where

$$
\tilde{p}=r^{2} p-s^{2}-s r q, \quad \tilde{q}=2 s+r q .
$$

Here we can select invariants r and s such that

$$
\tilde{q} \equiv 0, \quad \tilde{p}=\tilde{e}(= \pm 1,0) .
$$

In this case, we have

$$
\widetilde{F}_{\alpha}^{h} \widetilde{F}_{i}^{\alpha}=\tilde{e} \delta_{i}^{h}
$$

Based on the facts given above, we can put

$$
\begin{equation*}
F_{\alpha}^{h} F_{i}^{\alpha}=e \delta_{i}^{h}, \quad e= \pm 1,0 . \tag{3.3}
\end{equation*}
$$

Substituting the equation (3.3) into the condition (2.2), we get

$$
\begin{equation*}
F_{(i \mid j)}^{h}+\xi_{\alpha(i}^{h} F_{j)}^{\alpha}=\mu_{(i} F_{j)}^{h}+\nu_{(i} \delta_{j)}^{h} . \tag{3.4}
\end{equation*}
$$

Hence, a G-almost geodesic mapping $f: G A_{N} \rightarrow G \bar{A}_{N}$ of the type π_{2} which has the property of reciprocity is determined by the equations (2.1), (3.3) and (3.4) (see [21]). This mapping is denoted by $\pi_{2}(e)$.

In the case of the G-almost geodesic mapping $f: G A_{N} \rightarrow G \bar{A}_{N}$ of the type ${\underset{2}{2}}_{2}$ which has the property of reciprocity, it is determined by the equations

$$
\begin{gather*}
P_{i j}^{h}=\psi_{i} \delta_{j}^{h}+\psi_{j} \delta_{i}^{h}+\sigma_{i} F_{j}^{h}+\sigma_{j} F_{i}^{h}+\xi_{i j}^{h}, \tag{3.5}\\
F_{(i \mid j)}^{h}-\xi_{\alpha(i}^{h} F_{j)}^{\alpha}=\mu_{(i} F_{j)}^{h}+\nu_{(i} \delta_{j)}^{h}, \\
F_{\alpha}^{h} F_{i}^{\alpha}=e \delta_{i}^{h}, \quad e= \pm 1,0 .
\end{gather*}
$$

This mapping is denoted by $\pi_{2}(e)$.

4. On e-Structures that determine G-almost geodesic mappings OF TYPE $\pi_{2}(e)$ OF FIRST AND SECOND KINDS

Definition 4.1. A tensor F_{i}^{h} which satisfies the conditions (3.3) and (3.4) is called an e-structure which determines a G-almost geodesic mapping $f: G A_{N} \rightarrow$ $G \bar{A}_{N}$ of the type $\pi_{1}(e)$.

Theorem 4.1. An e-structure F_{i}^{h} determines a G-almost geodesic mapping f : $G A_{N} \rightarrow G \bar{A}_{N}$ of the type $\pi_{2}(e), e= \pm 1$, if and only if it satisfies the conditions

$$
\begin{gather*}
F_{(i \mid 1)}^{h}+\xi_{\alpha(i}^{h} F_{j)}^{\alpha}=\mu_{(i} F_{j)}^{h}-\mu_{\alpha} F_{(i}^{\alpha} \delta_{j)}^{h}, \tag{4.1}\\
F_{\alpha}^{h} F_{i}^{\alpha}=e \delta_{i}^{h} . \tag{4.2}
\end{gather*}
$$

Proof. Based on the covariant derivative of the first kind of the condition (4.2) in the direction x^{j}, we get

$$
\begin{equation*}
F_{\alpha \mid j}^{h} F_{i}^{\alpha}+\underset{\substack{1 \\ 1}}{\alpha} F_{\alpha}^{h}=0 \tag{4.3}
\end{equation*}
$$

