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Abstract. We study G-almost geodesic mappings of the second type π
θ
2(e), θ = 1, 2

between non-symmetric affine connection spaces. These mappings are a generalization of
the second type almost geodesic mappings defined by N. S. Sinyukov (1979). We investigate
a special type of these mappings in this paper. We also consider e-structures that generate
mappings of type π

θ
2(e), θ = 1, 2. For a mapping π

θ
2(e, F ), θ = 1, 2, we determine the basic

equations which generate them.
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geodesic mapping; property of reciprocity; almost geodesic mapping of the second type

MSC 2010 : 53B05, 53B20, 53C15

1. Introduction

Let us consider two N -dimensional differentiable manifolds GAN and GĀN and

a differentiable mapping f : GAN → GĀN . We can consider these manifolds to-

gether with this mapping system of local coordinates. Namely, if f : M ∈ GAN →

M ∈ GĀN and if (U , ϕ) is the local chart around the point M then ϕ(M) = x =

(x1, . . . , xN ) ∈ EN . In this case, we define mapping ϕ = ϕ ◦ f−1 for the coordinate

mapping in GĀN , and then

ϕ(M) = (ϕ ◦ f−1)(f(M)) = ϕ(M) = x = (x1, . . . , xN ) ∈ EN .

The points M and M = f(M) have the same local coordinates in this case. If

the connection coefficients Li
jk(x) and L̄

i
jk(x) of the affine connections introduced

Research supported by Ministry of Education, Science and Technological Development,
Republic of Serbia, Grant No. 174012.
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in GAN and GĀN , respectively, are non-symmetric in lower indices then GAN and

GĀN are general affine connection spaces.

One says that the reciprocal mapping f : GAN → GĀN is geodesic, [17], [16] if

geodesics of the space GAN pass to geodesics of the space GĀN . Generalizing the

concept of a geodesic mapping between Riemannian spaces and symmetric affine

connection ones, Sinyukov [18] introduced the following notions:

A curve l : xh = xh(t) is called an almost geodesic line if its tangential vector

λh(t) = dxh/dt 6= 0 satisfies the equation

λ̄h(2) = ā(t)λh + b̄(t)λ̄h(1),

where λ̄h(1) = λh||pλ
p, λ̄h(2) = λ̄h(1)||pλ

p. Here ā(t) and b̄(t) are functions of a parameter

t and || denotes the covariant derivative with regard to the connection in ĀN .

Definition 1.1. A mapping f of a symmetric affine connection space AN onto

a space ĀN is called an almost geodesic mapping if any geodesic line of the space

AN is mapped into an almost geodesic line of the space ĀN .

A lot of research papers and monographs [1]–[23] have been dedicated to the

theory of geodesic mappings of Riemannian spaces, affine connected ones and their

generalizations. Sinyukov [18] and Mikeš [1], [2], [12], [13], [23] gave some other

significant contributions to the study of almost geodesic mappings of affine connected

spaces and singled out three types π1, π2, π3 of almost geodesic mappings between

affine connected spaces without torsion.

In a general affine connection space GAN , with non-symmetric affine connection L,

one can define four kinds of a covariant derivative [15], [14]. Let us denote a covariant

derivative of a kind θ (θ = 1, . . . , 4) with regard to affine connections of GAN and

GĀN by |
θ

and ||
θ

, respectively.

For example, a tensor aij in GAN satisfies

aij |
1

m = aij,m + Li
αma

α
j − Lα

jma
i
α and aij |

2

m = aij,m + Li
mαa

α
j − Lα

mja
i
α.

Thus, in the case of a space with a non-symmetric affine connection we can de-

fine two kinds of almost geodesic lines and two kinds of almost geodesic mappings

[20]–[19].

Definition 1.2. A curve l : xh = xh(t) on GĀN is called [20]–[19] a G-almost

geodesic line of the first kind if its tangent vector λh(t) = dxh/dt 6= 0 satisfies the

equation

λ̄
1

h
(2) = ā

1
(t)λh + b̄

1
(t)λ̄

1

h
(1),

where λ̄
1

h
(1) = λh||

1

αλ
α, λ̄

1

h
(2) = λ̄

1

h
(1)||

1

αλ
α and ā

1
(t) and b̄

1
(t) are functions of a pa-

rameter t.
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Definition 1.3. A curve l : xh = xh(t) is called a G-almost geodesic line of the

second kind if its tangential vector λh(t) = dxh/dt 6= 0 satisfies the equation

λ̄
2

h
(2) = ā

2
(t)λh + b̄

2
(t)λ̄

2

h
(1),

where λ̄
2

h
(1) = λh||

2

α
λα, λ̄

2

h
(2) = λ̄

2

h
(1)||

2

αλ
α, ā

2
(t) and b̄

2
(t) are functions of a parameter t.

