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ON THE COMPOSITION STRUCTURE OF THE TWISTED
VERMA MODULES FOR sl(3,C)

Libor Křižka and Petr Somberg

Abstract. We discuss some aspects of the composition structure of twisted
Verma modules for the Lie algebra sl(3,C), including the explicit structure of
singular vectors for both sl(3,C) and one of its Lie subalgebras sl(2,C), and
also of their generators. Our analysis is based on the use of partial Fourier
tranform applied to the realization of twisted Verma modules as D-modules
on the Schubert cells in the full flag manifold for SL(3,C).

Introduction

The objects of central interest in the representation theory of complex simple Lie
algebras are the Harish-Chandra modules. It is well known that there is a categorical
equivalence between principal series Harish-Chandra modules and twisted Verma
modules as objects of the Bernstein-Gelfand-Gelfand category O. The twisted
Verma modules are studied from various perspectives including the Lie algebra
(co)homology of the twisted nilradical, the Schubert cell decomposition of full flag
manifolds and algebraic techniques of twisting functors applied to Verma modules,
in [4], [2], [14] and references therein.

Combinatorial conditions for the existence of homomorphisms between twisted
Verma modules were studied in [1], but there is basically no information on precise
positions and properties of elements responsible for a non-trivial composition
structure of twisted Verma modules. The modest aim of the present article is the
study of some aspects related to the composition structure of twisted Verma modules
for the Lie algebra sl(3,C) by geometrical methods, through their realization as
D-modules supported on Schubert cells, cf. [7], [3]. Namely, we discuss in the case
of sl(3,C) a few results parallel to the development for (untwisted) generalized
Verma modules in [10], [11].

Let us briefly describe the content of our article. First of all, in Section 1 we briefly
review various characterizing properties of twisted Verma modules compared to the
untwisted Verma modules. Based on the action of a simple Lie algebra on its full
flag manifold, see e.g. [7], [12] for rather explicit description, in Section 2 we write
down explicit realizations of the highest weight twisted sl(3,C)-Verma modules.
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For all twistings realized by elements w of the Weyl group W , the isomorphism
given by a partial Fourier transform allows us to analyze several basic questions
on twisted Verma modules not accessible in the literature. We shall carry out this
procedure for the structure of singular vectors and the generators of sl(3,C)-Verma
modules twisted by w = s1. Another our result concerns the application of ideas
on the decomposition of twisted Verma modules with respect to a reductive Lie
subalgebra sl(3,C), thereby generalizing the results analogous to [11] towards the
twisted Verma modules. Here we consider the simplest example of an embedded
sl(2,C) ⊂ sl(3,C) and produce a complete list of singular vectors responsible for
the branching problem of twisted sl(3,C)-Verma module. In our situation we also
observe that the s1-twisted sl(3,C)-Verma modules are generated by single vector
(which is not of highest weight), a property analogous to the case of (untwisted)
Verma modules. In the last Section 3 we highlight our results in the framework of
(un)known properties of the objects of the Bernstein-Gelfand-Gelfand category O
(see e.g. [8]).

1. Twisted Verma modules and their characterizations

Let G be a connected complex semisimple Lie group, H ⊂ G a maximal torus
of G, B ⊂ G a Borel subgroup of G containing H, and W = NG(H)/H the
Weyl group of G. Furthermore, let g, h and b be the Lie algebras of G, H and B,
respectively. Finally, let n be the positive nilradical of the Borel subalgebra b and
n the opposite (negative) nilradical. We denote by N and N the Lie subgroups of
G corresponding to the Lie subalgebras n and n, respectively.

The objects of our interest are the twisted Verma modules Mw
g (λ), parametrized

by λ ∈ h∗ and the twisting w ∈ W . The twisted Verma modules Mw
g (λ) have

for all w ∈W the same character as the Verma module Mg
b (λ) induced from the

1-dimensional b-module Cλ,
Mg

b (λ) ≡Me
g(λ) = U(g)⊗U(b)Cλ ,

with highest weight λ ∈ h∗ and e ∈ W . However, the extensions of simple
sub-quotients in twisted Verma modules differ from extensions in Verma mo-
dules. As U(g)-modules they are objects of the Bernstein-Gelfand-Gelfand category
O, i.e. finitely generated U(g)-modules, h-semisimple and locally n-finite.

Let us denote by e and w0 the identity and the longest element of W , respectively,
and let ` : W → N0 be the length function on W . The Weyl group W acts by
ρ-affine action on h∗, w · λ = w(λ+ ρ)− ρ, and gives four Lie subalgebras

1) n = n−w ⊕ n−w : n−w = n ∩Ad(ẇ)(n), n−w = n ∩Ad(ẇ)(n),
2) n = n+

w ⊕ n+
w : n+

w = n ∩Ad(ẇ)(n), n+
w = n ∩Ad(ẇ)(n).

