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BRANCHING PROBLEMS AND sl(2,C)-ACTIONS

Pavle Pandžić and Petr Somberg

Abstract. We study certain sl(2,C)-actions associated to specific examples
of branching of scalar generalized Verma modules for compatible pairs (g, p),
(g′, p′) of Lie algebras and their parabolic subalgebras.

1. Introduction

The notion of composition series or branching rules for geometrically realized
algebraic objects of representation theoretical origin, lies at the heart of many pro-
blems on the intersection of representation theory, algebraic analysis and differential
geometry.

The present letter attempts to address several concrete questions belonging
to this line of research, originating in the series of articles [6], [5], [7]. Namely,
motivated by questions in differential geometry and harmonic analysis on differential
invariants associated to pairs of generalized flag manifolds, a constructive method
(the F-method) was developed there. It is based on algebraic analysis applied
to generalized Verma modules, realized as D-modules on the point orbit of the
nilpotent group on the generalized flag manifold. The methods of algebraic analysis,
which replace the standard combinatorial approach, allow to find the singular
vectors responsible for the composition structure of generalized Verma modules in
a striking way. In many cases, the factorization identities yield the answer not only
in the Grothendieck group of the Bernstein-Gelfand-Gelfand category Op(g), but
also allow to recognize the composition structure and the extension classes.

In the present note we discuss several questions left untouched in [6], [5]. To
describe these questions, we first introduce some notation. Let g be a simple Lie
algebra and let p ⊂ g be a parabolic subalgebra. Let (g′, p′), (g, p) be a compatible
pair of Lie algebras and their parabolic subalgebras with g′ ⊂ g, p′ ⊂ p. Let n,
respectively n′, be the nilradical of p and p′, respectively.

We focus on the role of the generators of the complement of n′ in n. As we shall
see in our two examples, each of them is characterized by the one dimensional
quotient n/n′, the root vector generating this complement acts on the space of
g′-singular vectors. We shall observe in one of these examples that there is moreover
a sl(2,C)-module structure on the space of g′-singular vectors, but the action of
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the opposite root space does not directly follow from any representation theoretical
construction.

The article is organized as follows. In the beginning of Section 2 we review some
basic notation, and we pass to the two examples – one is given by the Hermitean
symmetric space associated to the first node of the Dynkin diagram of an orthogonal
Lie algebra, and the second example is the Lie algebra sl(2,R) diagonally embedded
in sl(2,R) ⊕ sl(2,R). As we already mentioned, in the first example we find an
sl(2,C)-module structure on the set of g′-singular vectors which allows detailed
analysis related to the structure of composition series. In Section 3, we pass to
a natural question on the relative Lie algebra or Dirac cohomology associated to
our branching problem, which does not seem to be discussed in the literature. We
finish the letter by several useful conventions and formulas related to Gegenbauer
and Jacobi polynomials, which realize the g′-singular vectors in the examples of
Section 2.

2. Main examples

We shall start with a brief review of several basic notions, relying on the
conventions in [6], [5].

We denote by g, p, l, n, n− a real simple Lie algebra, its parabolic subalgebra,
the Levi factor and the nilradical of the parabolic subalgebra, and the opposite
(negative) nilradical. There is an isomorphism of vector spaces g ' n−⊕p ' n−⊕l⊕n.
The connected and simply connected groups corresponding to these Lie algebras
are denoted by G, P , L, N , N−.

The g-modules we consider are the scalar generalized Verma modules, geome-
trically realized by D-modules supported at the closed orbit eP of the nilpotent
group N on the generalized flag manifold G/P . These modules are then identified
by distribution Fourier transform with the underlying vector space of the polyno-
mial algebras in Fourier dual variables ξi, i = 1, · · · ,dimR(n−). We can consider
another collection of Lie algebras g′, p′, l′, n′, n′− with the same properties as in
the un-primed case, such that g′ ⊂ g induces the primed to un-primed inclusions
for all the other Lie subalgebras. The compatibility of the two collections through
the compatible grading of p′ and p realized by the adjoint action of the grading
element in l′ is also required.