Definition 1.4. A mapping f of the space GAN onto a space GĀN is called

a G-almost geodesic mapping of the first kind if any geodesic line of the space GAN

turns into an almost geodesic line of the first kind of the space GĀN .

Definition 1.5. A mapping f is called a G-almost geodesic mapping of the sec-

ond kind if any geodesic line of the space GAN turns into almost geodesic line of the

second kind of the space GĀN .

We can put

P h
ij(x) = L̄h

ij(x)− Lh
ij(x),

where Lh
ij(x), L̄

h
ij(x) are connection coefficients of the spaces GAN and GĀN , N > 2,

together with the mapping f system of local coordinates, and P h
ij is a deformation

tensor. From [20], it follows that the succeeding results hold:

Theorem 1.1. A mapping f of the space GAN onto GĀN is a G-almost geodesic

mapping of the first kind if and only if the deformation tensor P h
ij satisfies the

conditions

(1.1) (P h
αβ |

1

γ + P h
δαP

δ
βγ)λ

αλβλγ = b
1
P h
αβλ

αλβ + a
1
λh

identically, where a
1
and b

1
are functions.

Theorem 1.2. A mapping f of the space GAN onto GĀN is a G-almost geodesic

mapping of the second kind if and only if the deformation tensor P h
ij satisfies the

conditions

(1.2) (P h
αβ |

2

γ + P h
αδP

δ
βγ)λ

αλβλγ = b
2
P h
αβλ

αλβ + a
2
λh

identically, where a
2
and b

2
are functions.

We are going to present basic equations of G-almost geodesic mappings of the type

π
θ
2(e), θ = 1, 2, between non-symmetric affine connection spaces GAN and GĀN in

this paper.
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2. G-almost geodesic mappings of the second type

Sinyukov (see [18]) introduced almost geodesic mapping of the second type π2 for

affine connection spaces without torsion with the condition

b =
bγδλ

γλδ

σαλα
,

where σαλ
α 6= 0 and bγδ is a twice covariant tensor.

Analogously, a G-almost geodesic mapping of the first kind of a non-symmetric

affine connection space is an almost geodesic mapping of the second type π
1
2 if the

function b
1
satisfies the condition

b
1
=
b
1
γδλ

γλδ

σαλα
,

where σαλ
α 6= 0 and b

1
γδ is a twice covariant tensor.

Let

P h
αβλ

αλβ = 2σαλ
αFh

β λ
β + 2ψαλ

αλh.

Then

(P h
αβ − 2σαF

h
β − 2ψαδ

h
β)λ

αλβ ≡ 0,

wherefrom

P h
ij = ψiδ

h
j + ψjδ

h
i + σiF

h
j + σjF

h
i .

Here, ψi and σi are vectors, F
i
j is a tensor, ij denotes a symmetrization with division,

ij
∨
denotes an anti-symmetrization with division and δhi is the Kronecker symbol. We

can put P h
ij
∨

= ξhij .

Then

(2.1) P h
ij = ψiδ

h
j + ψjδ

h
i + σiF

h
j + σjF

h
i + ξhij .

In the equation (2.1), magnitudes ψi, σi are covariant vectors, F
h
i is a tensor and ξ

h
ij

is an anti-symmetric tensor.

After substituting the equation (2.1) in the equation (1.1), we conclude that

(2.2) Fh
i|
1

j +F
h
j |
1

i+F
h
δ F

δ
i σj +F

h
δ F

δ
j σi+ ξ

h
δiF

δ
j + ξ

h
δjF

δ
i = µiF

h
j +νjF

h
i +νiδ

h
j +νjδ

h
i ,

where µi and νi are covariant vectors.