The universal enveloping algebra U(n−w) is a graded subalgebra of U(n), determined
by U(n−w)0 = C, U(n−w)−1 = n−w for all w ∈ W , and U(n−e ) = C, U(n−w0

) = U(n).
The graded dual of U(n−w) is defined by (U(n−w))∗n = HomC((U(n−w))−n,C) for all
n ∈ Z.

There are several equivalent characterizing properties of twisted Verma modules
Mw

g (λ) for λ ∈ h∗ and w ∈W , see [2], [8, Chapter 12] for detailed discussion.
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1) The Lie algebra cohomology of the twisted opposite nilradical n+
w ⊕ n−w =

Ad(ẇ)(n) with coefficients in Mw
g (λ) is

(1.1) Hi(n+
w ⊕ n−w ,M

w
g (λ)) '

{
Cλ+w(ρ)+ρ if i = dim n− `(w) ,
0 if i 6= dim n− `(w)

as h-modules. In particular, Mw
g (λ) is a free U(Ad(ẇ)(n)∩n)-module, while

its graded dual (Mw
g (λ))∗ is a free U(Ad(ẇ)(n) ∩ n)-module.

2) Let us consider the full flag manifold G/B and the Schubert cell Xw for
w ∈ W defined as the N -orbit Xw = NwB/B ⊂ G/B, where dimXw =
`(w). Then there is an isomorphism of U(g)-modules for the local, relative
to Xw, sheaf cohomology of a homogeneous vector bundle L(λ),

(1.2) Hi
Xw(G/B,L(λ)) '

{
Mw

g (ww0 · λ) if i = dim n− `(w) ,
0 if i 6= dim n− `(w) .

In particular, the Verma modules are supported on the closed Schubert
cell while the contragradient Verma modules are supported on the open
(dense) Schubert cell.

3) For w ∈W , the U(g)-bimodule Sw = U(g)⊗U(n−w)(U(n−w))∗ allows to define
a functor Tw : O → O (called twisting functor) by

(1.3) Tw : M 7→ ϕw(Sw ⊗U(g) M).

Here ϕw = Ad(ẇ−1) : g→ Aut(g) indicates the conjugation of the action by
g on the twisted module. In particular, we have Mw

g (λ) = Tw(Mg
b (w · λ)).

Twisted Verma modules Mw
g (λ) for λ ∈ h∗ and w ∈ W can be realized in the

framework of D-modules on the flag manifold X = G/B. There is a G-equivariant
sheaf of rings of twisted differential operators DλX on X, see [3], [9], which is for
an integral dominant weight λ+ ρ a sheaf of rings of differential operators acting
on L(λ + ρ). The G-equivariance of DλX ensures the existence of a Lie algebra
morphism

αλ : g→ Γ(X,DλX)(1.4)

and a localization functor

∆: Mod(g)→ Mod(DλX) .(1.5)

Then the DλX -module ∆(Mw
g (w · (λ− ρ))) is realized in the vector space of distri-

butions supported on the Schubert cell Xw of X, see [6, Chapter 11].

2. Twisted Verma modules for sl(3,C)

We shall consider the complex semisimple Lie group G = SL(3,C) given by 3× 3
complex matrices of unit determinant and its Lie algebra g = sl(3,C). The Cartan
subalgebra h of g is given by diagonal matrices h = {diag(a1, a2, a3); a1, a2, a3 ∈
C, a1 + a2 + a3 = 0}. For i = 1, 2, 3, we define εi ∈ h∗ by εi(diag(a1, a2, a3)) = ai.
Then the root system of g with respect to h is ∆ = {εi − εj ; 1 ≤ i 6= j ≤ 3}, the
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positive root system is ∆+ = {εi − εj ; 1 ≤ i < j ≤ 3} and the set of simple roots
is Π = {α1, α2}, α1 = ε1 − ε2, α2 = ε2 − ε3. The fundamental weights are ω1 = ε1,
ω2 = ε1 + ε2, and the smallest regular integral dominant weight is ρ = ω1 + ω2.
The notation λ = (λ1, λ2) means λ = λ1ω1 + λ2ω2.

We choose the basis of root spaces of g as

f1 = fα1 =

0 0 0
1 0 0
0 0 0

, f2 = fα2 =

0 0 0
0 0 0
0 1 0

, f12 = fα1+α2 =

0 0 0
0 0 0
1 0 0

,
e1 = eα1 =

0 1 0
0 0 0
0 0 0

, e2 = eα2 =

0 0 0
0 0 1
0 0 0

, e12 = eα1+α2 =

0 0 1
0 0 0
0 0 0

,
and the basis of the Cartan subalgebra h is given by coroots

h1 = hα1 =

1 0 0
0 −1 0
0 0 0

, h2 = hα2 =

0 0 0
0 1 0
0 0 −1

.
These matrices fulfill, among others, the commutation relations [fα1 , fα2 ] =
−fα1+α2 and [eα1 , eα2 ] = eα1+α2 .

