Archivum Mathematicum

Indranil Biswas; Carlos Florentino

Higgs bundles and representation spaces associated to morphisms

Archivum Mathematicum, Vol. 51 (2015), No. 4, 191-199
Persistent URL: http://dml.cz/dmlcz/144478

Terms of use:

© Masaryk University, 2015
Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

HIGGS BUNDLES AND REPRESENTATION SPACES ASSOCIATED TO MORPHISMS

Indranil Biswas and Carlos Florentino

Abstract

Let G be a connected reductive affine algebraic group defined over the complex numbers, and $K \subset G$ be a maximal compact subgroup. Let X, Y be irreducible smooth complex projective varieties and $f: X \rightarrow Y$ an algebraic morphism, such that $\pi_{1}(Y)$ is virtually nilpotent and the homomorphism $f_{*}: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ is surjective. Define $\mathcal{R}^{f}\left(\pi_{1}(X), G\right)=\left\{\rho \in \operatorname{Hom}\left(\pi_{1}(X), G\right) \mid A \circ \rho\right.$ factors through $\left.f_{*}\right\}$, $\mathcal{R}^{f}\left(\pi_{1}(X), K\right)=\left\{\rho \in \operatorname{Hom}\left(\pi_{1}(X), K\right) \mid A \circ \rho\right.$ factors through $\left.f_{*}\right\}$, where $A: G \rightarrow \mathrm{GL}(\operatorname{Lie}(G))$ is the adjoint action. We prove that the geometric invariant theoretic quotient $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right) / / G$ admits a deformation retraction to $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), K\right) / K$. We also show that the space of conjugacy classes of n almost commuting elements in G admits a deformation retraction to the space of conjugacy classes of n almost commuting elements in K.

1. Introduction

Let G be a connected reductive affine algebraic group defined over the complex numbers. Consider an algebraic morphism

$$
f: X \rightarrow Y
$$

where X and Y are irreducible smooth complex projective varieties, and let

$$
f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, f\left(x_{0}\right)\right)
$$

be the induced morphism of fundamental groups, where $x_{0} \in X$ is a base point. In certain situations, the representations

$$
\rho: \pi_{1}\left(X, x_{0}\right) \rightarrow G
$$

2010 Mathematics Subject Classification: primary 14J60.
Key words and phrases: Higgs bundle, flat connection, representation space, deformation retraction.

The first author is supported by a J.C. Bose Fellowship. The second author is partially supported by FCT (Portugal) through the projects EXCL/MAT-GEO/0222/2012, PTDC/MAT/120411/2010 and PTDC/MAT-GEO/0675/2012.

Received July 20, 2015. Editor J. Slovák.
DOI: 10.5817/AM2015-4-191
that factor through f_{*} have special geometric properties. See [9, where necessary and sufficient conditions for such a factorization are given in terms of the spectral curve of the G-Higgs bundle associated to ρ.

In this article, we are interested in the whole moduli space of representations that factor in a similar way, and in its topological properties. Under some assumptions on f and Y, we provide a natural deformation retraction between two such representation spaces, described as follows.

The Lie algebra of G will be denoted by \mathfrak{g}. Let $A: G \rightarrow \mathrm{GL}(\mathfrak{g})$ be the homomorphism given by the adjoint action of G on \mathfrak{g}. Fix a maximal compact subgroup $K \subset G$ and define:

$$
\begin{aligned}
\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right) & =\left\{\rho \in \operatorname{Hom}\left(\pi_{1}\left(X, x_{0}\right), G\right) \mid A \circ \rho \text { factors through } f_{*}\right\} \\
\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), K\right) & =\left\{\rho \in \operatorname{Hom}\left(\pi_{1}\left(X, x_{0}\right), K\right) \mid A \circ \rho \text { factors through } f_{*}\right\}
\end{aligned}
$$

We note that the group G (respectively, K) acts on $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right)$ (respectively, on $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), K\right)$) via the conjugation action of G (respectively, K) on itself. The quotient $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), K\right) / K$ is contained in the geometric invariant theoretic quotient $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right) / / G$.

We prove the following in Theorem 2.6
Suppose that the fundamental group of Y is virtually nilpotent, and the homomorphism f_{*} is surjective. Then $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right) / / G$ admits a deformation retraction to the subset $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), K\right) / K$.

