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Abstract

In this paper we study the boundedness of solutions of some third-
order delay differential equation in which h(x) is not necessarily dif-
ferentiable but satisfy a Routh–Hurwitz condition in a closed interval
[δ, kab] ⊂ (0, ab).
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1 Introduction

This paper studies certain qualitative property of solutions of the delay differ-
ential equation

...
x +aẍ+ bẋ+ h(x(t− r)) = p(t, x, ẋ, ẍ), (1.1)

where a, b and r are positive constants, h and p are continuous functions in
their respective arguments.

So far in the literature, much work have been done on the qualitative study
(especially, stability and boundedness) of solutions of equation (1.1) (see [18]),
as well as of some general equations (see [1],[12]–[17]) using the second (direct)
method of Lyapunov ([1]–[18]) by considering Lyapunov functionals and obtain-
ing conditions which ensure the qualitative behavior of solutions of the problem.
Often, authors assume h differentiable and make use of the generalized Routh–
Hurwitz conditions ([1], [11]–[18]) in one form or the other. The Routh–Hurwitz
condition on h, when specialized to the equation (1.1), usually takes the form
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of restricting h(x)
x (x �= 0) and/or h′(x) to lie in the (open) “Routh–Hurwitz

interval” (0, ab).
In the present work, we discuss the boundedness of solutions of (1.1) in

which h is not necessarily differentiable (unlike in [18]), and we shall restrict
h(x)
x (x �= 0) to lie in some special sub-interval of the Routh–Hurwitz interval

(0, ab). We shall specifically confine our treatment here to the (closed) sub-
interval

I0 ≡ [δ, kab] (1.2)

where δ > 0 is an arbitrary constant and

k = min

{
αa(1− β)

2(a+ 2α)2
,
αb(1− β)

a(a+ α)2

}
< 1 (1.3)

with the corresponding Routh–Hurwitz restriction on h taken up in the form

h(ξ)

ξ
∈ I0 (1.4)

for some designated ξ �= 0.
It is not claimed that the value of the constant k given by (1.3) is necessarily

the best possible for the result obtained.

2 Preliminary results

Let us give some definitions and a boundedness criterion for the general nonau-
tonomous delay differential system

x′ = f(t, xt), xt = x(t+ θ), −r ≤ θ ≤ 0, t ≥ 0, (2.1)

where f : [0,∞) × CH → R
n is a continuous mapping, f(t, 0) = 0, we assume

that f takes bounded sets to bounded sets in R
n. Here (C, ‖ · ‖) is the Banach

space of continuous functions φ : [−r, 0] → R
n with the sup-norm, r > 0, and

CH := {φ ∈ C([−r, 0],Rn) : ‖φ‖ ≤ H}

is an open H− ball in C. The standard existence theory [3] implies that if
φ ∈ CH and t ≥ 0, then there exists at least one continuous solution x(t, t0, φ)
satisfying Eq.(2.1) for t > t0 on [t0, t0+α) and such that xt(t, φ) = φ, where α is
a positive constant. If there exists a closed subset B ⊂ CH such that solutions
remain in B, then α = ∞. In what follows, the symbol | · | stands for the norm
in R

n with
|x| = max

1≤i≤n
|xi|

Definition 2.1 [3] A continuous strictly increasing function W : [0,∞) → [0,∞)
such that W (0) = 0 and W (s) > 0 for s > 0, is called a Hahn function. (We
denote Hahn functions by W or Wi, where i is an integer.)



Boundedness of third-order delay differential equations. . . 65

Definition 2.2 [3] A function V : [0,∞) × D → [0,∞) is said to be positive
definite if V (t, 0) = 0 and there exists a Hahn function W1 with V (t, x) ≥
W1(|x|);V is said to have an infinitesimal upper limit if there exists a Hahn
function W2 with the condition V (t, x) ≤ W2(|x|).

Definition 2.3 [16] A continuous functional V : [0,∞)×CH → [0,∞) satisfying
a local Lipschitz condition with respect to φ is called a Lyapunov functional for
Eq.(2.1) if there exists a Hahn function satisfying the following conditions:

(a) W (|φ(0)|) ≤ V (t, φ) and V (t, 0) = 0;

(b) V̇(2.1)(t, xt) = lim suph→0(1/h)[V (t+ h, xt+h(t0, φ))− V (t, xt(t0, φ))] ≤ 0.