After the symmetrization of the equation (4.3) with respect to the indices i and j, we have

$$
\begin{equation*}
\underset{\substack{\alpha \mid j \\ 1}}{h} F_{i}^{\alpha}+\underset{\substack{\alpha \mid i \\ 1}}{h} F_{j}^{\alpha}+F_{\substack{(i \mid j) \\ \alpha}}^{\alpha} F_{\alpha}^{h}=0 \tag{4.4}
\end{equation*}
$$

Based on the equations (3.4) and (4.4), we conclude that

$$
F_{\alpha \mid i}^{h} F_{j}^{\alpha}+\underset{\substack{1}}{h} F_{i}^{\alpha}+e \delta_{(i}^{h} \mu_{j)}+F_{(i}^{h} \nu_{j)}+F_{\alpha}^{h} F_{(i}^{\beta} \xi_{j) \beta}^{\alpha}=0 .
$$

Composing the previous relation with F_{k}^{j}, one obtains

$$
\begin{align*}
e F_{k \mid i}^{h} & +F_{\alpha \mid \beta}^{h} F_{i}^{\alpha} F_{k}^{\beta}+e \delta_{i}^{h} \mu_{\alpha} F_{k}^{\alpha}+e \mu_{i} F_{k}^{h}+F_{i}^{h} \nu_{\alpha} F_{k}^{\alpha}+e \delta_{k}^{h} \nu_{i} \tag{4.5}\\
& +F_{i}^{h} \nu_{\alpha} F_{k}^{\alpha}+e \delta_{k}^{h} \nu_{i}+F_{\alpha}^{h} F_{i}^{\beta} F_{k}^{\gamma} \xi_{\gamma \beta}^{\alpha}+e F_{\alpha}^{h} \xi_{i k}^{\alpha}=0 .
\end{align*}
$$

After symmetrizing of the equation (4.5) by indices i and k, we infer

$$
\begin{equation*}
e F_{\substack{(i \mid k) \\ h}}^{h} F_{(\alpha \mid \beta)}^{h} F_{i}^{\alpha} F_{k}^{\beta}+e \delta_{(i}^{h} F_{k)}^{\alpha} \mu_{\alpha}+e \mu_{(i} F_{k)}^{h}+\nu_{\alpha} F_{(i}^{h} F_{k)}^{\alpha}+e \delta_{(i}^{h} \nu_{k)}=0 . \tag{4.6}
\end{equation*}
$$

From the equation (3.4), we have

$$
\begin{align*}
& e F_{(\underset{1}{1}}^{h} \tag{4.7}\\
&+e \delta_{i}^{h}\left(\mu_{\beta} F_{k}^{\beta}+\nu_{k}\right)+e \delta_{k}^{h}\left(\mu_{\alpha} F_{i}^{\alpha}+\nu_{i}\right)
\end{align*}
$$

Now, from the equations (4.6) and (4.7) we obtain

$$
F_{i}^{h}\left(F_{k}^{\alpha} \nu_{\alpha}+e \mu_{k}\right)+F_{k}^{h}\left(F_{i}^{\alpha} \nu_{\alpha}+e \mu_{i}\right)+e \delta_{i}^{h}\left(F_{k}^{\alpha} \mu_{k}+\nu_{k}\right)+e \delta_{k}^{h}\left(F_{i}^{\alpha} \mu_{\alpha}+\nu_{i}\right)=0 .
$$

By examining the last equality, we conclude that

$$
\begin{equation*}
F_{i}^{\alpha} \mu_{\alpha}+\nu_{i}=0, \quad \text { i.e. } \quad \nu_{i}=-F_{i}^{\alpha} \mu_{\alpha} . \tag{4.8}
\end{equation*}
$$

After substituting (4.8) into (3.4), we obtain the relation (4.1) is valid.
Analogously, in the case of G-almost geodesic mappings of the type $\pi_{2}(e)$ of the second kind we obtain

Definition 4.2. A tensor F_{i}^{h} which satisfies the conditions (3.5) is an e-structure which determines a G-almost geodesic mapping of the type $\pi_{2}(e)$.

