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HOW MANY ARE EQUIAFFINE CONNECTIONS

WITH TORSION

Zdeněk Dušek and Oldřich Kowalski

Abstract. The question how many real analytic equiaffine connections with
arbitrary torsion exist locally on a smooth manifold M of dimension n is stu-
died. The families of general equiaffine connections and with skew-symmetric
Ricci tensor, or with symmetric Ricci tensor, respectively, are described in
terms of the number of arbitrary functions of n variables.

1. Introduction

When we consider an infinite family of well-determined geometric objects, it is
natural to put the question about “how many” such objects there exist. In the real
analytic case, the Cauchy-Kowalevski Theorem is the standard tool ([3], [7], [11]).
Hence a natural way how to measure an infinite family of real analytic geometric
objects is a finite family of arbitrary functions of k variables and (optionally) a family
of arbitrary functions of k − 1 variables, and, optionally, “modulo” another family
of arbitrary functions of k − 1 variables. The last (optional) family of functions
corresponds to the family of automorphisms of any geometric object from the given
family. A good example is the following question: How many there are real analytic
Riemannian metrics in dimension 3? It is known (see [4], [8]) that every such metric
can be put locally into a diagonal form and that all coordinate transformations
preserving diagonal form of the given metric depend on 3 arbitrary functions of two
variables. Hence all Riemannian metrics in dimension 3 can be locally described by
3 arbitrary functions of 3 variables modulo 3 arbitrary functions of 2 variables. An
immediate question arise if we can “calculate the number” of more basic geometric
objects, namely the affine connections, in an arbitrary dimension n. To the authors’
knowledge, no attempts are known in this direction from the past. We shall be
occupied with real analytic affine connections in arbitrary dimension n.

In the previous paper [2] the authors proved that the class of all real analytic
affine connections can be described using n(n2− 1) functions of n variables modulo
2n functions of n − 1 variables. Further, it was proved that the class of all real
analytic affine connections (with arbitrary torsion) with skew-symmetric Ricci form
depends on n(2n2 − n − 3)/2 functions of n variables and n(n+ 1)/2 functions
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of n − 1 variables, modulo 2n functions of n − 1 variables. The class of real
analytic connections (with arbitrary torsion) with symmetric Ricci form depends
on n(2n2 − n − 1)/2 functions of n variables and n(n− 1)/2 functions of n − 1
variables, modulo 2n functions of n−1 variables. For these results, a direct approach
using the Cauchy-Kowalevski Theorem can be used. The analogous results for affine
connections without torsion were obtained in [1].

In the present paper, the equiaffine connections are studied in the analogous
way. The affine connection is equiaffine if it admits a parallel volume form. It is
well known (see e.g. [10]) that the connection with zero torsion is equiaffine if and
only if the Ricci tensor is symmetric. Hence, for the case of a connection with
zero torsion, the previous results obtained in [1] can be applied. Therefore, in the
present paper, we characterize the class of equiaffine connections in dimension n
with arbitrary torsion, and its natural subclasses, in terms of arbitrary functions of
n variables and arbitrary functions of n− 1 variables.

2. Preliminaries

For the aim of the next sections, and to remain self-contained, we shall formulate
the important special case of order one of the Cauchy-Kowalevski Theorem.

Theorem 1. Consider a system of partial differential equations for unknown
functions U1(x1, . . . , xn), . . . , UN (x1, . . . , xn) on an open domain in Rn and of the
form

∂U1

∂x1 = H1
(
x1, . . . , xn, U1, . . . , UN ,

∂U1

∂x2 , . . . ,
∂U1

∂xn
, . . . ,

∂UN

∂x2 , . . . ,
∂UN

∂xn

)
,

∂U2

∂x1 = H2
(
x1, . . . , xn, U1, . . . , UN ,

∂U1

∂x2 , . . . ,
∂U1

∂xn
, . . . ,

∂UN

∂x2 , . . . ,
∂UN

∂xn

)
,

...
∂UN

∂x1 = HN
(
x1, . . . , xn, U1, . . . , UN ,

∂U1

∂x2 , . . . ,
∂U1

∂xn
, . . . ,

∂UN

∂x2 , . . . ,
∂UN

∂xn

)
,

where Hi, i = 1, . . . , N , are real analytic functions of all variables in a neighbou-
rhood of (x1