The g′-singular vectors in Mg
p (λ) describe the generators of g′-submodules in the

Grothendieck group K(Op′) of the Bernstein-Gelfand-Gelfand parabolic category
Op′ , and consequently determine its g′-composition structure. They are the solution
spaces of the system of partial differential equations corresponding to the action of
n′ by differential operators on C[ξ1, . . . , ξdimR(n−)].

In the two examples of our interest, the g′-singular vectors are the Gegenbauer
and Jacobi polynomials, respectively. Our main concern in these simple (but repre-
sentative) examples is the action of the generator of n/n′ on the span of g′-singular
vectors and its consequences, e.g. a lift of its structure to a sl(2,C)-structure. We
construct such a lift in one of our examples, but at the cost of having to leave the
setting of the universal enveloping algebra U(g).



BRANCHING PROBLEMS AND sl(2,C)-ACTIONS 333

This raises a representation theoretical question whether, say even for the
Hermitean symmetric spaces (g, p) characterized by parabolic subalgebras p with
commutative nilradical, the action of elements in n/n′ on the U(l′)-submodule
Ker(n′) ⊂ Mg

p (λ) of a generalized Verma module can be lifted to a non-trivial
action of a bigger subalgebra in the Weyl algebra on the opposite nilradical n.
We do not know the answer to this question, and the present article is a modest
attempt to get an elementary insight into some of its aspects.

Throughout the article we use the notation 〈 , 〉 for the linear span of a subset of
a vector space, U applied to an algebra denotes its universal enveloping algebra,
and N0 the set of natural integers including 0.

2.1. The pair of Lie algebras (so(n+1, 1,R), so(n, 1,R)) and the Gegenbauer
polynomials. Let us consider the case of compatible pair of Lie algebras

(1)
g = so(n+ 1, 1,R), p = (so(n,R)× R) n Rn ,
g′ = so(n, 1,R), p′ = (so(n− 1,R)× R) n Rn−1 ,

such that the opposite nilradicals are given by n′− ' Rn−1 ⊂ n− ' Rn, and the
one-dimensional complement of n′− in n− is generated by the lowest root space
of n− (i.e., the lowest root space of g.) In particular, the nilradicals n−, n

′
− are

commutative. The Iwasawa-Langlands decomposition of so(n+ 1, 1,R) is realized
by the block decomposition

(2)

 a Y 0
X A −Y
0 −X −a

 , a ∈ R, A ∈ so(n,R), Y ∈ n, X ∈ n−.

Let us consider the family of scalar generalized Verma g-modules Mg
p (λ) induced

from complex characters ξλ : p→ C, λ ∈ C. The branching problem for the pair
g, g′ applied to this class of modules was solved in [6], and we have

Mg
p (λ)|(g′,p′) '

∞⊕
j=0

Mg′

p′ (λ− j)(3)

in the Grothendieck group K(Op′) of the BGG parabolic category Op′ . In what
follows we construct an sl(2,C)-module structure on g′-singular vectors (the gene-
rators of the g′-modules on the right hand side of (3)) in the family of g-modules
Mg

p (λ).
Let Cαl (x) be the l-th Gegenbauer polynomial in the variable x with spectral

parameter α ∈ C, l ∈ N0; we also set Cα−1(x) = 0. See the Appendix for basic
properties of Gegenbauer polynomials. The recurrence relations for Gegenbauer
polynomials imply

(4)
(
(1− x2)∂x + lx

)
Cαl (x) = (l + 2α− 1)Cαl−1(x) ,(

(1− x2)∂x − (l + 2α)x
)
Cαl (x) = −(l + 1)Cαl+1(x) .
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Lemma 2.1. Let α ∈ C, l ∈ N0, and let Deg be the degree operator acting on a po-
lynomial of degree l with the eigenvalue l. The linear operators {e(l), f(l), h(l))}l∈N0 ,