Theorem 4.2. An e-structure F_{i}^{h} determines a G-almost geodesic mapping of the type $\underset{2}{\pi_{2}}(e), e= \pm 1$, if and only if it satisfies the conditions

$$
\begin{gather*}
F_{(i \mid j)}^{h}-\xi_{\alpha(i}^{h} F_{j)}^{\alpha}=\mu_{(i} F_{j)}^{h}-\mu_{\alpha} F_{(i}^{h} \delta_{j)}^{h}, \tag{4.9}\\
F_{\alpha}^{h} F_{i}^{\alpha}=e \delta_{i}^{h} . \tag{4.10}
\end{gather*}
$$

Theorem 4.3. An e-structure F_{i}^{h} which determines a G-almost geodesic mapping of the type $\pi_{2}(e), e= \pm 1$, satisfies the following conditions:

$$
\begin{align*}
& F_{i \mid 1}^{h}(j k) \tag{4.11}\\
& \xi_{1}^{\xi_{j k}}= \mu_{(j|1|}^{h} F_{i}^{h}+\mu_{\left[{ }_{1} \mid k\right]} F_{j}^{h}+\mu_{[i \mid j]} F_{k}^{h} \\
&-\mu_{\alpha \mid(j} F_{k)}^{\alpha} \delta_{i}^{h}+\mu_{\alpha \mid[i} F_{k]}^{\alpha} \delta_{j}^{h}+\mu_{\alpha \mid[i} F_{j]}^{\alpha} \delta_{k}^{h}+{ }_{1}^{1} \theta_{1}^{h},
\end{align*}
$$

where $[i, j]$ is an anti-symmetrization without division,

$$
\begin{aligned}
& +L_{[i j]}^{\alpha} F_{k \mid \alpha}^{h}+L_{[i k]}^{\alpha} F_{j \mid \alpha}^{h}, \\
& { }_{1}^{\theta_{1}}{ }_{i j k}^{h}=\mu_{i} F_{j \mid k}^{h}+\mu_{i} F_{i \mid k}^{h}-\mu_{\alpha} F_{i \mid k}^{\alpha} \delta_{j}^{h}-\mu_{\alpha} F_{j \mid k}^{\alpha} \delta_{i}^{h}-\xi_{\alpha i}^{h} F_{j \mid k}^{\alpha}-\xi_{\alpha j}^{h} F_{i \mid 1}^{\alpha}, \\
& \underset{1}{\xi_{i j k}}=\underset{\substack{1 \\
1 \\
1 \\
1}}{h} F_{j}^{h}+\xi_{\alpha[i \mid j]}^{h} F_{k}^{h}+\xi_{\alpha(j \mid k)]}^{h} F_{i}^{h},
\end{aligned}
$$

and

$$
{\underset{1}{i j k}}_{R_{i j}^{h}}=L_{i j, k}^{h}-L_{i k, j}^{h}+L_{i j}^{\alpha} L_{\alpha k}^{h}-L_{i k}^{\alpha} L_{\alpha j}^{h}
$$

is a curvature tensor of the first kind (see [15]).
Proof. Taking the covariant derivative of the first kind of (4.1) in the direction of x^{k}, we get

$$
\begin{align*}
F_{i \mid j k}^{h}+ & F_{j \mid i k}^{h}+\underset{1}{h}+\xi_{\alpha i \mid k}^{h} F_{j}^{\alpha}+\xi_{\alpha j \mid k}^{h} F_{i}^{\alpha} \tag{4.12}\\
& =\underset{\substack{1 \\
\mu_{i \mid k}}}{ } F_{j}^{h}+\mu_{j \mid k} F_{i}^{h}-\mu_{\alpha \mid k} F_{i}^{\alpha} \delta_{j}^{h}-\mu_{\alpha \mid k} F_{j}^{\alpha} \delta_{i}^{h}+{ }_{1}^{2}{ }_{1}^{h}{ }_{1 j k} .
\end{align*}
$$