The Weyl group W of G is generated by simple reflections s1 = sα1 and s2 = sα2 ,
where the action of W on h∗ is given by

s1(α1) = −α1, s1(α2) = α1 + α2 , s2(α1) = α1 + α2, s2(α2) = −α2 ,

and |W | = 6 with W = {e, s1, s2, s1s2, s2s1, s1s2s1 = s2s1s2}. Consequently, there
are six Schubert cells Xw in G/B isomorphic to Xw ' C`(w):

dim(Xe) = 0 , dim(Xs1) = dim(Xs2) = 1 , dim(Xs1s2) = dim(Xs2s1) = 2 ,

dim(Xs1s2s1) = 3 .
For the representatives of the elements of W in G we take the matrices

ė =

1 0 0
0 1 0
0 0 1

, ṡ1 =

 0 1 0
−1 0 0
0 0 1

, ṡ2 =

1 0 0
0 0 1
0 −1 0

,
ṡ1ṡ2 =

 0 0 1
−1 0 0
0 −1 0

, ṡ2ṡ1 =

0 1 0
0 0 1
1 0 0

, ṡ1ṡ2ṡ1 =

0 0 1
0 −1 0
1 0 0

.
We denote by (x, y, z) the linear coordinate functions on n with respect to the

basis (f1, f2, f12) of the opposite nilradical n, and by (ξx, ξy, ξz) the dual linear
coordinate functions on n∗.

Let us consider the partial dual space n∗,w of n defined by
n∗,w = (n−w−1)∗ ⊕ n−w−1 ,(2.1)

so that
(ξxα , α ∈ w−1(∆+) ∩∆+, xα, α ∈ w−1(−∆+) ∩∆+)(2.2)
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with xα1 = x, xα2 = y, xα1+α2 = z are linear coordinate functions on n∗,w.
Moreover, the Weyl algebra A

g
n of n is generated by {x, ∂x, y, ∂y, z, ∂z}, and the

Weyl algebra A
g
n∗,w of n∗,w is generated by

(2.3) {ξxα , ∂ξxα , α ∈ w
−1(∆+) ∩∆+, xα, ∂xα , α ∈ w−1(−∆+) ∩∆+} .

There is a canonical isomorphism Fw : A
g
n → A

g
n∗,w of associative C-algebras called

the partial Fourier transform, defined with respect to the generators (2.3) by

(2.4)
xα 7→ −∂ξxα , ∂xα 7→ ξxα , for α ∈ w−1(∆+) ∩∆+ ,

xα 7→ xα, ∂xα 7→ ∂xα , for α ∈ w−1(−∆+) ∩∆+.

The partial Fourier transform is independent of the choice of linear coordinates on
n.

The Verma modules Mg
b (λ− ρ), λ ∈ h∗, can be realized as A

g
n/Ie for Ie the left

ideal of A
g
n defined by Ie = (x, y, z), see e.g. [12]. The structure of g-module on

A
g
n/Ie is realized through the embedding πλ : g→ A

g
n given by

(2.5)
πλ(X) = −

∑
α∈∆+

[
ad(u(x))ead(u(x))

ead(u(x)) − idn

(e− ad(u(x))X)n

]
α

∂xα

+ (λ+ ρ)((e− ad(u(x))X)b)

for all X ∈ g, where [Y ]α denotes the α-th coordinate of Y ∈ n with respect to the
basis (fα; α ∈ ∆+) of n and u(x) =

∑
α∈∆+ xαfα. The twisted Verma modules are

realized by A
g
n/Iw, where Iw is the left ideal of A

g
n defined by

Iw = (xα, α ∈ w−1(∆+) ∩∆+ , ∂xα , α ∈ w−1(−∆+) ∩∆+)(2.6)
with xα1 = x, xα2 = y, xα1+α2 = z. The list of all possibilities looks as follows:

1) w = e, Ie = (x, y, z), A
g
n/Ie ' C[∂x, ∂y, ∂z];

2) w = s1, Is1 = (∂x, y, z), A
g
n/Is1 ' C[x, ∂y, ∂z];

3) w = s2, Is2 = (x, ∂y, z), A
g
n/Is2 ' C[∂x, y, ∂z];

4) w = s1s2, Is1s2 = (x, ∂y, ∂z), A
g
n/Is1s2 ' C[∂x, y, z];

5) w = s2s1, Is2s1 = (∂x, y, ∂z), A
g
n/Is2s1 ' C[x, ∂y, z];

6) w = s1s2s1, Is1s2s1 = (∂x, ∂y, ∂z), A
g
n/Is1s2s1 ' C[x, y, z].