Lemma 2.4 [3] Let V : [0,∞)×CH → R be a continuous functional satisfying
the local Lipschitz condition. Suppose that the following conditions are satisfied:

(i) W (|x(t)|) ≤ V (t, xt) ≤ W1(|x(t)|) +W2

(∫ t

t−r
W3(|x(s)|)ds

)
;

(ii) V̇(2.1) ≤ −W3(|x(t)|) +M for some M > 0, where W (r)
and Wi (i = 1, 2, 3) are Hahn functions.

Then the solutions of Eq.(2.1) are uniformly bounded and uniformly finitely
bounded for bound B.

3 Main result

Before we state our result in this section, we write equation(1.1) in the equivalent
system form

ẋ = y, ẏ = z,

ż = −az − by − h(x) +H(r, x)

∫ t

t−r

y(s)ds+ p(t, x, y, z),
(3.1)

where

H(r, x) =
h(x(t))− h(x(t− r))

x(t)− x(t− r)
.

We shall constantly refer to (3.1) subsequently in our discussion.
The following will be our main result.

Theorem 3.1 Further to the basic assumptions on h and p, assume that the
following conditions are satisfied

(i) (1.4) holds for ξ �= 0;

(ii) |H(r, x)| ≤ L (a positive constant) for all x ∈ R;

(iii) |p(t, x, y, z)| ≤ Δ0 + Δ1(|x| + |y| + |z|) for some positive constants Δ0

and Δ1 uniformly in t ≥ 0.
Then if Δ1 is sufficiently small, the solutions of the system (3.1) are uni-

formly bounded and uniformly ultimately bounded, provided that

r < min

{
δ

L
,

α

L(1 + 2αa−1)
,

2βab

L [2a+ 2α(1 + a−1) + b(1− β)]

}
.
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Proof The main tool in the proof is the Lyapunov functional

2V (xt, yt, zt) = β(1− β)b2x2 + βby2 + 2αba−1y2 + αa−1z2 + αa−1(ay + z)2

+ (z + ay + (1− β)bx)2 + λ

∫ 0

−r

∫ t

t+s

y2(θ) dθds, (3.2)

where 0 < β < 1 and α > 0 are constants.
Obviously, the function V (xt, yt, zt) is positive definite since each term of

(3.2) is positive. Hence the condition (i) of Lemma 2.4 is satisfied. Now let
us compute the time derivative of the functional V (xt, yt, zt) for the solution
(xt, yt, zt) of system (3.1). By V̇ , we denote the time derivative of the function
V = V (xt, yt, zt) for the solution (xt, yt, zt) of the system (3.1). Then

d

dt
V (xt, yt, zt) = −U1 − U2 − U3 + U4 + U5, (3.3)

where

U1 =
1

2
(1− β)bh(x)x+ βaby2 +

1

2
αz2

U2 =
1

4
(1− β)bh(x)x+ αby2 + (α+ a)h(x)y

U3 =
1

4
(1− β)bh(x)x+

1

2
αz2 + (1 + 2αa−1)h(x)z

U4 =
(
(1− β)bx+ (1 + 2αa−1)z + (α+ a)y

)
H(r, x)

∫ t

t−r

y2(θ)dθ

+ λry2 − λ

∫ t

t−r

y2(θ)dθ

U5 =
(
(1− β)bx+ (1 + 2αa−1)z + (α+ a)y

)
p(t, x, y, z).

Next, we derive estimates for some Uj , j = 2, 3, 4, 5.
There exist positive constants k1, k2 such that

U2 =
1

4

h(x)

x

(
(1− β)b− k−2

1 (α+ a)
h(x)

x

)
x2 +

(
α− k21(α+ a)

)
y2

+
(
k1(α+ a)

1
2 y + 2−1k−1

1 (α+ a)
1
2h(x)

)2
and

U3 =
1

4

h(x)

x

(
(1− β)b− k−2

2 (1 + 2αa−1)
h(x)

x

)
x2

+
(1
2
α− k22(1 + 2αa−1)

)
z2 +

(
k2(1 + 2αa−1)

1
2 z + 2−1k−1

2 (1 + 2αa−1)
1
2h(x)