Alternating this equation with respect to i and k and using the first Ricci identity, we get

$$
\begin{align*}
& F_{\substack{i \mid j k \\
1}}^{h}-F_{\substack{1 \mid j i \\
1}}^{h}+\xi_{\alpha i \mid k}^{h} F_{j}^{\alpha}-\xi_{\alpha k \mid i}^{h} F_{j}^{\alpha}+\xi_{\alpha j \mid k}^{h} F_{i}^{\alpha}-\xi_{\alpha j \mid i}^{h} F_{k}^{\alpha} \tag{4.13}\\
& =\mu_{i \mid k} F_{j}^{h}-\mu_{k \mid i}^{1} F_{j}^{h}+\mu_{j \mid k} F_{i}^{h}-\mu_{j \mid i} F_{k}^{h} \\
& -\mu_{\alpha \mid k} F_{i}^{\alpha} \delta_{j}^{h}+\underset{1}{\mu} \underset{\substack{\mid i}}{ } F_{k}^{\alpha} \delta_{j}^{h}-\underset{1}{\mu_{\alpha \mid k}} F_{j}^{\alpha} \delta_{i}^{h}+\underset{1}{\mu_{\alpha \mid i}} F_{j}^{\alpha} \delta_{k}^{h}+\underset{1}{\theta_{1}}{ }_{i j k}^{h},
\end{align*}
$$

where

$$
\stackrel{3}{\theta_{1}^{h}}{ }_{i j k}^{h}=\stackrel{2}{\theta_{1}^{h}}{ }_{1}^{h}-\stackrel{2}{\theta_{k j i}^{h}}-\underset{1}{R_{\alpha i k}^{h}} F_{j}^{\alpha}+\underset{1}{R_{j i k}^{\alpha}} F_{\alpha}^{h}+L_{[i k]}^{\alpha} F_{j \mid \alpha}^{h} .
$$

Let us interchange indices j and k in (4.13). Then we have

$$
\begin{align*}
& F_{i \mid k j}^{h}-F_{j \mid k i}^{h}+\xi_{\alpha i \mid j}^{h} F_{k}^{\alpha}-\xi_{\alpha j \mid 1}^{h} F_{k}^{\alpha}+\xi_{\alpha k \mid j}^{h} F_{i}^{\alpha}-\xi_{\alpha k \mid i}^{h} F_{j}^{\alpha} \tag{4.14}\\
& =\mu_{i \mid j} F_{k}^{h}-\mu_{j \mid 1} F_{k}^{h}+\mu_{k \mid j} F_{i}^{h}-\mu_{k \mid i} F_{j}^{h} \\
& -\mu_{\alpha \mid j} F_{i}^{\alpha} \delta_{k}^{h}+\underset{1}{\mu_{\alpha \mid i}} F_{j}^{\alpha} \delta_{k}^{h}-\underset{1}{\mu_{\alpha \mid j}} F_{k}^{\alpha} \delta_{i}^{h}+\underset{1}{\mu_{\alpha \mid i}} F_{k}^{\alpha} \delta_{j}^{h}+\underset{1}{\theta_{1}}{ }_{i k j}^{h} .
\end{align*}
$$

Adding the equations (4.12) and (4.14) together with some other calculations proves the equation (4.11) holds.

We are going to proceed with the study of conditions on the e-structure that generates G-almost geodesic mappings of the type $\pi_{1}(e), e= \pm 1$.

Definition 4.3. A G-almost geodesic mapping $f: G A_{N} \rightarrow G \bar{A}_{N}$ of the type $\pi_{\theta}(e)(\theta=1,2)$, which satisfies the condition $F_{\alpha}^{\alpha}=0$ is a G-almost geodesic mapping of the type $\pi_{\theta}(e, F)(\theta=1,2)$.