In particular, the twisted Verma modules are realized as Mw
g (λ) ' A

g
n/Iw, where

πwλ : g→ A
g
n/Iw is defined by

πwλ = πw−1(λ+ρ) ◦Ad(ẇ−1)(2.7)

with w−1 acting in the standard and not the ρ-shifted manner. Since Fw : A
g
n →

A
g
n∗,w is an isomorphism of associative C-algebras, the composition

π̂wλ = Fw ◦ πwλ(2.8)

gives the homomorphism π̂wλ : U(g) → A
g
n∗,w of associative C-algebras and the

twisted Verma modules are realized as Mw
g (λ) ' A

g
n∗,w/F

w(Iw).
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2.1. (Untwisted) Verma modules. Let us first consider the case of Verma
modules. The untwisted Verma module Mg

b (λ) ≡ Me
g(λ) for λ = λ1ω1 + λ2ω2 is

isomorphic to
Me

g(λ) ' A
g
n/Ie ' C[∂x, ∂y, ∂z], Ie = (x, y, z),(2.9)

where the embedding πeλ : g → A
g
n and so the g-module structure on A

g
n/Ie are

given by
πeλ(f1) = −∂x + 1

2y∂z,

πeλ(f2) = −∂y − 1
2x∂z,

πeλ(f12) = −∂z,
πeλ(e1) = x2∂x + (z − 1

2xy)∂y + ( 1
4x

2y + 1
2xz)∂z + (λ1 + 2)x,

πeλ(e2) = y2∂y − (z + 1
2xy)∂x − ( 1

4xy
2 − 1

2yz)∂z + (λ2 + 2)y,
πeλ(e12) = (xz + 1

2x
2y)∂x + (yz − 1

2xy
2)∂y + (z2 + 1

4x
2y2)∂z

+ (λ1 + λ2 + 4)z + 1
2 (λ1 − λ2)xy,

πeλ(h1) = 2x∂x − y∂y + z∂z + λ1 + 2,
πeλ(h2) = −x∂x + 2y∂y + z∂z + λ2 + 2.

This representation corresponds to the Verma module with the highest weight
λ = (λ1, λ2), and the Fourier dual representation acts in the Fourier dual variables
on C[ξx, ξy, ξz] by

π̂eλ(f1) = −ξx − 1
2ξz∂ξy ,

π̂eλ(f2) = −ξy + 1
2ξz∂ξx ,

π̂eλ(f12) = −ξz,
π̂eλ(e1) = −ξy∂ξz + (ξx∂ξx + 1

2ξz∂ξz − λ1)∂ξx − 1
2 (ξy + 1

2ξz∂ξx)∂ξx∂ξy ,
π̂eλ(e2) = ξx∂ξz + (ξy∂ξy + 1

2ξz∂ξz − λ2)∂ξy − 1
2 (ξx − 1

2ξz∂ξy )∂ξx∂ξy ,
π̂eλ(e12) = (ξx∂ξx + ξy∂ξy + ξz∂ξz − λ1 − λ2)∂ξz

− 1
2 (ξx∂ξx − ξy∂ξy − λ1 + λ2 − 1

2ξz∂ξx∂ξy )∂ξx∂ξy ,
π̂eλ(h1) = −2ξx∂ξx + ξy∂ξy − ξz∂ξz + λ1,

π̂eλ(h2) = ξx∂ξx − 2ξy∂ξy − ξz∂ξz + λ2.

The next result, which is easy to verify, determines the singular vectors respon-
sible for the composition series of Mg

b (λ). It can be regarded as a degenerate case
in the series of parabolic subalgebras with Heisenberg type nilradicals discussed in
[12]. We write the statement for general highest weight λ ∈ h∗, so that the number
of singular vectors is reduced for the weights which are not dominant and regular.
In particular, in the case λ is a regular dominant integral weight there are six
singular vectors.

Lemma 1. Let λ = λ1ω1 + λ2ω2 be the highest weight for the Verma module
Mg

b (λ) ' C[∂x, ∂y, ∂z]. Then the singular vectors and their weights are
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1) vλ = 1, (λ1, λ2)
2) vs1·λ = ∂λ1+1

x , (−λ1 − 2, λ1 + λ2 + 1),
3) vs2·λ = ∂λ2+1

y , (λ1 + λ2 + 1,−λ2 − 2),

4) vs2s1·λ =
∑λ2+1
k=0

k!
2k
(
λ2+1
k

)(
λ1+λ2+2

k

)
∂kz ∂

λ2−k+1
y ∂λ1+λ2−k+2

x ,
(−λ1 − λ2 − 3, λ1),

5) vs1s2·λ =
∑λ1+1
k=0

(−1)kk!
2k

(
λ1+1
k

)(
λ1+λ2+2

k

)
∂kz ∂

λ1−k+1
x ∂λ1+λ2−k+2

y ,
(λ2,−λ1 − λ2 − 3),

6) vs1s2s1·λ =
∑λ1+λ2+2
k=0

k!
2k
(
λ1+λ2+2

k

)∑k
`=0
(
λ2+1
`

)(
λ1+1
k−`

)
(−1)`

∂kz ∂
λ1+λ2−k+2
x ∂λ1+λ2−k+2

y , (−λ2 − 2,−λ1 − 2).