In Section 3, we consider spaces of almost commuting elements in K and in G. Define:

$$
\mathrm{AC}^{n}(K)=\left\{\left(g_{1}, \ldots, g_{n}\right) \in K^{n} \mid g_{i} g_{j} g_{i}^{-1} g_{j}^{-1} \in Z_{K} \quad \forall i, j\right\},
$$

where Z_{K} denotes the center of K. The moduli space of conjugacy classes:

$$
\operatorname{AC}^{n}(K) / K
$$

where K acts by simultaneous conjugation, was studied in [6], [8], and plenty of information is known in the cases $n=2$ and $n=3$. For instance, the number of components of $\mathrm{AC}^{3}(K) / K$ has been related in [6] to the Chern-Simons invariants associated to flat connections on a 3 -torus.

In a similar fashion, we define $\mathrm{AC}^{n}(G) / / G$, the moduli space of conjugacy classes of n almost commuting elements in G. For example, if G has trivial center, then $\mathrm{AC}^{2 n}(G) / / G$ coincides with

$$
\operatorname{Hom}\left(\pi_{1}\left(X, x_{0}\right), G\right) / / G,
$$

where X is an abelian variety of complex dimension n. In Proposition 3.1 we show that $\mathrm{AC}^{n}(G) / G$ admits a deformation retraction to $\mathrm{A} C^{n}(K) / K$, and that the same holds for $\mathrm{A} C^{n}(G)$ and $\mathrm{A} C^{n}(K)$, extending one of the main results in [7] and 4].

2. Representation spaces associated to a morphism

Let X be an irreducible smooth complex projective variety. Fix a point $x_{0} \in X$. Let

$$
f: X \rightarrow Y
$$

be an algebraic morphism, where Y is also an irreducible smooth complex projective variety, such that:
(1) the fundamental group $\pi_{1}\left(Y, f\left(x_{0}\right)\right)$ is virtually nilpotent, and
(2) the homomorphism of fundamental groups induced by f

$$
\begin{equation*}
f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, f\left(x_{0}\right)\right) \tag{2.1}
\end{equation*}
$$

is surjective.
Using the homomorphism f_{*} in 2.1), we will consider $\pi_{1}\left(Y, f\left(x_{0}\right)\right)$ as a quotient of the group $\pi_{1}\left(X, x_{0}\right)$.

Let G be a connected reductive affine algebraic group defined over \mathbb{C}. The Lie algebra of G will be denoted by \mathfrak{g}. Let

$$
\begin{equation*}
A: G \rightarrow \operatorname{GL}(\mathfrak{g}) \tag{2.2}
\end{equation*}
$$

be the homomorphism given by the adjoint action of G on \mathfrak{g}. The affine algebraic variety (not necessarily irreducible) of representations

$$
\rho: \pi_{1}\left(X, x_{0}\right) \rightarrow G
$$

will be denoted by $\operatorname{Hom}\left(\pi_{1}\left(X, x_{0}\right), G\right)$.
Definition 2.1. Let $\rho \in \operatorname{Hom}\left(\pi_{1}\left(X, x_{0}\right), G\right)$. We sat that $A \circ \rho$ factors through f_{*} in (2.1) (or that $A \circ \rho$ factors geometrically through $f: X \rightarrow Y$, see [9]) if there exists a homomorphism $\rho^{\prime} \in \operatorname{Hom}\left(\pi_{1}\left(Y, f\left(x_{0}\right)\right), \mathrm{GL}(\mathfrak{g})\right)$ such that

$$
\begin{equation*}
\rho^{\prime} \circ f_{*}=A \circ \rho . \tag{2.3}
\end{equation*}
$$

Remark 2.2. (1) Clearly, if ρ itself factorizes as $\rho=\tilde{\rho} \circ f_{*}$ for some $\tilde{\rho} \in \operatorname{Hom}\left(\pi_{1}\left(X, x_{0}\right), G\right)$, then $A \circ \rho$ factorizes through f_{*} as in the definition; the converse is not always true.
(2) It is clear that $A \circ \rho \in \operatorname{Hom}\left(\pi_{1}\left(X, x_{0}\right), \mathrm{GL}(\mathfrak{g})\right)$ factors through f_{*} as in (2.3), if and only if $A \circ \rho$ is trivial on the kernel of f_{*}. Moreover, when $A \circ \rho$ factors through f_{*}, a homomorphism $\rho^{\prime} \in \operatorname{Hom}\left(\pi_{1}\left(Y, f\left(x_{0}\right)\right), \mathrm{GL}(\mathfrak{g})\right)$ satisfying equation (2.3) is unique, because f_{*} is surjective.