Perform a contraction by indices h and i in the algebraic condition (4.2). Then we have the equation

$$
F_{\beta}^{\alpha} F_{\alpha}^{\beta}=e N .
$$

Let us take its second covariant derivative of the first kind in the directions x^{i} and x^{k} :

$$
\begin{equation*}
F_{\beta}^{\alpha} F_{\substack{\alpha \mid j k \\ \beta}}^{\beta}+F_{\beta \mid j}^{\alpha} F_{\alpha \mid k}^{\alpha}=0 \tag{4.15}
\end{equation*}
$$

After the composing the equation (4.11) with F_{k}^{i} and using the result (4.15), we get

$$
\begin{align*}
-2 F_{\beta \mid j}^{\alpha} F_{\alpha \mid k}^{\beta}+F_{\beta}^{\alpha} \xi_{\alpha j k}^{\beta}= & \left.\mu_{(j \mid 1}\right) e N-F_{\beta}^{\beta} \mu_{\alpha \mid(j)} F_{k)}^{\alpha}+\mu_{(\alpha \mid 1)} F_{k}^{\alpha} F_{j}^{\beta} \tag{4.16}\\
& -e \mu_{(j \mid k)}+F_{\beta}^{\alpha}{ }_{1}^{1} \theta_{\alpha k j}^{\beta} .
\end{align*}
$$

Using the condition $F_{\alpha}^{\alpha}=0$, from (4.16) we have

$$
\begin{equation*}
e(N-1) \mu_{(j \mid k)}^{1}+\underset{\substack{\alpha \mid \beta)}}{\mu_{j}^{\alpha}} F_{k}^{\beta}=\stackrel{4}{\theta}_{j}^{4 k}, \tag{4.17}
\end{equation*}
$$

where we denoted $\stackrel{4}{\theta}_{1_{j k}}=F_{\beta}^{\alpha}{ }_{1}^{\dot{\theta}}{ }_{1}^{\beta}{ }^{\beta}+2 F_{\beta \mid j}^{\alpha} F_{\alpha \mid k}^{\beta}-F_{\beta}^{\alpha} \xi_{\alpha j k}^{\beta}$. Composing (4.17) with $F_{j^{\prime}}^{j} F_{k^{\prime}}^{k}$ we obtain

$$
\begin{equation*}
\left.e(N-1) \mu_{(\alpha \mid \beta)} F_{j}^{\alpha} F_{k}^{\beta}+\mu_{(j \mid 1}\right)=\stackrel{4}{1}_{\alpha \beta} F_{j}^{\alpha} F_{k}^{\beta} . \tag{4.18}
\end{equation*}
$$

Now, from (4.17) and (4.18) we obtain

$$
\begin{equation*}
\mu_{(i \mid j)}=\stackrel{5}{1}_{1}^{\theta_{i j}} \tag{4.19}
\end{equation*}
$$

where $\stackrel{5}{\theta}_{1}^{\stackrel{5}{\theta}}=N^{-1}(2-N)^{-1}\left[\stackrel{4}{\theta}_{1}^{\alpha} F_{i}^{\alpha} F_{j}^{\beta}-e(N-1) \stackrel{4}{\theta}_{1}{ }^{j}\right]$. Let us take the covariant derivative of the first kind of the (4.19) in the direction of x^{k} :

$$
\begin{equation*}
\underset{1}{\mu_{i \mid j k}}+\underset{1}{\mu_{j \mid i k}}=\stackrel{5}{1}_{1}^{\theta_{i j \mid k}} \tag{4.20}
\end{equation*}
$$

and alternate this equation with respect to the indices i and k. Then we have

$$
\mu_{i \mid j k}-\mu_{k \mid j i}-{\underset{1}{1}}_{R_{i j k}}^{\alpha} \mu_{\alpha}-L_{[j k]}^{\alpha} \mu_{i \mid 1}=\stackrel{5}{1}_{\theta_{1} \mid{ }_{1}}-\stackrel{5}{1}_{\theta_{k j \mid i}} .
$$