(5)
e(l) = (1− x2)∂x − (l + 2α)x : 〈Cαl (x)〉 → 〈Cαl+1(x)〉,
f(l) = (1− x2)∂x + lx : 〈Cαl (x)〉 → 〈Cαl−1(x)〉,
h(l) = 2(Deg + α) : 〈Cαl (x)〉 → 〈Cαl (x)〉

act on the vector space spanned by Gegenbauer polynomials {Cαl (x)}l∈N0 and furnish
it with the structure of a lowest weight sl(2,C)-module.

Proof. By direct computation, we have for l ∈ N0:

(6)

Cαl (x) = (e(l − 1)f(l)− f(l + 1)e(l))Cαl (x)
= 2(l + α)Cαl (x) = h(l)Cαl (x),

and [h, e]Cαl (x) = (h(l + 1)e(l)− e(l)h(l))Cαl (x)
= 2e(l)Cαl (x) .

The same computation applies to the commutator [h, f ]. Notice that the collection
of all e(l) defines an operator e, and the same for h and f . �

Let us now briefly review the relation of the set of singular vectors generating
the g′-submodules on the right hand side of (3) to Gegenbauer polynomials, [6].
Denoting by ξ1, . . . , ξn−1, ξn the Fourier transforms of the root spaces in n− such
that ξ1, . . . , ξn−1 correspond to n′−, Mg

p (λ) ' C[ξ1, . . . , ξn−1, ξn] as a vector space
and the g′-singular vectors are given by homogeneous polynomials

F̃l(ξ1, . . . , ξn−1, ξn) = ξlnC̃
α
l (−t−1) ,

where l ∈ N0 denotes the homogeneity of the polynomial, α = −λ − n−1
2 , t =

1
ξ2
n

n−1∑
j=1

ξ2
j and C̃αl (−t−1) is defined as follows: due to the fact that x−lCαl (x) is an

even rational function, we define x−lCαl (x) = C̃αl (x2) = C̃αl (−t−1) with x2 = −t−1.
The space of all singular vectors is exhausted by l ∈ N0.

Example 2.2. In what follows we use the normalized singular vectors Fl(ξ1, . . . ,

ξn−1, ξn), whose coefficient by the highest power of the quadratic invariant
n−1∑
i=1

ξ2
i

is λ-independent:

(7)

F0(ξ1, . . . , ξn−1, ξn) = 1 ,
F1(ξ1, . . . , ξn−1, ξn) = ξn ,

F2(ξ1, . . . , ξn−1, ξn) = −(2λ+ n− 3)ξ2
n +

n−1∑
i=1

ξ2
i ,

F3(ξ1, . . . , ξn−1, ξn) = −(2λ+ n− 5)ξ3
n + 3ξn

n−1∑
i=1

ξ2
i ,
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and so

(8)

C̃α0 (−t−1) = 1 ,
C̃α1 (−t−1) = 2α ,
C̃α2 (−t−1) = α

(
t+ 2(1 + α)

)
,

C̃α3 (−t−1) = 2
3α(α+ 1)

(
3t+ 2(2 + α)

)
,

where the Gegenbauer polynomials are

(9)

Cα0 (x) = 1 ,
Cα1 (x) = 2αx ,
Cα2 (x) = −α+ 2α(1 + α)x2 ,

Cα3 (x) = −2α(1 + α)x+ 4
3α(1 + α)(2 + α)x3 .

The relation between Cαl (x) and C̃αl (−t−1) implies that the operator identities
in (4) transform in the variable t into

(10)
(
− 2(t+ 1)∂t + l

)
C̃αl (−t−1) = (l + 2α− 1)C̃αl−1(−t−1) ,(

2t(t+ 1)∂t − lt− 2(l + α)
)
C̃αl (−t−1) = −(l + 1)C̃αl+1(−t−1) .