)2
We observe that U2 ≥ 0 provided

δ(α+ a)

b(1− β)
≤ k21 ≤ αb

α+ a
,
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with

δ ≤ h(x)

x
≤ α(1− β)b2

(α+ a)2
. (3.4)

Similarly, U3 ≥ 0 provided

δ(1− 2αa−1)

b(1− β)
≤ k22 ≤ αa

2(a+ 2α)
,

with

δ ≤ h(x)

x
≤ α(1− β)a2b

2(a+ 2α)2
. (3.5)

Combining all the inequalities in (3.4) and (3.5), we have for all x, y, z in R,

Uj ≥ 0 (j = 2, 3) (3.6)

if

δ ≤ h(x)

x
≤ kab with k = min

{
α(1− β)b

a(α+ a)2
,
α(1− β)a

2(a+ 2α)2

}
< 1.

By condition (ii) of Theorem 3.1, and using 2uv ≤ u2 + v2, we have

|U4| ≤
1

2
(1− β)bLrx2 +

1

2
(α+ a)Lry2 +

1

2
(1 + 2αa−1)Lrz2

+
1

2
L
(
(1− β)b+ (α+ a) + (1 + 2αa−1)

) ∫ t

t−r

y2(θ)dθ + λry2 − λ

∫ t

t−r

y2(θ)dθ.

If we choose λ = 1
2L
(
(1− β)b+ (α+ a) + (1 + 2αa−1)

)
> 0 we must have that

|U4| ≤
1

2
Lr((1− β)bx2

+ (1 + (1− β)b+ 2(a+ α+ 2αa−1))y2 + (1 + 2αa−1)z2). (3.7)

Now, considering U5, and using condition (iii) of Theorem 3.1 we have that

|U5| ≤
(
(1− β)b|x|+ (α+ a)|y|+ (1 + 2αa−1)|z|

)
Δ0

+ Δ1

(
(1− β)b|x|+ (α+ a)|y|+ (1 + 2αa−1)|z|

)
(|x|+ |y|+ |z|). (3.8)

Combining the estimates (3.6), (3.7) and (3.8) in (3.3), we obtain

d

dt
V (xt, yt, zt) ≤ −1

2
(1− β)b

(
h(x)

x
− Lr

)
x2

−
(
βab− 1

2
Lr
(
2(α+ a+ 2αa−1) + b(1− β)

))
y2

− 1

2

(
α− Lr(1 + 2αa−1)

)
z2 +

(
(1− β)b|x|+ (α+ a)|y|+ (1 + 2αa−1)|z|

)
Δ0

+Δ1

(
(1− β)b|x|+ (α+ a)|y|+ (1 + 2αa−1)|z|

)
(|x|+ |y|+ |z|).
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Now, if we choose

r < min

{
δ

L
,

α

L(1 + 2αa−1)
,

2βab

L (2a+ 2α(1 + a−1) + b(1− β))

}
,

we get

d

dt
V (xt, yt, zt)

≤ −γ(x2 + y2 + z2) +
(
(1− β)b|x|+ (α+ a)|y|+ (1 + 2αa−1)|z|

)
Δ0

+Δ1

(
(1− β)b|x|+ (α+ a)|y|+ (1 + 2αa−1)|z|

)
(|x|+ |y|+ |z|)

≤ −(γ −Δ1Δ)(x2 + y2 + z2) +
(
(1− β)b|x|+ (α+ a)|y|+ (1 + 2αa−1)|z|

)
Δ0,

where

Δ =
1

2
max

{
4b(1− β) + α+ a+ 1 + 2αa−1, 4(α+ a) + b(1− β) + 1 + 2αa−1,

α+ a+ b(1− β) + 4(1 + 2αa−1)
}

and γ is some positive constant.
If we choose Δ1 < γ

Δ , then there is some θ > 0 such that

d

dt
V (xt, yt, zt) ≤ −θ(x2 + y2 + z2) + nθ(|x|+ |y|+ |z|)

= −θ

2
(x2 + y2 + z2)− θ

2

(
(|x| − n)2 + (|y| − n)2 + (|z| − n)2

)
+

3θ

2
n2

≤ −θ

2
(x2 + y2 + z2) +

3θ

2
n2, for some n, θ > 0.

Thus condition (ii) of Lemma 2.4 is satisfied by taking

W3(r) =
θr2

2
and M =

3θn2

2
.

�
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