In the framework of non-abelian Hodge theory, there is a correspondence between semistable G-Higgs bundles over X and representations in $\operatorname{Hom}\left(\pi_{1}\left(X, x_{0}\right), G\right)$, 11], [5]. Denote by $\left(E_{\rho}, \theta_{\rho}\right)$ the semistable G-Higgs bundle on X associated to ρ under this correspondence. We note that $\left(E_{\rho}, \theta_{\rho}\right)$ is semistable with respect to every polarization on X.

Lemma 2.3. Let $\rho \in \operatorname{Hom}\left(\pi_{1}\left(X, x_{0}\right), G\right)$ be such that $A \circ \rho$ factors through f_{*}. Then, the above principal G-bundle E_{ρ} on X is semistable.

Proof. Let

$$
\operatorname{ad}\left(E_{\rho}\right):=E_{\rho} \times^{A} \mathfrak{g} \rightarrow X
$$

be the adjoint vector bundle of E_{ρ}. The Higgs field on $\operatorname{ad}\left(E_{\rho}\right)$ induced by θ_{ρ} will be denoted by $\operatorname{ad}\left(\theta_{\rho}\right)$.

Let $\rho^{\prime}: \pi_{1}\left(Y, f\left(x_{0}\right)\right) \rightarrow \mathrm{GL}(\mathfrak{g})$ be the unique homomorphism satisfying equation (2.3); the uniqueness of ρ^{\prime} is a consequence of the surjectivity of f_{*} as remarked above. Let $\left(E^{\prime}, \theta^{\prime}\right)$ be the semistable Higgs vector bundle on Y associated to this homomorphism ρ^{\prime}. Since the fundamental group of Y is virtually nilpotent, we know that the vector bundle E^{\prime} is semistable [3, Proposition 3.1]. Let $c_{i}\left(E^{\prime}\right), i \geq 0$, be the sequence of Chern classes of the bundle E^{\prime}. Then, $c_{i}\left(E^{\prime}\right)=0$ for all $i>0$ because the C^{∞} complex vector bundle underlying E^{\prime} admits a flat connection (it is isomorphic to the C^{∞} complex vector bundle underlying the flat vector bundle associated to ρ^{\prime}). Therefore, by [2, p. 39, Theorem 5.1], the vector bundle E^{\prime} admits a filtration

$$
0=V_{0} \subset V_{1} \subset \cdots \subset V_{\ell-1} \subset V_{\ell}=E^{\prime}
$$

of holomorphic subbundles such that each successive quotient $V_{i} / V_{i-1}, 1 \leq i \leq \ell$, admits a flat unitary connection. Consider the pulled back filtration

$$
\begin{equation*}
0=f^{*} V_{0} \subset f^{*} V_{1} \subset \cdots \subset f^{*} V_{\ell-1} \subset f^{*} V_{\ell}=f^{*} E^{\prime} \tag{2.4}
\end{equation*}
$$

A flat unitary connection on V_{i} / V_{i-1} pulls back to a flat unitary connection on

$$
f^{*} V_{i} /\left(f^{*} V_{i-1}\right)=f^{*}\left(V_{i} / V_{i-1}\right)
$$

Since each successive quotient for the filtration of $f^{*} E^{\prime}$ in (2.4) admits a flat unitary connection, we conclude that the holomorphic vector bundle $f^{*} E^{\prime}$ is semistable.

From 2.3 it follows that

$$
\begin{equation*}
\left(\operatorname{ad}\left(E_{\rho}\right), \operatorname{ad}\left(\theta_{\rho}\right)\right)=\left(f^{*} E^{\prime}, f^{*} \theta^{\prime}\right) \tag{2.5}
\end{equation*}
$$

Since $f^{*} E^{\prime}$ is semistable, from (2.5) it follows that $\operatorname{ad}\left(E_{\rho}\right)$ is semistable. This implies that the principal G-bundle E_{ρ} is semistable [1] p. 214, Proposition 2.10].