Switching indices j and k, we obtain

After adding this result to (4.20), we get

Finally, we obtain a system of differential equations of the Cauchy type with covariant derivatives with respect to unknown functions $\mu_{i}, \mu_{i j}, F_{i}^{h}$ and $F_{i j}^{h}$:

$$
\begin{align*}
& F_{i \mid j}^{h}=F_{i j}^{h}, \tag{4.22}\\
& F_{i(j \mid k)}^{h}=\stackrel{6}{1}_{1}^{6}, \\
& \mu_{i \mid j}=\mu_{i j}, \\
& 1 \\
& \mu_{i \mid(j k)}+\mu_{j \mid[k i]}=\stackrel{7}{\theta_{1}}, \\
& 10 k
\end{align*},
$$

where

$$
\begin{aligned}
\stackrel{1}{1}_{6}^{i j k}= & -\underset{1}{\xi_{i j k}^{h}}+\mu_{(j \mid k)}^{h} F_{i}^{h}+\underset{\substack{\left.\mu_{1} \mid k\right]}}{ } F_{j}^{h}+\mu_{[i \mid j]}^{1} F_{k}^{h}-\mu_{\alpha \mid 1}\left(j F_{k)}^{\alpha} \delta_{i}^{h}\right. \\
& +\mu_{\alpha \mid[i} F_{k]}^{\alpha} \delta_{j}^{h}+\mu_{\alpha \mid[i} F_{j]}^{\alpha} \delta_{k}^{h}+\underset{1}{\theta_{i k j}^{h}}
\end{aligned}
$$

and

On the other hand, functions $\mu_{i}, \mu_{i j}, F_{i}^{h}$ and $F_{i j}^{h}$ satisfy the algebraic formulas

$$
\begin{gather*}
F_{(i \mid j)}^{h}+\xi_{\alpha(i}^{h} F_{j)}^{\alpha}=\mu_{(i} F_{j)}^{h}-\mu_{\alpha} F_{(i}^{\alpha} \delta_{j)}^{h}, \tag{4.23}\\
F_{\alpha}^{h} F_{i}^{\alpha}=e \delta_{i}^{h}, \quad \mu_{(i j)}=\stackrel{\theta}{1}_{1 i j}^{5} .
\end{gather*}
$$

The system (4.22) has at most one solution for initial conditions (4.23). Initial conditions are limited by the algebraic ones (4.23). It can be easily seen that the initial conditions have at most

$$
\frac{1}{2} N\left(N^{2}-1\right)
$$

independent parameters. In this way, the following theorems are proved.

Theorem 4.4. The equations (4.22) and (4.23) give an algebraic differential equation system of the Cauchy type in covariant derivatives with respect to the unknown functions $\mu_{i}, \mu_{i j}, F_{i}^{h}$ and $F_{i j}^{h}$. This system generates all e-structures F_{i}^{h} determining G-almost geodesic mappings of the type $\pi_{1}(e, F), e= \pm 1$.

Theorem 4.5. Let $G A_{n}$ be a non-symmetric affine connection space. A family of all e-structures F_{i}^{h} which determine a G-almost geodesic mapping of the type $\pi_{1}(e, F), e= \pm 1$, depends on at most $N\left(N^{2}-1\right) / 2$ real parameters.

Analogously, we can consider the case of G-almost geodesic mappings of the type $\pi_{2}(e), e= \pm 1$.