Conditions (2.1) and (2.2) are the basic equations of the mapping π
1
2.
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A G-almost geodesic mapping of the second kind is a G-almost geodesic mapping

of the second type π
2
2 if it satisfies the following condition for the function b

2
in (1.2):

b
2
=
b
2
γδλ

γλδ

σαλα
,

where σαλ
α 6= 0 and b

2
γδ is a twice covariant tensor.

Using the method from the previous case, we get

(2.3) Fh
i|
2

j + Fh
j |
2

i + Fh
δ F

δ
i σj + FhδF δ

j σi + ξhiδF
δ
j + ξhjδF

δ
i

= µiF
h
j + µjF

h
i + νiδ

h
j + νjδ

h
i ,

where µi, νi are covariant vectors.

Conditions (2.1) and (2.3) are the basic equations of G-almost geodesic mappings

of the type π
2
2.

Remark 2.1. If σi ≡ 0 in the equation (2.1) then almost geodesic mappings are

reduced to the geodesic ones. On the other hand, if ψi ≡ 0, then this mapping is

a canonical almost geodesic one (see [21]). In the case σi ≡ 0 and ψi ≡ 0, we have

a trivial almost geodesic mapping. We are working with nontrivial almost geodesic

mappings only in the sequel.

3. The property of reciprocity of G-almost geodesic mappings

of the second type

A mapping f : GAN → GĀN of the type π
1
2 has the property of reciprocity, if

its inverse mapping f−1 : GĀN → GAN (provided it exists) is of the π
1
2 type, and

f−1 corresponds to the same tensor Fh
i , see also [21]. Since the inverse mapping

f−1 : GĀN → GAN satisfies

P h
ij = −P h

ij ,

we can put the following in the equation (2.1):

ψi = −ψi, σi = −σi, Fh
i = Fh

i , ξ̄hij = −ξhij .

A mapping f : GAN → GĀN of the type π
1
2 has the property of reciprocity if and

only if the tensor Fh
i of the space GĀN satisfies the equation of the form (2.2), i.e.,

(3.1) Fh
(i||

1

j) − Fh
αF

α
(iσj) − ξhα(iF

α
j) = µ̄(iF

h
j) + ν̄(iδ

h
j),
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where (ij) is a symmetrization without division with respect to i and j, and ||
1
is

a covariant derivative of the first kind in GĀN . Inserting a covariant derivative of

the first kind in GAN into the equation (3.1) we get

Fh
αF

α
(iσj) + ξhα(iF

α
j) = ¯̄µ(iF

h
j) + ¯̄ν(iδ

h
j),

where vectors ¯̄µi, ¯̄νi are expressed by µi, νi, µ̄i, ν̄i, ψi, σi, F
h
i . Since σ 6= 0, we get

(3.2) Fh
αF

α
i = pδhi + qFh

i ,

where p and q are functions.

Based on the facts given above, we have:

Theorem 3.1. The relation (3.2) expresses the necessary and sufficient condition

for a mapping π
1
2 : GAN → GĀN to have the property of reciprocity.

The equations (2.1) and (2.2) are invariant under the mapping π
1
2 of a tensor

F̃h
i = rFh

i + sδhi , r 6= 0.

Then we have

F̃h
α F̃

α
i = p̃δhi + q̃F̃h

i ,

where

p̃ = r2p− s2 − srq, q̃ = 2s+ rq.

Here we can select invariants r and s such that

q̃ ≡ 0, p̃ = ẽ (= ±1, 0).

In this case, we have

F̃h
α F̃

α
i = ẽδhi .

Based on the facts given above, we can put

(3.3) Fh
αF

α
i = eδhi , e = ±1, 0.

Substituting the equation (3.3) into the condition (2.2), we get

(3.4) Fh
(i|

1

j) + ξhα(iF
α
j) = µ(iF

h
j) + ν(iδ

h
j).
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Hence, a G-almost geodesic mapping f : GAN → GĀN of the type π
1
2 which has the

property of reciprocity is determined by the equations (2.1), (3.3) and (3.4) (see [21]).

This mapping is denoted by π
1
2(e).

In the case of the G-almost geodesic mapping f : GAN → GĀN of the type π
2
2

which has the property of reciprocity, it is determined by the equations

P h
ij = ψiδ

h
j + ψjδ

h
i + σiF

h
j + σjF

h
i + ξhij ,(3.5)

Fh
(i|

2

j) − ξhα(iF
α
j) = µ(iF

h
j) + ν(iδ

h
j),

Fh
αF

α
i = eδhi , e = ±1, 0.