The Hasse diagram corresponding to the affine orbit of the Weyl group W
for a regular dominant integral weight λ of sl(3,C) is drawn on Figure 1a. The
nodes of the overall graph correspond to Verma modules and the arrows are their
homomorphisms, and the dots and arrows in each node (corresponding to a Verma
module) represent the singular vectors and the Verma submodules they generate,
respectively.

2.2. Twisted Verma modules for w = s1. For w = s1, we have Iw = (∂x, y, z),
Mw

g (λ) ' C[x, ∂y, ∂z], and

πw(λ1,λ2) = π(−λ1−1,λ1+λ2+2) ◦Ad(ẇ−1)(2.10)

since w−1(λ+ ρ) = w−1(λ1+ 1, λ2+ 1) = (−λ1− 1, λ1+λ2+ 2) for λ = λ1ω1+λ2ω2.
Because

Ad(ẇ−1)(e1) = −f1, Ad(ẇ−1)(e12) = e2, Ad(ẇ−1)(e2) = −e12,

Ad(ẇ−1)(f1) = −e1, Ad(ẇ−1)(f12) = f2, Ad(ẇ−1)(f2) = −f12,

Ad(ẇ−1)(h1) = −h1, Ad(ẇ−1)(h2) = h1 + h2,

(2.11)

we obtain
πwλ (f1) = −x2∂x − (z − 1

2xy)∂y − ( 1
4x

2y + 1
2xz)∂z + λ1x,

πwλ (f2) = ∂z,

πwλ (f12) = −∂y − 1
2x∂z,

πwλ (e1) = ∂x − 1
2y∂z,

πwλ (e2) = −(xz + 1
2x

2y)∂x − (yz − 1
2xy

2)∂y − (z2 + 1
4x

2y2)∂z
− (λ2 + 3)z + 1

2 (2λ1 + λ2 + 3)xy,
πwλ (e12) = y2∂y − (z + 1

2xy)∂x − ( 1
4xy

2 − 1
2yz)∂z + (λ1 + λ2 + 3)y,

πwλ (h1) = −2x∂x + y∂y − z∂z + λ1,

πwλ (h2) = x∂x + y∂y + 2z∂z + λ2 + 3 .

The vector 1 ∈ C[x, ∂y, ∂z] has the weight λ = (λ1, λ2). In the partial Fourier dual
picture of the representation, the Lie algebra g acts on the polynomial algebra
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(a) w = e (b) w = s1

Fig. 1. Generalized weak BGG resolution for w = e and w = s1

C[x, ξy, ξz] by

π̂wλ (f1) = ξy∂ξz − x(x∂x − 1
2ξz∂ξz − λ1)− 1

2x(ξy − 1
2xξz)∂ξy ,

π̂wλ (f2) = ξz,

π̂wλ (f12) = −ξy − 1
2xξz,

π̂wλ (e1) = ∂x + 1
2ξz∂ξy ,

π̂wλ (e2) = (x∂x − ξy∂ξy − ξz∂ξz + λ2)∂ξz
+ 1

2x(x∂x + ξy∂ξy − 1
2xξz∂ξy − 2λ1 − λ2 − 1)∂ξy ,

π̂wλ (e12) = ∂x∂ξz + (ξy∂ξy + 1
2ξz∂ξz − λ1 − λ2 − 1

2 )∂ξy + 1
2x(∂x − 1

2ξz∂ξy )∂ξy ,
π̂wλ (h1) = −2x∂x − ξy∂ξy + ξz∂ξz + λ1,

π̂wλ (h2) = x∂x − ξy∂ξy − 2ξz∂ξz + λ2.

Lemma 2. The twisted Verma module Mw
g (λ) for λ = λ1ω1 + λ2ω2 is generated

by one vector vλ. For λ1 /∈ N0 this generator is vλ = 1 ∈ C[x, ∂y, ∂z], while for
λ1 ∈ N0 the generator is equal to vλ = xλ1+1 ∈ C[x, ∂y, ∂z].
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Proof. We observe πwλ (fk1 )1 = k!
(
λ1
k

)
xk for k ∈ N0. It follows that the vectors

{πwλ (fk1 )1; k ∈ N0} generate the subspace C[x] ⊂ C[x, ∂y, ∂z] for λ1 /∈ N0. Fur-
ther, for λ1 ∈ N0 we have πwλ (ek1)xλ1+1 = k!