References

[1] V. Berezovskij, J. Mikeš: On a classification of almost geodesic mappings of affine connection spaces. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 35 (1996), 21-24.
[2] V.E. Berezovski, J. Mikeš, A. Vanžurová: Fundamental PDE's of the canonical almost geodesic mappings of type $\tilde{\pi}_{1}$. Bull. Malays. Math. Sci. Soc. (2) 37 (2014), 647-659.
[3] G.S. Hall, D. P. Lonie: Projective equivalence of Einstein spaces in general relativity. Classical Quantum Gravity 26 (2009), Article ID 125009, 10 pages.
[4] G. S. Hall, D. P. Lonie: The principle of equivalence and cosmological metrics. J. Math. Phys. 49 (2008), Article ID 022502, 13 pages.
[5] G.S.Hall, D.P. Lonie: The principle of equivalence and projective structure in spacetimes. Classical Quantum Gravity 24 (2007), 3617-3636.
[6] I. Hinterleitner: Geodesic mappings on compact Riemannian manifolds with conditions on sectional curvature. Publ. Inst. Math. (Beograd) (N.S.) 94 (2013), 125-130, DOI:10.2298/PIM1308125H.
[7] I. Hinterleitner, J. Mikeš: Geodesic mappings and Einstein spaces. Geometric Methods in Physics (P. Kielanowski, et al., eds.). Selected papers of 30. workshop, Białowieża, 2011. Trends in Mathematics, Birkhäuser, Basel, 2013, pp. 331-335.
[8] I. Hinterleitner, J. Mikeš: Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability. Miskolc Math. Notes 14 (2013), 575-582.
[9] J. Mikeš: Holomorphically projective mappings and their generalizations. J. Math. Sci., New York 89 (1998), 1334-1353; translation from Itogi Nauki Tekh., Ser. Sovrem Mat. Prilozh., Temat. Obz. 30 (1995), 258-291.
[10] J. Mikeš: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci., New York 78 (1996), 311-333.
[11] J. Mikeš: Geodesic mappings of Einstein spaces. Math. Notes 28 (1981), 922-923; translation from Mat. Zametki 28 (1980), 935-938, DOI:10.1007/BF01709156. (In Russian.)
[12] J. Mikeš, O. Pokorná, G. Starko: On almost geodesic mappings $\pi_{2}(e)$ onto Riemannian spaces. The Proceedings of the 23 th Winter School Geometry and Physics, Srní, 2003 (J. Slovák, et al., eds.). Circolo Matemàtico di Palermo, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 72, 2004, pp. 151-157.
[13] J. Mikeš, A. Vanžurová, I. Hinterleitner: Geodesic Mappings and Some Generalizations. Palacký University, Faculty of Science, Olomouc, 2009.
[14] S. M. Minččć: New commutation formulas in the non-symmetric affine connexion space. Publ. Inst. Math., Nouv. Sér. 22 (1977), 189-199.
[15] S. M. Minčićć: Ricci identities in the space of non-symmetric affine connexion. Mat. Vesn., N. Ser. 10 (1973), 161-172.
[16] S. M. Minčić, M. S. Stanković: Equitorsion geodesic mappings of generalized Riemannian spaces. Publ. Inst. Math., Nouv. Sér. 61 (1997), 97-104.
[17] S. Minčić, M. Stanković: On geodesic mappings of general affine connexion spaces and of generalized Riemannian spaces. Mat. Vesn. 49 (1997), 27-33.
[18] N. S. Sinyukov: Geodesic Mappings of Riemannian Spaces. Nauka, Moskva, 1979. (In Russian.)
[19] M. Stanković: On a special almost geodesic mapping of third type of affine spaces. Novi Sad J. Math. 31 (2001), 125-135.
[20] M. S. Stanković: First type almost geodesic mappings of general affine connection spaces. Novi Sad J. Math. 29 (1999), 313-323.
[21] M.S.Stanković: On canonic almost geodesic mappings of the second type of affine spaces. Filomat 13 (1999), 105-114.
[22] M. S. Stanković, S. M. Minčić: New special geodesic mappings of generalized Riemannian spaces. Publ. Inst. Math., Nouv. Sér. 67 (2000), 92-102.
[23] H. Vavřiková, J. Mikeš, O. Pokorná, G. Starko: On fundamental equations of almost geodesic mappings of type $\pi_{2}(e)$. Russ. Math. 51 (2007), 8-12; translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2007 (2007), 10-15. (In Russian.)

Authors' address: Mića S.Stanković, Milan L. Zlatanović, Nenad O. Vesić, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000

Niš, Serbia, e-mail: stmica@ptt.rs, zlatmilan@yahoo.com, vesic.specijalac@ gmail.com.

[^0]: Research supported by Ministry of Education, Science and Technological Development,