Lemma 2.3 has the following corollary:
Corollary 2.4. For any Higgs field θ, the G-Higgs bundle $\left(E_{\rho}, \theta\right)$ is semistable.
Let

$$
\begin{equation*}
\rho^{\lambda}: \pi_{1}\left(X, x_{0}\right) \rightarrow G \tag{2.6}
\end{equation*}
$$

be a homomorphism corresponding to the Higgs G-bundle $\left(E_{\rho}, \lambda \cdot \theta_{\rho}\right)$, which is semistable by Corollary 2.4 We note that although ρ^{λ} is not uniquely determined by ($E_{\rho}, \lambda \cdot \theta_{\rho}$), the point in the quotient space

$$
\operatorname{Hom}\left(\pi_{1}\left(X, x_{0}\right), G\right) / G
$$

given by ρ^{λ} does not depend on the choice of ρ^{λ}. In other words, any two different choices of ρ^{λ} differ by an inner automorphism of the group G.

Lemma 2.5. For every $\lambda \in \mathbb{C}$, the homomorphism $A \circ \rho^{\lambda}$ factors through f_{*}, where ρ^{λ} is defined in 2.6.

Proof. Let $\left(\operatorname{ad}\left(E_{\rho}\right)^{\lambda}, \operatorname{ad}\left(\theta_{\rho}\right)^{\lambda}\right)$ be the Higgs vector bundle associated to the homomorphism $A \circ \rho^{\lambda}$. We note that $\left(\operatorname{ad}\left(E_{\rho}\right)^{\lambda}, \operatorname{ad}\left(\theta_{\rho}\right)^{\lambda}\right)$ is isomorphic to $\left(f^{*} E^{\prime}, f^{*}\left(\lambda \cdot \theta^{\prime}\right)\right)$, because the Higgs bundle ($E^{\prime}, \theta^{\prime}$) corresponds to ρ^{\prime}, and (2.3) holds. We saw in the proof of Lemma 2.3 that E^{\prime} is semistable with $c_{i}\left(E^{\prime}\right)=0$ for all $i>0$. Since $\left.\operatorname{ad}\left(E_{\rho}\right)^{\lambda}, \operatorname{ad}\left(\theta_{\rho}\right)^{\lambda}\right)$ is isomorphic to the pullback of a semistable Higgs vector bundle on Y such that all the Chern classes of positive degrees of the underlying vector bundle on Y vanish, it can be deduced that $A \circ \rho^{\lambda}$ factors through the quotient $\pi_{1}\left(Y, f\left(x_{0}\right)\right)$. In fact, if

$$
\delta: \pi_{1}\left(Y, f\left(x_{0}\right)\right) \rightarrow \mathrm{GL}(\mathfrak{g})
$$

is a homomorphism corresponding to the Higgs vector bundle ($E^{\prime}, \lambda \cdot \theta^{\prime}$), then

- the homomorphism $A \circ \rho^{\lambda}$ factors through the quotient $\pi_{1}\left(Y, f\left(x_{0}\right)\right)$, and
- the homomorphism $\pi_{1}\left(Y, f\left(x_{0}\right)\right) \rightarrow \mathrm{GL}(\mathfrak{g})$ resulting from $A \circ \rho^{\lambda}$ differs from δ by an inner automorphism of $\mathrm{GL}(\mathfrak{g})$.
This completes the proof.
Fix a maximal compact subgroup

$$
K \subset G .
$$

Define

$$
\begin{aligned}
& \mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right)=\left\{\rho \in \operatorname{Hom}\left(\pi_{1}\left(X, x_{0}\right), G\right) \mid A \circ \rho \text { factors through } f_{*}\right\} \\
& \mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), K\right)=\left\{\rho \in \operatorname{Hom}\left(\pi_{1}\left(X, x_{0}\right), K\right) \mid A \circ \rho \text { factors through } f_{*}\right\} .
\end{aligned}
$$

Since $\pi_{1}\left(X, x_{0}\right)$ is a finitely presented group, the affine algebraic structure of G produces an affine algebraic structure on $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right)$. The group G acts on $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right)$ via the conjugation action of G on itself. Let

$$
\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right) / / G
$$

be the corresponding geometric invariant theoretic quotient. We note that this geometric invariant theoretic quotient $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right) / / G$ is a complex affine algebraic variety. Let

$$
\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), K\right) / K
$$

be the quotient of $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), K\right)$ for the adjoint action of K on itself.
The inclusion of K in G produces an inclusion of $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), K\right)$ in $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right)$, which, in turn, gives an inclusion

$$
\begin{equation*}
\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), K\right) / K \hookrightarrow \mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right) / / G \tag{2.7}
\end{equation*}
$$

Instead of working with the Zariski topology on $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right) / / G$, we consider on it the Euclidean topology which is induced from an embedding of this space in a complex affine space. Indeed, such an embedding can always be obtained by considering a finite set of generators of the algebra of G-invariant regular functions on $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right)$. Moreover, this topology is independent of the choice of such embedding, and compatible with the inclusion (2.7).