(
λ1+1
k

)
xλ1+1−k and πwλ (fk1 )xλ1+1 =

(−1)kk!xλ1+1+k for k ∈ N0, and therefore the vectors {πwλ (fk1 )xλ1+1, πwλ (ek1)xλ1+1;
k ∈ N0} generate again the subspace C[x] ⊂ C[x, ∂y, ∂z]. Now, from the form of
elements πwλ (f2) = ∂z and πwλ (f12) = −∂y − 1

2x∂z the rest of the proof easily
follows. �

Lemma 3. Let λ = λ1ω1 + λ2ω2 and let Iwλ be the left ideal of U(g) defined by

(2.12) Iwλ =
{

(e1, e2, e12, h1 − λ1, h2 − λ2) if λ1 /∈ N0,

(e2, e12, e
λ1+2
1 , f1e1, h1 + λ1 + 2, h2 − λ1 − λ2 − 1) if λ1 ∈ N0.

Then we have U(g)/Iwλ 'Mw
g (λ) as g-modules.

Proof. Let us consider wλ = 1 mod Iwλ as an element in U(g)/Iwλ . The generator
vλ of Mw

g (λ) constructed in Lemma 2 allows to define a homomorphism ϕ : U(g)→
Mw

g (λ) of U(g)-modules by ϕ(1) = vλ. Since the generator vλ is annihilated by the
left ideal Iwλ of U(g), we get the surjective homomorphism ϕ̃ : U(g)/Iwλ →Mw

g (λ)
of U(g)-modules. Then ϕ̃ is an isomorphism once we prove that the modules have
the same formal characters. There are clearly two complementary cases to be
considered:

i) Let us assume first λ1 /∈ N0. Then h1wλ = λ1wλ and h2wλ = λ2wλ, therefore
U(h)wλ = Cwλ. By e1wλ = 0, e2wλ = 0 and e12wλ = 0 it follows U(n)wλ = Cwλ.
The PBW theorem applied to g = n⊕ h⊕ n is equivalent to U(g) = U(n)U(n)U(h),
hence we get U(g)/Iwλ = U(g)wλ = U(n)wλ. But the characters of U(g)/Iwλ and
Mw

g (λ) are equal, because U(g)/Iwλ is free U(n)-module generated by wλ and hence
a Verma module with the highest weight λ.

ii) Let us now assume λ1 ∈ N0. Then h1wλ = (−λ1 − 2)wλ and h2wλ =
(λ1+λ2+1)wλ, therefore U(h)wλ = Cwλ. By e2wλ = 0 and e12wλ = 0 it follows that
U(nw ∩ n)wλ = Cwλ. We have eλ1+2

1 wλ = 0, and so U(nw ∩ n)wλ =
⊕λ1+1

k=0 Cek1wλ.
Finally, the condition f1e1wλ = 0 implies an equality of vector spaces

U(nw ∩ n)U(nw ∩ n)wλ =
⊕λ1

k=0 Ceλ1+1−k
1 wλ ⊕

⊕
k∈N0

Cfk1wλ.

By PBW theorem applied to the vector space decomposition g = (nw ∩ n)⊕ (nw ∩
n)⊕ (nw ∩ n)⊕ (nw ∩ n)⊕ h we get

U(g)/Iwλ = U(g)wλ = U(n)wλ ⊕
⊕λ1

k=0 U(nw ∩ n) Ceλ1+1−k
1 wλ,

where we used the fact that U(g)/Iwλ is a free U(nw ∩ n)-module. Hence the
characters of U(g)/Iwλ and Mw

g (λ) coincide.
Hence the proof is complete. �

The structure of s1-twisted Verma modules Mw
g (λ) for the highest weights

λ ∈ h∗ lying on the affine orbit of W for an integral dominant weight is shown on
the list below. Namely, the points on the figures denote singular vectors in Mw

g (λ)
or some of its quotients, where the vectors which were not singular vectors in the
former twisted Verma module are singular vectors in a quotient Verma module.
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The composition structure among these vectors is expressed by the arrows: there is
a directed arrow from one vector to another vector if and only if for any choice
of vectors projecting under a quotient homomorphism onto singular vectors is the
latter vector generated by the former vector.

The structure of Mw
g (λ) for a specific highest weight λ ∈ h∗ follows immediately

from Lemma 3 and its proof. If λ1 /∈ N0, then Mw
g (λ) is isomorphic to the Verma

module Mg
b (λ). On the other hand, if λ1 ∈ N0, then Mw

g (λ)/Nw
g (λ) is isomorphic

to the Verma module Mg
b (s1 · λ), where Nw

g (λ) is the g-submodule generated by
1 ∈ C[x, ∂y, ∂z].