0, . . . , x
n
0 , a

1, . . . , aN , a1
2, . . . , a

1
n, . . . , a

N
2 , . . . , a

N
n ), where xj0, ai, aij are

arbitrary constants.
Further, let the functions ϕ1(x2, . . . , xn), . . . , ϕN (x2, . . . , xn) be real analytic in

a neighbourhood of (x2
0, . . . , x

n
0 ) and satisfy ϕi(x2

0, . . . , x
n
0 ) = ai for i = 1, . . . , N

and(∂ϕ1

∂x2 , . . . ,
∂ϕ1

∂xn
, . . . ,

∂ϕN

∂x2 , . . . ,
∂ϕN

∂xn

)
(x2

0, . . . , x
n
0 ) = (a1

2, . . . , a
1
n, . . . , a

N
2 , . . . , a

N
n ) .

Then the system has a unique solution (U1(x1, . . . , xn), . . . , UN (x1, . . . , xn)) which
is real analytic around (x1

0, . . . , x
n
0 ), and satisfies

U i(x1
0, x

2, . . . , xn) = ϕi(x2, . . . , xn) , i = 1, . . . , N .
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We now recall the results from the previous paper [1], which will be used in
further sections. We work locally with the spaces R[u1, . . . , un], or R[x1, . . . , xn],
respectively and we use the notation u = (u1, . . . , un) and x = (x1, . . . , xn).

Lemma 2 ([1]). For any affine connection determined by Γhij(x), there exist a local
transformation of coordinates determined by x = f(u) such that the connection in
new coordinates satisfies Γ̄h11(bu) = 0, for h = 1, . . . , n. All such transformations
depend on 2n arbitrary functions of n− 1 variables.

The system of coordinates with the property from the above lemma is called
pre-semigeodesic system of coordinates, see for example [9]. We finish this paragraph
with the following existence theorem, which is a corollary of Lemma 2.

Theorem 3 ([2]). All affine connections with torsion in dimension n depend locally
on n(n2 − 1) arbitrary functions of n variables, modulo 2n arbitrary functions of
(n− 1) variables.

Proof. After the transformation into pre-semigeodesic coordinates, we obtain n
Christoffel symbols equal to zero. We are left with n3 − n = n(n2 − 1) functions.
The transformations into pre-semigeodesic coordinates is uniquely determined up
to the choice of 2n functions ϕi0(u2, . . . , un), ϕi1(u2, . . . , un) of n− 1 variables. �

We also recall the standard facts and formulas for the Ricci tensor. In the space
Rn[xi] with the coordinate vector fields Ei = ∂

∂xi , we denote derivatives with
respect to xi by the bottom index i. Using the standard definition

(1) R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

we calculate the curvature operators

R(Ei, Ej)Ek = (Γαjk)iEα − (Γβik)jEβ + ΓαjkΓγiαEγ − ΓβikΓδjβEδ .

For the Ricci form

Ric (X,Y ) = trace
[
W 7→ R(W,X)Y

]
,

we obtain

(2) Ric (Ei, Ej) =
n∑

k,l=1

[
(Γkij)k − (Γkkj)i + ΓlijΓkkl − ΓlkjΓkil

]
.