This mapping is denoted by π
2
2(e).

4. On e-structures that determine G-almost geodesic mappings

of type π2(e) of first and second kinds

Definition 4.1. A tensor Fh
i which satisfies the conditions (3.3) and (3.4) is

called an e-structure which determines a G-almost geodesic mapping f : GAN →

GĀN of the type π
1
2(e).

Theorem 4.1. An e-structure Fh
i determines a G-almost geodesic mapping f :

GAN → GĀN of the type π
1
2(e), e = ±1, if and only if it satisfies the conditions

Fh
(i|

1

j) + ξhα(iF
α
j) = µ(iF

h
j) − µαF

α
(iδ

h
j),(4.1)

Fh
αF

α
i = eδhi .(4.2)

P r o o f. Based on the covariant derivative of the first kind of the condition (4.2)

in the direction xj , we get

(4.3) Fh
α|

1

jF
α
i + Fα

i|
1

jF
h
α = 0.

After the symmetrization of the equation (4.3) with respect to the indices i and j,

we have

(4.4) Fh
α|

1

jF
α
i + Fh

α|
1

iF
α
j + Fα

(i|
1

j)F
h
α = 0.

Based on the equations (3.4) and (4.4), we conclude that

Fh
α|

1

iF
α
j + Fh

α|
1

jF
α
i + eδh(iµj) + Fh

(iνj) + Fh
αF

β

(iξ
α
j)β = 0.
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Composing the previous relation with F j
k , one obtains

(4.5) eFh
k|
1

i + Fh
α|

1

βF
α
i F

β
k + eδhi µαF

α
k + eµiF

h
k + Fh

i ναF
α
k + eδhkνi

+ Fh
i ναF

α
k + eδhkνi + Fh

αF
β
i F

γ
k ξ

α
γβ + eFh

α ξ
α
ik = 0.

After symmetrizing of the equation (4.5) by indices i and k, we infer

(4.6) eFh
(i|

1

k) + Fh
(α|

1

β)F
α
i F

β
k + eδh(iF

α
k)µα + eµ(iF

h
k) + ναF

h
(iF

α
k) + eδh(iνk) = 0.

From the equation (3.4), we have

(4.7) eFh
(i|

1

k) + Fh
(α|

1

β)F
α
i F

β
k = Fh

i (νβF
β
k + eµk) + Fh

k (ναF
α
i + eµi)

+ eδhi (µβF
β
k + νk) + eδhk (µαF

α
i + νi).

Now, from the equations (4.6) and (4.7) we obtain

Fh
i (F

α
k να + eµk) + Fh

k (F
α
i να + eµi) + eδhi (F

α
k µk + νk) + eδhk (F

α
i µα + νi) = 0.

By examining the last equality, we conclude that

(4.8) Fα
i µα + νi = 0, i.e. νi = −Fα

i µα.

After substituting (4.8) into (3.4), we obtain the relation (4.1) is valid. �

Analogously, in the case of G-almost geodesic mappings of the type π2(e) of the

second kind we obtain

Definition 4.2. A tensor Fh
i which satisfies the conditions (3.5) is an e-structure

which determines a G-almost geodesic mapping of the type π
2
2(e).

Theorem 4.2. An e-structure Fh
i determines a G-almost geodesic mapping of

the type π
2
2(e), e = ±1, if and only if it satisfies the conditions

Fh
(i|

2

j) − ξhα(iF
α
j) = µ(iF

h
j) − µαF

h
(iδ

h
j),(4.9)

Fh
αF

α
i = eδhi .(4.10)
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Theorem 4.3. An e-structure Fh
i which determines a G-almost geodesic mapping

of the type π
1
2(e), e = ±1, satisfies the following conditions:

(4.11) Fh
i|
1

(jk) + ξ
1

h
ijk = µ(j |

1

k)F
h
i + µ[i|

1

k]F
h
j + µ[i|

1

j]F
h
k

− µα|
1

(jF
α
k)δ

h
i + µα|

1

[iF
α
k]δ

h
j + µα|

1

[iF
α
j]δ

h
k +

1

θ
1

h
ikj ,

where [i, j] is an anti-symmetrization without division,

1

θ
1

h
ikj =

2

θ
1

h
ijk +

2

θ
1

h
ikj −

2

θ
1

h
jki −R

1

h
αijF

α
k +R

1

α
kijF

h
α −R

1

h
αikF

α
j +R

1

α
jikF

h
α

+ Lα
[ij]F

h
k|
1

α + Lα
[ik]F

h
j |
1

α,

2

θ
1

h
ijk = µiF

h
j |
1

k + µiF
h
i|
1

k − µαF
α
i|
1

kδ
h
j − µαF

α
j |
1

kδ
h
i − ξhαiF

α
j |
1

k − ξhαjF
α
i|
1

k,

ξ
1

h
ijk = ξhα[i|

1

k]F
h
j + ξhα[i|

1

j]F
h
k + ξhα(j |

1

k)]F
h
i ,

and

R
1

h
ijk = Lh

ij,k − Lh
ik,j + Lα

ijL
h
αk − Lα

ikL
h
αj

is a curvature tensor of the first kind (see [15]).

P r o o f. Taking the covariant derivative of the first kind of (4.1) in the direction

of xk, we get

(4.12) Fh
i|
1

jk + Fh
j |
1

ik + ξhαi|
1

kF
α
j + ξhαj |

1

kF
α
i

= µi|
1

kF
h
j + µj |

1

kF
h
i − µα|

1

kF
α
i δ

h
j − µα|

1

kF
α
j δ

h
i +

2

θ
1

h
ijk.

Alternating this equation with respect to i and k and using the first Ricci identity,

we get

(4.13) Fh
i|
1

jk − Fh
k|
1

ji + ξhαi|
1

kF
α
j − ξhαk|

1

iF
α
j + ξhαj |

1

kF
α
i − ξhαj |

1

iF
α
k

= µi|
1

kF
h
j − µk|

1

iF
h
j + µj |

1

kF
h
i − µj |

1

iF
h
k

− µα|
1

kF
α
i δ

h
j + µα|

1

iF
α
k δ

h
j − µα|

1

kF
α
j δ

h
i + µα|

1

iF
α
j δ

h
k +

3

θ
1

h
ijk,

where
3

θ
1

h
ijk =

2

θ
1

h
ijk −

2

θ
1

h
kji −R

1

h
αikF

α
j +R

1

α
jikF

h
α + Lα

[ik]F
h
j |
1

α.
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Let us interchange indices j and k in (4.13). Then we have

(4.14) Fh
i|
1

kj − Fh
j |
1

ki + ξhαi|
1

jF
α
k − ξhαj |

1

iF
α
k + ξhαk|

1

jF
α
i − ξhαk|

1

iF
α
j

= µi|
1

jF
h
k − µj |

1

iF
h
k + µk|

1

jF
h
i − µk|

1

iF
h
j

− µα|
1

jF
α
i δ

h
k + µα|

1

iF
α
j δ

h
k − µα|

1

jF
α
k δ

h
i + µα|

1

iF
α
k δ

h
j +

3

θ
1

h
ikj .

Adding the equations (4.12) and (4.14) together with some other calculations proves

the equation (4.11) holds. �

We are going to proceed with the study of conditions on the e-structure that

generates G-almost geodesic mappings of the type π
1
2(e), e = ±1.

Definition 4.3. A G-almost geodesic mapping f : GAN → GĀN of the type

π
θ
2(e) (θ = 1, 2), which satisfies the condition Fα

α = 0 is a G-almost geodesic mapping

of the type π
θ
2(e, F ) (θ = 1, 2).

Perform a contraction by indices h and i in the algebraic condition (4.2). Then

we have the equation

Fα
β F

β
α = eN.

Let us take its second covariant derivative of the first kind in the directions xi and xk:

(4.15) Fα
β F

β

α|
1

jk
+ Fα

β |
1

jF
β

α|
1

k
= 0.

After the composing the equation (4.11) with F i
k and using the result (4.15), we get

(4.16) −2Fα
β |
1

jF
β

α|
1

k
+ Fα

β ξ
β
αjk = µ(j |

1

k)eN − F β
β µα|

1

(jF
α
k) + µ(α|

1

β)F
α
k F

β
j

− eµ(j |
1

k) + Fα
β

1

θ
1

β
αkj .