Theorem 2.6. The topological space $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right) / / G$ admits a deformation retraction to the above subset $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), K\right) / K$.

Proof. Two elements of $\operatorname{Hom}\left(\pi_{1}\left(X, x_{0}\right), G\right)$ are called equivalent if they differ by an inner automorphism of G. Points of $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right) / / G$ correspond to the equivalence classes of homomorphisms $\rho \in \operatorname{Hom}\left(\pi_{1}\left(X, x_{0}\right), G\right)$ such that the action of $\pi_{1}\left(X, x_{0}\right)$ on \mathfrak{g} given by $A \circ \rho$ is completely reducible, meaning that \mathfrak{g} is a direct sum of irreducible $\pi_{1}\left(X, x_{0}\right)$-modules. Let $\left(E_{\rho}, \theta_{\rho}\right)$ be the semistable G-Higgs bundle corresponding to the above homomorphism ρ, and let $\left(\operatorname{ad}\left(E_{\rho}\right), \operatorname{ad}\left(\theta_{\rho}\right)\right)$ be the semistable adjoint Higgs vector bundle associated to (E_{ρ}, θ_{ρ}). The above condition that the action of $\pi_{1}\left(X, x_{0}\right)$ on \mathfrak{g} given by $A \circ \rho$ is completely reducible is equivalent to the condition that the semistable Higgs vector bundle $\left(\operatorname{ad}\left(E_{\rho}\right), \operatorname{ad}\left(\theta_{\rho}\right)\right)$ is polystable.

Let

$$
\phi:\left(\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right) / / G\right) \times[0,1] \rightarrow \mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right) / / G
$$

be the map defined by $(\rho, \lambda) \longmapsto \rho^{1-\lambda}$ (defined in (2.6), where $\rho \in \operatorname{Hom}\left(\pi_{1}\left(X, x_{0}\right)\right.$, $G)$ satisfies the condition that the action of $\pi_{1}\left(X, x_{0}\right)$ on \mathfrak{g} given by $A \circ \rho$ is completely reducible. It is easy to see that ϕ is well-defined. We note that the point in the geometric invariant theoretic quotient $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right) / / G$ given by ρ lies in the subset $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), K\right) / K$ if and only if the Higgs field θ_{ρ} on the principal G-bundle E_{ρ} vanishes identically (as before, $\left(E_{\rho}, \theta_{\rho}\right)$ is the Higgs G-bundle corresponding to ρ).

The following are straightforward to check:

- $\phi(z, 0)=z$ for all $z \in \mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right) / / G$,
- $\phi(z, 1) \in \mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), K\right) / K$ for all $z \in \mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right) / / G$, and
- $\phi(z, \lambda)=z$ for all $z \in \mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), K\right) / K$ and $\lambda \in[0,1]$.

Therefore, the above map ϕ produces a deformation retraction of $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), G\right) / /$ G to $\mathcal{R}^{f}\left(\pi_{1}\left(X, x_{0}\right), K\right) / K$.

Remark 2.7. Lemma 2.3 and Theorem 2.6 are also valid for morphisms $f: X \rightarrow Y$ in the category of compact Kähler manifolds, under the same assumptions on Y and f_{*}. The proofs of these results are analogous, by replacing semistability with the notion of pseudostability (see [5], 3]).