The proof of the following claim is an elementary consequence of the commutativity
of the nilradical n.

Lemma 2.3. Let �ξ =
n∑
i=1

∂2
ξi

, Eξ =
n∑
i=1

ξi∂ξi , α = −λ − n−1
2 , l ∈ N0. Then the

root space in n/n′ acts on the generalized Verma module Mg
p (λ) by the operator

P (λ) ≡ Pn(λ) = i( 1
2ξn�

ξ + (λ− Eξ)∂ξn), and descends to the map
P (λ) : 〈Fl(ξ1, . . . , ξn−1, ξn)〉 → 〈Fl−1(ξ1, . . . , ξn−1, ξn)〉.

In the variable t, P (λ) acts by the operator(
− 2(t+ 1)∂t + l

)
: 〈C̃αl (−t−1)〉 → 〈C̃αl−1(−t−1)〉.(11)

Let us notice that due to the fact that the annihilator ideal of g′-singular vectors
in the algebraic Weyl algebra on Cn is rather large, there is a plenty of algebraic
differential operators inducing linear action on the vector space of g′-singular
vectors (e.g., the same as the operator P (λ).) In general, we can not expect to get
sl(2,C)-actions staying entirely inside U(g). We show an example demonstrating
this phenomenon that comes as close to this as possible but still fails by considering
the operator

Q(λ) : =
( n−1∑
i=1

ξ2
i

)(1
2ξn�

ξ + (λ− Eξ)∂ξn
)

− (λ− Eξ + 2)(n+ 2λ− 2Eξ + 1)ξn ,(12)
which induces an action on singular vectors Fl(ξ1, . . . , ξn), l ∈ N0,
(13) Q(λ) : 〈Fl(ξ1, . . . , ξn)〉 → 〈Fl+1(ξ1, . . . , ξn)〉 .
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In particular, we have

(14)

Q(λ)(1) = −(λ+ 1)(n+ 2λ− 1)ξn ,

Q(λ)(ξn) = λ
(( n−1∑

i=1
ξ2
i

)
− (n+ 2λ− 3)ξ2

n

)
,

Q(λ)
(( n−1∑

i=1
ξ2
i

)
− (n+ 2λ− 3)ξ2

n

)
= −(λ− 1)(n+ 2λ− 3)

×
(

3ξn
( n−1∑
i=1

ξ2
i

)
− (n+ 2λ− 5)ξ3

n

)
,

Q(λ)
(

3ξn
( n−1∑
i=1

ξ2
i

)
− (n+ 2λ− 5)ξ3

n

)
= (λ− 2)

(
3
( n−1∑
i=1

ξ2
i

)2

− 6(n+2λ−5)ξ2
n

( n−1∑
i=1

ξ2
i

)
+ (n+2λ− 7)(n+2λ− 5)ξ4

n

)
.

Notice that the operator Q(λ) is an element of the universal enveloping algebra
U(g). A disadvantage of Q(λ) is that the pair of operators P (λ), Q(λ) together
with the homogeneity operator do not close in an sl(2,C)-algebra realized in U(g).
A straightforward but tedious computation shows[1

2ξn�
ξ + (λ− Eξ)∂ξn , Q(λ)

]
= −1

2(4λ+ 10 + 2Eξ)ξ2
n�

ξ

+ [(2Eξ + n− 3)(λ+ 1− Eξ) + (λ− Eξ + 2)(n+ 2λ+ 1− 2Eξ)

− (λ− Eξ)(n+ 4λ+ 3− 4Eξ)− (n+ 4λ+ 7 + 4Eξ)]ξn∂ξn

−
(( n−1∑

i=1
ξ2
i

)
+ ξ2

n

)
(ξn∂ξn + 1)�ξ − 2(λ+ 1− Eξ)

(( n−1∑
i=1

ξ2
i

)
+ ξ2

n

)
∂2
ξn

− (λ− Eξ)
[
(λ− Eξ + 2)(n+ 2λ+ 1− 2Eξ)− (n+ 4λ+ 3− 4Eξ)

]
,(15)

where the operator on the right hand side of the last equality does not act in the
algebraic Weyl algebra on Cn as a multiple of identity on both P (λ) and Q(λ).