Using the condition Fα
α = 0, from (4.16) we have

(4.17) e(N − 1)µ(j |
1

k) + µ(α|
1

β)F
α
j F

β
k =

4

θ
1
jk,

where we denoted
4

θ
1
jk = Fα

β

1

θ
1

β
αkj+2Fα

β |
1

jF
β

α|
1

k
−Fα

β ξ
β
αjk. Composing (4.17) with F

j
j′F

k
k′

we obtain

(4.18) e(N − 1)µ(α|
1

β)F
α
j F

β
k + µ(j |

1

k) =
4

θ
1
αβF

α
j F

β
k .
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Now, from (4.17) and (4.18) we obtain

(4.19) µ(i|
1

j) =
5

θ
1
ij ,

where
5

θ
1
ij = N−1(2 − N)−1[

4

θ
1
αβF

α
i F

β
j − e(N − 1)

4

θ
1
ij ]. Let us take the covariant

derivative of the first kind of the (4.19) in the direction of xk:

(4.20) µi|
1

jk + µj |
1

ik =
5

θ
1
ij |

1

k

and alternate this equation with respect to the indices i and k. Then we have

µi|
1

jk − µk|
1

ji −R
1

α
ijkµα − Lα

[jk]µi|
1

α =
5

θ
1
ij |

1

k −
5

θ
1
kj |

1

i.

Switching indices j and k, we obtain

µi|
1

kj − µj |
1

ki −R
1

α
ikjµα − Lα

[kj]µi|
1

α =
5

θ
1
ik|

1

j −
5

θ
1
jk|

1

i.

After adding this result to (4.20), we get

(4.21) µi|
1

(jk) + µj |
1

[ki] = R
1

α
ikjµα + Lα

[kj]µi|
1

α +
5

θ
1
ik|

1

j −
5

θ
1
jk|

1

i +
5

θ
1
ij |

1

k.

Finally, we obtain a system of differential equations of the Cauchy type with covariant

derivatives with respect to unknown functions µi, µij , F
h
i and F

h
ij :

(4.22) Fh
i|
1

j = Fh
ij ,

Fh
i(j |

1

k) =
6

θ
1
ijk,

µi|
1

j = µij ,

µi|
1

(jk) + µj |
1

[ki] =
7

θ
1
ijk,

where

6

θ
1
ijk = − ξ

1

h
ijk + µ(j |

1

k)F
h
i + µ[i|

1

k]F
h
j + µ[i|

1

j]F
h
k − µα|

1

(jF
α
k)δ

h
i

+ µα|
1

[iF
α
k]δ

h
j + µα|

1

[iF
α
j]δ

h
k +

1

θ
1

h
ikj
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and
7

θ
1
ijk = R

1

α
ikjµα + Lα

[kj]µi|
1

α +
5

θ
1
ik|

1

j −
5

θ
1
jk|

1

i +
5

θ
1
ij |

1

k.

On the other hand, functions µi, µij , F
h
i and F

h
ij satisfy the algebraic formulas

Fh
(i|

1

j) + ξhα(iF
α
j) = µ(iF

h
j) − µαF

α
(iδ

h
j),(4.23)

Fh
αF

α
i = eδhi , µ(ij) =

5

θ
1
ij .

The system (4.22) has at most one solution for initial conditions (4.23). Initial

conditions are limited by the algebraic ones (4.23). It can be easily seen that the

initial conditions have at most
1

2
N(N2 − 1)

independent parameters. In this way, the following theorems are proved.

Theorem 4.4. The equations (4.22) and (4.23) give an algebraic differential

equation system of the Cauchy type in covariant derivatives with respect to the

unknown functions µi, µij , F
h
i and F

h
ij . This system generates all e-structures F

h
i

determining G-almost geodesic mappings of the type π
1
2(e, F ), e = ±1.

Theorem 4.5. Let GAn be a non-symmetric affine connection space. A family

of all e-structures Fh
i which determine a G-almost geodesic mapping of the type

π
1
2(e, F ), e = ±1, depends on at most N(N2 − 1)/2 real parameters.

Analogously, we can consider the case of G-almost geodesic mappings of the type

π
2
2(e), e = ±1.
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