3. Deformation retraction of the space OF ALMOST COMMUTING ELEMENTS

Again, let G be a connected complex reductive group, and K be a maximal compact subgroup. Let

$$
Z_{G} \subset G
$$

be the center of G and let

$$
P G:=G / Z_{G}
$$

be the quotient group. We note that the center of $P G$ is trivial. Let

$$
\begin{equation*}
q: G \rightarrow P G \tag{3.1}
\end{equation*}
$$

be the quotient map. The image

$$
P K:=q(K) \subset P G
$$

is a maximal compact subgroup of $P G$. We have $q^{-1}(P K)=K$.
Fix a positive integer n. Define

$$
\mathrm{AC}^{n}(G)=\left\{\left(g_{1}, \ldots, g_{n}\right) \in G^{n} \mid g_{i} g_{j} g_{i}^{-1} g_{j}^{-1} \in Z_{G} \forall i, j\right\} .
$$

It is a subscheme of the affine variety G^{n}. The group G acts on $\mathrm{AC}^{n}(G)$ as simultaneous conjugation of the n factors. Let

$$
\operatorname{ACE}^{n}(G):=\mathrm{AC}^{n}(G) / / G
$$

be the geometric invariant theoretic quotient. Also, define

$$
\mathrm{AC}^{n}(K)=\left\{\left(g_{1}, \ldots, g_{n}\right) \in K^{n} \mid g_{i} g_{j} g_{i}^{-1} g_{j}^{-1} \in Z_{G} \quad \forall i, j\right\}
$$

So $\mathrm{AC}^{n}(K)=\mathrm{AC}^{n}(G) \bigcap K^{n}$. Let

$$
\operatorname{ACE}^{n}(K):=\operatorname{AC}^{n}(K) / K
$$

be the quotient for the simultaneous conjugation action of K on the n factors. Note that the inclusion of K in G produces an inclusion

$$
\operatorname{ACE}^{n}(K) \hookrightarrow \operatorname{ACE}^{n}(G)
$$

Proposition 3.1. Let G be semisimple. Then, the topological space $\operatorname{ACE}^{n}(G)$ admits a deformation retraction to the above subset $\mathrm{ACE}^{n}(K)$.

Proof. When G is semisimple, Z_{G} is a finite subgroup of G, so that the map (3.1) is a Galois covering. Also, $Z_{G} \subset K$. Define $\mathrm{AC}^{n}(P G)$ and $\mathrm{ACE}^{n}(P G)$ by substituting $P G$ in place of G in the above constructions. Note that $\mathrm{AC}^{n}(P G)$ parametrizes commuting n elements of $P G$ because the center of $P G$ is trivial. Similarly, define $\mathrm{AC}^{n}(P K)$ and $\mathrm{ACE}^{n}(P K)$ by substituting $P K$ in place of K. So $\mathrm{AC}^{n}(P K)$ parametrizes commuting n elements of $P K$. The projection

$$
\begin{equation*}
\beta: \operatorname{ACE}^{n}(G) \rightarrow \operatorname{ACE}^{n}(P G) \tag{3.2}
\end{equation*}
$$

constructed using the the projection q in (3.1) is a Galois covering with Galois group Z_{G}^{n}. However it should be mentioned that $\operatorname{ACE}^{n}(G)$ need not be connected. Let

$$
\gamma: \operatorname{ACE}^{n}(K) \rightarrow \operatorname{ACE}^{n}(P K)
$$

be the projection constructed similarly using q. Clearly, γ coincides with the restriction of β to $\operatorname{ACE}^{n}(K) \subset \operatorname{ACE}^{n}(G)$.

There is a deformation retraction of $\mathrm{ACE}^{n}(P G)$ to $\mathrm{ACE}^{n}(P K)$

$$
\varphi: \operatorname{ACE}^{n}(P G) \times[0,1] \rightarrow \operatorname{ACE}^{n}(P G)
$$

[7, Theorem 1.1] (see also [4). In particular, $\left.\varphi\right|_{\mathrm{ACE}^{n}(P G) \times\{0\}}$ is the identity map of $\mathrm{ACE}^{n}(P G)$.

Applying the homotopy lifting property to the covering β in 3.2), there is a unique map

$$
\widetilde{\varphi}: \operatorname{ACE}^{n}(G) \times[0,1] \rightarrow \operatorname{ACE}^{n}(G)
$$

such that
(1) $\beta \circ \widetilde{\varphi}=\varphi \circ\left(\beta \times \operatorname{Id}_{[0,1]}\right)$, and
(2) $\left.\widetilde{\varphi}\right|_{\mathrm{ACE}^{n}(G) \times\{0\}}$ is the identity map of $\mathrm{ACE}^{n}(G)$.

This map $\widetilde{\varphi}$ is a deformation retraction of $\operatorname{ACE}^{n}(G)$ to $\operatorname{ACE}^{n}(K)$, because φ is a deformation retraction.