In what follows we construct two operators in the variables ξ1, . . . , ξn, which
are not the elements of U(g), but they fulfill sl(2,C)-commutation relations when
their action is restricted to the set of g′-singular vectors in Mg

p (λ).

Theorem 2.4. Let l ∈ N0. Then the collection of operators {eξ(l), fξ(l), hξ(l)}l∈N0

in the variables ξ1, . . . , ξn,

(16)

eξ(l) := −
( n∑
i=1

ξ2
i

)
∂ξn− (l+2α)ξn : 〈Fl(ξ1, . . . , ξn)〉 → 〈Fl+1(ξ1, . . . , ξn)〉 ,

fξ(l) := 1
ξn

( (
∑n
i=1 ξ

2
i )

(
∑n−1
i=1 ξ

2
i )

(ξn∂ξn − l) + l
)

: 〈Fl(ξ1, . . . , ξn)〉

→ 〈Fl−1(ξ1, . . . , ξn)〉 ,

hξ(l) := 2(l + α) Id: 〈Fl(ξ1, . . . , ξn)〉 → 〈Fl(ξ1, . . . , ξn)〉 ,
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fulfill the sl(2,C)-commutation relations, and Fl(ξ1, . . . , ξn), l ∈ N0, are the one-di-
mensional weight spaces of a highest weight sl(2,C)-Verma module.

Proof. Let f = f(ξ1, . . . , ξn), l ∈ N0, and t = 1
ξ2
n

n−1∑
i=1

ξ2
i . We have

∂ξn(ξ−ln f) = −lξ−l−1
n f + ξ−ln ∂ξnf ,

and

∂t = − ξ3
n

2(
n∑
i=1

ξ2
i )
∂ξn = ξ2

n

2ξi
∂ξi

for all i = 1, . . . , n− 1. By direct substitution for t, the first operator equals to

(17) ξl+1
n

(
2

(
n−1∑
i=1

ξ2
i )

ξ2
n

( (
n−1∑
i=1

ξ2
i )

ξ2
n

+ 1
)(

−ξ3
n

2(
n−1∑
i=1

ξ2
i )
∂ξn

)
− l

(
n−1∑
i=1

ξ2
i )

ξ2
n

− 2(α+ l)
)
ξ−ln ,

and standard manipulations give the required result eξ(l). Analogously, the second
operator is equal to

(18) ξl−1
n

(
− 2
( (

n−1∑
i=1

ξ2
i )

ξ2
n

+ 1
)(

−ξ3
n

2(
n−1∑
i=1

ξ2
i )
∂ξn

)
+ l

)
ξ−ln ,

and this gives fξ(l).
As for the sl(2,C)-commutation relations, it is again straightforward to check

that

fξ(l + 1)eξ(l)− eξ(l − 1)fξ(l) =

[
1
ξn

( (
n∑
i=1

ξ2
i )

(
n−1∑
i=1

ξ2
i )

(
ξn∂ξn − (l + 1)

)
+ (l + 1)

)]

◦
[
−
( n∑
i=1

ξ2
i

)
∂ξn − (l + 2α)ξn

]

−
[
−
( n∑
i=1

ξ2
i

)
∂ξn − (l − 1 + 2α)ξn

]
◦

[
1
ξn

( (
n∑
i=1

ξ2
i )

(
n−1∑
i=1

ξ2
i )

(ξn∂ξn − l) + l

)]
(19)

is equal to −hξ(l). The two remaining relations involving hξ(l) are the consequence
of the explicit formula for hξ(l) and the homogeneity of eξ(l), fξ(l).