3. Equiaffine connections with torsion

We work locally in the space R[x1, . . . , xn] with an affine connection ∇ with
arbitrary torsion. The components of the connection ∇ are Γ1

11, . . . ,Γnnn and we
consider a volume element ω = f(x1, . . . , xn)·dx1∧· · ·∧dxn. We want do determine
connections ∇ for which

∇ω = 0 .
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This condition, with respect to coordinate vector fields E1, . . . , En, gives the
conditions

(∇Ekω)(E1, . . . , En)

= ∂

∂xk
ω(E1, . . . , En)− ω(∇EkE1, . . . , En)− · · · − ω(E1, . . . ,∇EkEn) = 0

for k = 1, . . . , n. We obtain easily the following n equations

(3) fxk − f ·
n∑
i=1

Γiki = 0 , k = 1, . . . , n .

If we put L(x1, . . . , xn) = log(f(x1, . . . , xn)), then these equations can be written
in the form fxk = f · Lxk . We choose an arbitrary function L(x1, . . . , xn) and we
want the conditions

(4) Lxk =
n∑
i=1

Γiki , k = 1, . . . , n

to be satisfied. We can choose arbitrarily the Christoffel symbols Γiki for k = 1, . . . , n
and i = 1, . . . , n−1 and we calculate the Christoffel symbols Γnkn from equations (4).

Theorem 4. The family of equiaffine connections in dimension n depends on
n3 − 2n+ 1 functions of n variables modulo a constant and modulo 2n functions of
n− 1 variables.

Proof. The family of all connections depends on n(n2 − 1) Christoffel symbols.
(The n Christoffel symbols are zero in pre-semigeodesic coordinates.) Out of them,
n Christoffel symbols are determined from the n equations (4). Hence, we choose
arbitrarily the function L and all Christoffel symbols except Γnkn. Altogether, we
choose arbitrarily the n(n2 − 1)− n+ 1 = n3 − 2n+ 1 functions. For any constant
c, the function L+ c leads to the same equations (4) and the 2n functions of n− 1
variables appear because we have used pre-semigeodesic coordinates. �

4. Equiaffine connections with torsion
and with skew-symmetric Ricci tensor

We use again formulas (4) and pre-semigeodesic coordinates. We choose arbi-
trarily the function L and Christoffel symbols Γiki for i = 1, . . . , n − 1 and we
determine Γnkn from the formulas (4). We have fixed, so far, n(n− 1) + 1 arbitrary
functions of n variables. We continue with the formulas for the skew-symmetric
Ricci form, which follow from the conditions

(5)

Ric (E1, E1) = 0 ,

Ric (Ei, Ei) = 0 , i > 1,

Ric (E1, Ei) + Ric (Ei, E1) = 0 , i > 1,

Ric (Ei, Ej) + Ric (Ej , Ei) = 0 , 1 < i < j ≤ n .
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Into these conditions, we substitute formulas (2) for the Ricci tensor. In each formula
which follows, we denote by Λ′ij the terms which involve first derivatives with respect
to x2, . . . , xn and by Λij the terms which do not involve any differentiation (and
which form a homogeneous polynomial of degree 2 in Γkij). We obtain the n(n+1)/2
conditions

(6)

n∑
k=2

(Γkk1)1 = Λ′11 + Λ11 ,

(Γ1
ii)1 = Λ′ii + Λii , i > 1 ,

(Γ1
i1)1 −

n∑
k=2

(Γkki)1 = Λ′1i + Λ1i , i > 1 ,

(Γ1
ij)1 + (Γ1

ji)1 = Λ′ij + Λij , 1 < i < j ≤ n .

Now, we keep, for example, the derivatives of the following Christoffel symbols
on the left-hand sides of the respective equations (6): Γnn1, Γ1

ii, Γnni, Γ1
ij (for

1 < i < j ≤ n). We see that these Christoffel symbols have not been fixed yet
by the procedure described in the previous section. We transport all other terms
except the derivatives of the mentioned Christoffel symbols to the right-hand sides
of the equations. Now, all Christoffel symbols whose derivatives are not on the
left-hand sides and which are not fixed yet can be chosen as arbitrary functions. The
Christoffel symbols whose derivatives are on the left-hand sides can be determined
using the Cauchy-Kowalevski Theorem.