(x∂z − 2∂y)λ1+λ2+2

xλ1+1(∑λ2+1
k=0

1
2k
(
λ2+1
k

)
ak(x∂z)k∂λ2+1−k

y

)
, (λ1 + k + 3)ak+2 =
λ1ak+1 + (k + 1)akxλ1+1∂λ1+λ2+1

z

∂λ2+1
zxλ1+1

1

(x∂z − 2∂y)λ2+1∂λ1+1
z

(x∂z − 2∂y)λ2+1∂λ1+λ2+2
z

1

xλ1+λ2+2∂λ1+1
z

xλ1+λ2+2(x∂z − 2∂y)λ1+1

1

xλ2+1

1

∂λ1+1
z

1

1
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Let us recall that we have the twisting functor Tw : O → O. If we apply this
functor to the standard BGG resolution for Verma modules shown on Figure 1a,
we obtain twisted BGG resolution shown on Figure 1b.

Let us describe the homomorphisms between twisted Verma modules Mw
g (λ)

drawn on Figure 1b explicitly. Because Mw
g (λ) is generated by one vector vλ ∈

Mw
g (λ), a homomorphism ϕ : Mw

g (λ)→Mw
g (µ) is uniquely determined by ϕ(vλ) ∈

Mw
g (µ).

1 7→ (x∂z − 2∂y)λ2+1

1 7→ ∂λ1+1
z

1 7→ (x∂z − 2∂y)λ1+λ2+2

xλ2+1 7→ 1

xλ2+1 7→ xλ2+1(x∂z − 2∂y)λ1+1

xλ1+λ2+2 7→ 1

xλ1+λ2+2 7→
xλ1+1(∑λ2+1

k=0
1
2k
(
λ2+1
k

)
ak(x∂z)k∂λ2+1−k

y

)
,

(λ1 + k + 3)ak+2 = λ1ak+1 + (k + 1)ak, a−1 = 0, a0 = 1

xλ1+1 7→ 1

There is another aspect of the composition structure of twisted Verma modules,
related to a choice of Lie subalgebras of sl(3,C). As for the parallel results for
(untwisted) Verma modules, we refer to [12], [11]. For concreteness, we shall stick
to the case of the Lie algebra sl(2,C) embedded on the first simple root of sl(3,C).
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Lemma 4. Let us consider the Lie subalgebra sl(2,C) of the Lie algebra sl(3,C)
generated by the elements {e1, f1, h1}. Then the set of singular vectors for this Lie
subalgebra, i.e. v ∈ Mw

g (λ) such that πwλ (e1)v = 0, is given by C[∂z, x∂z − 2∂y],
and the corresponding weight spaces with respect to the Cartan subalgebra Ch1 of
sl(2,C) are ⊕

b∈N0

C∂a+2b
z (x∂z − 2∂y)b(2.13)

with the weight (λ1 + a)ω1.
Proof. First of all, we claim that there is an isomorphism of graded C-algebras

(2.14) C[x, ∂y, ∂z] ∼−→ C[∂z, x∂z − 2∂y]⊗C C[x]

with deg(x) = 1, deg(∂y) = 2 and deg(∂z) = 1. The mapping is clearly surjective,
and the fact that x, ∂y, ∂z are algebraically independent implies by induction on
the degree of ∂y the algebraic independence of x, x∂z − 2∂y, ∂z, hence the claim
follows.

An elementary calculation shows that any element in C[∂z, x∂z − 2∂y] is in the
kernel of πwλ (e1), hence the action of πwλ (e1) on C[∂z, x∂z − 2∂y]⊗C C[x] reduces
to the action of 1⊗ ∂x. Therefore, the kernel of πwλ (e1) on C[∂z, x∂z − 2∂y]⊗C C[x]
is equal to C[∂z, x∂z − 2∂y]⊗C C, and thus to C[∂z, x∂z − 2∂y] by the isomorphism
(2.14). �

After the application of partial Fourier transform, the isomorphism (2.14) can
be interpreted as a graded version of the Fischer tensor product decomposition for
the graded algebra C[x, ξy, ξz] with respect to the differential operator ∂x + 1

2ξz∂ξy ,
cf. [5]. Though we were not able to find an explicit result on the branching rules for
twisted Verma modules in the available literature, the coincidence of their characters
with characters of (untwisted) Verma modules suggests branching rules in K(O)
parallel to those derived in [10].

2.3. Twisted Verma modules for w = s1s2. For w = s1s2, we have Iw =
(x, ∂y, ∂z), Mw

g (λ) ' C[∂x, y, z], and

(2.15) πw(λ1,λ2) = π(λ2+1,−λ1−λ2−2) ◦Ad(ẇ−1)

since w−1(λ+ρ) = w−1(λ1 +1, λ2 +1) = (λ2 +1,−λ1−λ2−2) for λ = λ1ω1 +λ2ω2.
Due to

(2.16)
Ad(ẇ−1)(e1) = −f12, Ad(ẇ−1)(e12) = −f2, Ad(ẇ−1)(e2) = e1,

Ad(ẇ−1)(f1) = −e12, Ad(ẇ−1)(f12) = −e2, Ad(ẇ−1)(f2) = f1,

Ad(ẇ−1)(h1) = −h1 − h2, Ad(ẇ−1)(h2) = h1,

we obtain

πwλ (f1) = −(xz + 1
2x

2y)∂x − (yz − 1
2xy

2)∂y − (z2 + 1
4x

2y2)∂z + (λ1 − 1)z
− 1

2 (λ1 + 2λ2 + 3)xy ,
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πwλ (f2) = −∂x + 1
2y∂z ,