Finally, the structure of sl(2,C)-Verma module is a consequence of sl(2,C)-com-
mutation relations and the action of eξ(l), fξ(l) and hξ(l) on the weight vectors
Fl(ξ1, . . . , ξn). �



338 P. PANDŽIĆ AND P. SOMBERG

Remark 2.5. The normalization of singular vectors Fl(ξ1, . . . , ξn), l ∈ N0, is
chosen in such a way that the action of particular basis elements eξ(l), fξ(l) produces
the constants:

F2l

−(2α+2l)
��

F2l+1

−1
��

2l+1

UU

F2l+2

(2l+2)(2α+2l+1)

UU

and their commutator gives the weight 2α+ 4l − 2.

The operator 1
2ξn�

ξ + (λ− Eξ)∂ξn does not have sl(2,C)-commutation relation
with eξ(l) := −(

∑n
i=1 ξ

2
i )∂ξn − (l + 2α)ξn. In fact, in the algebraic Weyl algebra

we have [
−
( n∑
i=1

ξ2
i

)
∂ξn − (Eξ − 1 + 2α)ξn,

1
2ξn�

ξ + (λ− Eξ)∂ξn
]

=− 1
2

( n−1∑
i=1

ξ2
i

)
�ξ −

( n−1∑
i=1

ξ2
i

)
∂ξn∂ξn + 1

2ξ
2
n�

ξ

+ (n+ λ+ Eξ)ξn∂ξn + (Eξ + 2α)(λ− Eξ) .(20)
Notice that the operator fξ(l) introduced in (16) does not belong to the universal

enveloping algebra U(g), but rather to its localization with respect to the subalgebra
of invariants in U(n−) with respect to the simple part of the Levi factor l′.

Let us finally examine the action of the sl(2,C)-Casimir operator on g′-singular
vectors. Recall that for the Lie algebra sl(2,C) generated by elements e, f, h with
commutation relations [e, f ] = h, [h, e] = 2e and [h, f ] = −2f , the Casimir operator
is Cas = ef + fe+ 1

2h
2.

Theorem 2.6. (1) The Casimir operator of the Lie algebra sl(2,C) realized by
eξ(l), fξ(l), hξ(l), l ∈ N0, is

(21)

Cas : = fξ(l + 1)eξ(l) + eξ(l − 1)fξ(l) + 1
2h

2
ξ(l)

= −2
(
n∑
i=1

ξ2
i )2

(
n−1∑
i=1

ξ2
i )
∂2
ξn − 2(2α+ 1)

(
n∑
i=1

ξ2
i )

(
n−1∑
i=1

ξ2
i )
ξn∂ξn

− 2
α(
n−1∑
i=1

ξ2
i )− l(l + 2α)ξ2

n

(
n−1∑
i=1

ξ2
i )

+ 2(Eξ + α)2

when acting on Fl(ξ1, . . . , ξn).
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(2) The Casimir operator Cas acts by 2α(α − 1)-multiple of identity on the
sl(2,C)-Verma module with weight spaces {〈Fl(ξ1, . . . , ξn)〉}l∈N0 .
Proof. We have

Cas = fξ(l + 1)eξ(l) + eξ(l − 1)fξ(l) + 1
2h

2
ξ(l)

=
[

1
ξn

( (
n∑
i=1

ξ2
i )

(
n−1∑
i=1

ξ2
i )

(
ξn∂ξn−(l+1)

)
+(l+1)

)]
◦
[
−
( n∑
i=1

ξ2
i

)
∂ξn−(l+2α)ξn

]

+
[
−
( n∑
i=1

ξ2
i

)
∂ξn − (l − 1 + 2α)ξn

]
◦

[
1
ξn

( (
n∑
i=1

ξ2
i )

(
n−1∑
i=1

ξ2
i )

(ξn∂ξn − l) + l

)]

+ 1
2
(
− 2(Eξ + α)

)2
.(22)

Expanding the compositions and recollecting all terms according to the power of
∂ξn , we arrive at (21). As for the proof of the second claim, it follows from