Proposition 3.1 remains valid in the more general situation when G is reductive.
Theorem 3.2. Let G be a connected reductive affine algebraic group over \mathbb{C}. Then, $\mathrm{ACE}^{n}(G)$ admits a deformation retraction to the subset $\mathrm{ACE}^{n}(K)$.

Proof. First, note that Proposition 3.1 is clearly valid if G is a product of copies of the multiplicative group \mathbb{C}^{*}. Hence it remains valid for any G which is a product of a semisimple group and copies of \mathbb{C}^{*}. For a general connected reductive group G, consider the natural homomorphism

$$
\eta: G \rightarrow P G \times(G /[G, G]) .
$$

It is a surjective Galois covering map, the quotient $P G:=G / Z_{G}$ is semisimple, while the quotient $G /[G, G]$ is a product of copies of \mathbb{C}^{*}. As mentioned above Proposition 3.1 is valid for $P G \times(G /[G, G])$. Using this and the above homomorphism η it follows that Proposition 3.1 is valid for G.
3.1. Deformation retraction of the space of n commuting elements. Finally, we note that the analogous result is also verified for the space of n commuting elements, $\mathrm{AC}^{n}(G)$.

Theorem 3.3. Let G be a connected reductive affine algebraic group over \mathbb{C}. Then, the space $\mathrm{AC}^{n}(G)$ admits a deformation retraction to the subset $\mathrm{AC}^{n}(K)$.

Proof. Since $P G$ and $P K$ have trivial center, the spaces $\mathrm{AC}^{n}(P G)$ and $\mathrm{AC}^{n}(P K)$ consist of n commuting elements: If $\left(g_{1}, \ldots, g_{n}\right) \in \mathrm{AC}^{n}(P G)$, then

$$
g_{i} g_{j}=g_{j} g_{i}, \quad \text { for all } i, j \in\{1, \ldots, n\} .
$$

Therefore, it is known that $\mathrm{AC}^{n}(P G)$ admits a deformation retraction to $\mathrm{AC}^{n}(P K)$ [10, p. 2514, Theorem 1.1]. In view of this, imitating the proof of Proposition 3.1]it follows that $\mathrm{AC}^{n}(G)$ admits a deformation retraction to $\mathrm{AC}^{n}(K)$.

References

[1] Anchouche, B., Biswas, I., Einstein-Hermitian connections on polystable principal bundles over a compact Kähler manifold, Amer. J. Math. 123 (2001), 207-228.
[2] Biswas, I., Bruzzo, U., On semistable principal bundles over a complex projective manifold. II, Geom. Dedicata 146 (2010), 27-41.
[3] Biswas, I., Florentino, C., Character varieties of virtually nilpotent Kähler groups and G-Higgs bundles, Ann. Inst. Fourier (Grenoble), to appear, arXiv:1405.0610
[4] Biswas, I., Florentino, C., Commuting elements in reductive groups and Higgs bundles on Abelian varieties, J. Algebra 388 (2013), 194-202.
[5] Biswas, I., Gómez, T.L., Connections and Higgs fields on a principal bundle, Ann. Global Anal. Geom. 33 (2008), 19-46.
[6] Borel, A., Friedman, R., Morgan, J.W., Almost commuting elements in compact Lie groups, Mem. Amer. Math. Soc. 157 (2002), no. 747.
[7] Florentino, C., Lawton, S., Topology of character varieties of Abelian groups, preprint arXiv:1301.7616
[8] Kac, V.G., Smilga, A.V., Vacuum structure in supersymmetric Yang-Mills theories with any gauge group, preprint arXiv hep-th/9902029 1999.
[9] Katzarkov, L., Pantev, T., Representations of fundamental groups whose Higgs bundles are pullbacks, J. Differential Geom. 39 (1994), 103-121.
[10] Pettet, A., Souto, J., Commuting tuples in reductive groups and their maximal compact subgroups, Geom. Topol. 17 (2013), 2513-2593.
[11] Simpson, C.T., Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5-95.

School of Mathematics,
Tata Institute of Fundamental Research,
Homi Bhabha Road, Bombay 400005, India
E-mail: indranil@math.tifr.res.in

Departamento Matemática, IST,
University of Lisbon,
Av. Rovisco Pais, 1049-001 Lisbon, Portugal
E-mail: carlos.florentino@tecnico.ulisboa.pt