πwλ (f12) = −y2∂y + (z + 1
2xy)∂x + ( 1

4xy
2 − 1

2yz)∂z + (λ1 + λ2 + 1)y ,
πwλ (e1) = ∂z ,

πwλ (e2) = x2∂x + (z − 1
2xy)∂y + ( 1

4x
2y + 1

2xz)∂z + (λ2 + 2)x ,
πwλ (e12) = ∂y + 1

2x∂z ,

πwλ (h1) = −x∂x − y∂y − 2z∂z + λ1 − 1 ,
πwλ (h2) = 2x∂x − y∂y + z∂z + λ2 + 2 .

The vector 1 ∈ C[∂x, y, z] has the weight λ = (λ1, λ2). In the partial Fourier dual
picture of the representation, g acts on C[ξx, y, z] by

π̂wλ (f1) = −z(−ξx∂ξx + y∂y + z∂z − λ1)
+ 1

2y
(
− ξx∂ξx − y∂y − 1

2y∂ξx∂z + 2λ2 + λ1 + 1
)
∂ξx ,

π̂wλ (f2) = −ξx + 1
2y∂z,

π̂wλ (f12) = ξxz − y(y∂y + 1
2z∂z − λ1 − λ2 − 1

2 )− 1
2y(ξx + 1

2y∂z)∂ξx ,
π̂wλ (e1) = ∂z,

π̂wλ (e2) = z∂y + (ξx∂ξx − 1
2z∂z − λ2)∂ξx + 1

2y(∂y + 1
2∂z∂ξx)∂ξx ,

π̂wλ (e12) = ∂y − 1
2∂ξx∂z,

π̂wλ (h1) = ξx∂ξx − y∂y − 2z∂z + λ1,

π̂wλ (h2) = −2ξx∂ξx − y∂y + z∂z + λ2.

2.4. Twisted Verma modules for w = s1s2s1. For w = s1s2s1, we have Iw =
(∂x, ∂y, ∂z), Mw

g (λ) ' C[x, y, z], and

(2.17) πw(λ1,λ2) = π(−λ2−1,−λ1−1) ◦Ad(ẇ−1)

since w−1(λ+ ρ) = w−1(λ1 + 1, λ2 + 1) = (−λ2− 1,−λ1− 1) for λ = λ1ω1 + λ2ω2.
Due to

(2.18)
Ad(ẇ−1)(e1) = −f2, Ad(ẇ−1) = f12, Ad(ẇ−1)(e2) = −f1,

Ad(ẇ−1)(f1) = −e2, Ad(ẇ−1)(f12) = e12, Ad(ẇ−1)(f2) = −e1,

Ad(ẇ−1)(h1) = −h2, Ad(ẇ−1)(h2) = −h1,

we obtain
πwλ (f1) = −y2∂y + (z + 1

2xy)∂x + ( 1
4xy

2 − 1
2yz)∂z + λ1y ,

πwλ (f2) = −x2∂x − (z − 1
2xy)∂y − ( 1

4x
2y + 1

2xz)∂z + λ2x ,
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πwλ (f12) = (xz + 1
2x

2y)∂x + (yz − 1
2xy

2)∂y + (z2 + 1
4x

2y2)∂z − (λ1 + λ2)z
+ 1

2 (λ1 − λ2)xy ,
πwλ (e1) = ∂y + 1

2x∂z ,

πwλ (e2) = ∂x − 1
2y∂z ,

πwλ (e12) = −∂z ,
πwλ (h1) = x∂x − 2y∂y − z∂z + λ1 ,

πwλ (h2) = −2x∂x + y∂y − z∂z + λ2 .

The vector 1 ∈ C[x, y, z] has the weight λ = (λ1, λ2).

3. Outlook and open questions

Let us finish by mentioning that many properties of (untwisted) Verma modules
are not known for twisted Verma modules. For example, it is not clear which
twisted Verma modules are over U(g) generated by one element. It is also desirable
to understand when a given twisted Verma module Mw

g (λ) belongs to a parabolic
Bernstein-Gelfand-Gelfand category Op associated to a parabolic subalgebra p ⊂ g.
This is a non-trivial task, because the choice of p heavily depends on the twisting
w ∈ W . Another question is related to the realization of twisted Verma modules
on Schubert cells – as for sl(3,C) there are six of them, but there exist altogether
eight possibilities for an ideal defined by annihilating condition for three variables
out of the collection x, ∂x, y, ∂y, z, ∂z. What are the isomorphism classes of the
remaining two sl(3,C)-modules?
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