Cas(1) = (−2α+ 2α2)1 = 2α(α− 1)1 .
The proof is complete. �

2.2. The pair of Lie algebras (sl(2,R)×sl(2,R),diag(sl(2,R))) and the Jacobi
polynomials. Let us consider the pair of compatible Lie algebras and their Borel
subalgebras,

g = sl(2,R)× sl(2,R) , g ⊃ b = (R× R) n (R× R) ,

g′ = diag
(
sl(2,R)

)
, g′ ⊃ b′ = diag

(
(R× R) n (R× R)

)
,

such that n′− ⊂ n− (dimR(n−) = 2,dimR(n′−) = 1) and its one dimensional
complement is denoted by F . In particular, the nilradicals n−, n

′
− are commutative

and X denotes the generator of n′−.
Let us consider the family of scalar Verma g-modules Mg

p (λ, µ), induced from
complex characters ξλ,µ : b → C with λ, µ ∈ C. The branching of scalar Verma
modules for the pair (g, b) and (g′, b′) is given by

Mg
p (λ, µ)|(g′,p′) '

∞⊕
j=0

Mg′

p′ (λ+ µ− 2j)(23)

in the Grothendieck group K(O(g)) of the BGG category O(g).
In [5], the generators of g′-submodules generating the summands on the right

hand side of (23) are determined and the non-trivial composition structure related
to factorization properties of Jacobi polynomials is discussed in the non-generic
case λ+ µ ∈ N0. Here we restrict to the case λ, µ /∈ N0. For ν ∈ N0, we define (see
[4, Chapter 3]) a g′-module P g′

b′ (ν) as the non-split extension

(24) 0→Mg′

b′ (ν)→ P g′

b′ (ν)→Mg′

b′ (−ν − 2)→ 0.
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We introduce an involution

ι : C→ C, ν 7→ −ν − 2 .

and for N ∈ N0 set

Λ ≡ Λ(N) := {N − 2l : l ∈ N0} ,
Λs ≡ Λs(N) := {N − 2l : l ∈ N0, 2l ≤ λ+ µ},
Λr ≡ Λr(N) := Λ \ (Λs ∪ ι(Λs))

=
{
{−1} ∪ {−N,−N − 2,−N − 4, . . . } (N : even) ,
{−N,−N − 2,−N − 4, . . . } (N : odd) .

Theorem 2.7. [5] Suppose that λ + µ ∈ N0 with λ, µ /∈ N0, i.e., the scalar
Verma modules Msl(2,R)

b′ (λ) resp. Msl(2,R)
b′ (µ) are irreducible g′-modules. Then the

tensor product of two scalar Verma modules Msl(2)
b′ (λ)⊗Msl(2)

b′ (µ) decomposes as
diag(sl(2,R)) ' sl(2,R)-module

(25)
⊕

ν∈Λr(λ+µ)

M
sl(2)
b′ (ν) ⊕

⊕
ν∈Λs(λ+µ)

P
sl(2)
b′ (ν) .

Here P sl(2)
b′ (ν) are the projective objects defined in (24).

It is straightforward to see that the generator X of n′+ acts in the non-compact
model of the representation C∞(n−,Cλ,µ), induced from the character (λ, µ) of b
on the 1-dimensional vector space Cλ,µ ' C, by the first order differential operator

(26) dπ(X) = λx+ x2∂x + µy + y2∂y .