Theorem 5. The family of equiaffine connections in dimension n which have
skew-symmetric Ricci form depends on 2n3−n2−5n+2

2 functions of n variables and
n(n+1)

2 functions of n− 1 variables modulo a constant and modulo 2n functions of
n− 1 variables.

Proof. In the procedure above, we have started with the n(n2 − 1) Christoffel
symbols in the pre-semigeodesic coordinates. Out of them, n were determined from
the equations (4) and n(n+ 1)/2 of them were determined from the equations (6).
Further, the function L was chosen arbitrarily. Altogether, the n(n2 − 1) − n −
n(n + 1)/2 + 1 = (2n3 − n2 − 5n + 2)/2 functions were chosen arbitrarily. The
n(n+1)/2 functions of less variables appear during solving the system (6) using the
Cauchy-Kowalevski Theorem and the constant and 2n functions of less variables
appear the same way as in Theorem 4. �

5. Equiaffine connections with torsion
and with symmetric Ricci tensor

We do the same steps as in the previous section. First, we choose the function
L and Christoffel symbols which appear in formulas (4) except Γnkn arbitrarily. We
determine the functions Γnkn from the formulas (4). We continue with the formulas
for the symmetric Ricci form, which are

(7) Ric (Ei, Ej)− Ric (Ej , Ei) = 0 , 1 ≤ i < j ≤ n .
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After introducing the notation Λij and Λ′ij as in the previous section, we obtain
formulas

(8)
−

n∑
k=2

(Γkkj)1 − (Γ1
j1)1 = Λ′1j + Λ1j , 1 < j ≤ n,

(Γ1
ij)1 − (Γ1

ji)1 = Λ′ij + Λij , 1 < i < j ≤ n .

We keep, for example, the derivatives of the following undetermined Christoffel
symbols on the left-hand sides of the respective equations (8): Γnnj , Γ1

ij (for 1 < i <
j ≤ n). We see again that these Christoffel symbols were not fixed yet. We transport
all other terms except the derivatives of the mentioned Christoffel symbols to the
right-hand sides of the equations. Now, all Christoffel symbols whose derivatives
are not on the left-hand sides and which are not fixed yet can be chosen as arbitrary
functions. The Christoffel symbols whose derivatives are on the left-hand sides can
be determined using the Cauchy-Kowalevski Theorem.

Theorem 6. The family of equiaffine connections in dimension n which have
symmetric Ricci form depends on 2n3−n2−3n+2

2 functions of n variables and n(n−1)
2

functions of n− 1 variables modulo a constant and modulo 2n functions of n− 1
variables.

Proof. In the procedure above, we have started with the n(n2 − 1) Christoffel
symbols in the pre-semigeodesic coordinates. Out of them, n were determined from
the equations (4) and n(n− 1)/2 of them were determined from the equations (6).
Further, the function L was chosed arbitrarily. Altogether, the n(n2 − 1) − n −
n(n − 1)/2 + 1 = (2n3 − n2 − 3n + 2)/2 functions were chosen arbitrarily. The
n(n−1)/2 functions of less variables appear during solving the system (6) using the
Cauchy-Kowalevski Theorem and the constant and 2n functions of less variables
appear the same way as in Theorem 4. �

6. Conclusions

Convention. Let f(n) and h(n) be two sequences depending on natural numbers
and let limn→∞

f(n)
h(n) = 1. Then we say that f(n) and h(n) are asymptotically equal

at infinity. Now, we can conclude with the following

Theorem 7. The number of all equiaffine connections with torsion, or those with
skew-symmetric Ricci tensor, or those with symmetric Ricci tensor, respectively, is
asymptotically equal at infinity to the number of all affine connections with torsion.

Proof. The result follows from the Theorems 3–6 because real analytic functions
of (n− 1) variables are always of measure zero among real analytic functions of n
variables (a result by Hilbert) and they need not be counted. �
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