The action on the scalar Verma module, induced from the dual representation
to Cλ,µ and realized in the Fourier dual picture, results into the second order
differential operator

(27) dπ̃(X) = i(−λ∂ξ + ξ∂2
ξ − µ∂η + η∂2

η)

acting on polynomial algebra C[ξ, η]. As a g-module, C[ξ, η] can be identified with
the Verma module induced from the dual representation to Cλ,µ. Analogously, the
generator F of n+/n

′
+ acts on C∞(n−,Cλ,µ) and C[ξ, η] by differential operators

dπ(F ) = λx+ x2∂x − µy − y2∂y(28)

and

dπ̃(F ) = i(−λ∂ξ + ξ∂2
ξ + µ∂η − η∂2

η) ,(29)

respectively. The Levi factor l ⊂ b contains the Euler homogeneity operator and the
operator dπ̃(X) preserves the space of homogeneous polynomials. We define t = ξ

η

and write a homogeneous polynomial as ηlQ(t) for some polynomial Q = Q(t) of
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degree l. We easily compute

(30)

∂ξ
(
ηlQ(t)

)
= ηl−1Q′(t) ,

∂η
(
ηlQ(t)

)
= ηl−1lQ− ξηl−2Q′(t) ,

∂2
ξ

(
ηlQ(t)

)
= ηl−2Q′′(t) ,

∂2
η

(
ηlQ(t)

)
= ηl−2l(l − 1)Q(t)− 2(l − 1)ξηl−3Q′(t) + ξ2ηl−4Q′′(t) .

The substitution into (27) resp. (29) yields the differential equation consisting of
polynomials ηlQ( ξη ), where Q(t) is a polynomial solution to

(31) [t(t+ 1)∂2
t + (t(µ− 2(l − 1))− λ)∂t + l(l − 1− µ)]Q(t) = 0 ,

resp. the differential equation representing the action of F ∈ n+/n
′
+:

(32) − t(t− 1)∂2
t + (t(2l − µ− 2)− λ)∂t + l(µ− l + 1) .

The ordinary second order hypergeometric differential equation (31) is the Jacobi
differential equation, and its polynomial solutions are the Jacobi polynomials:

Theorem 2.8 ([5]). Let Pα,βl (x) denote the degree l polynomial solution of the Ja-
cobi hypergeometric equation (44), see (42). Let us define homogeneous polynomials
P̃−λ−1,µ+λ−2l+1
l (ξ, η) by

(33) P̃−λ−1,µ+λ−2l+1
l (ξ, η) := ηlP−λ−1,µ+λ−2l+1

l

(2ξ
η

+ 1
)

for all l ∈ N0. Then for any λ, µ ∈ C,

(34)
∞⊕
l=0

〈
P̃−λ−1,µ+λ−2l+1
l

〉
is the complete set of polynomial solutions of (27) representing the singular vectors
in the Fourier dual picture.

By abuse of notation, we denote by dπ̃(X), dπ̃(F ) the two mutually commuting
operators acting on degree l-polynomials in the non-homogeneous variable t:

(35)
dπ̃(X) := t(t+ 1)∂2

t + (t(µ− 2(l − 1))− λ)∂t + l(l − 1− µ) ,

dπ̃(F ) := −t(t− 1)∂2
t + (t(2l − µ− 2)− λ)∂t + l(µ− l + 1) .

Theorem 2.9. Let Pα,βl (x) be the Jacobi polynomial of degree l ∈ N0 and

dπ̃(X)(P−λ−1,µ+λ−2l+1
l (2t+ 1)) = 0

for x = 2t+ 1. Then

(36) dπ̃(F )
(
P−λ−1,µ+λ−2l+1
l (2t+ 1)

)
= 2(l − 1− λ)(µ− l + 1)P−λ−1,µ+λ−2l+3

l−1 (2t+ 1) ,
i.e., dπ̃(F ) maps the homogeneity l polynomial solution of the Jacobi differential
equation dπ̃(X) to (a multiple depending on α, β of) the homogeneity (l − 1)
polynomial solution of the Jacobi differential equation.



342 P. PANDŽIĆ AND P. SOMBERG

Proof. We first observe that
l∑
i=0

alit
i is the degree l Jacobi polynomial in the

variable t provided the recursion relations[
i(i− 2l + µ+ 1) + l(l − µ− 1)

]
ali + (i− λ)(i+ 1)ali+1 = 0(37)

are satisfied for all i = 0, . . . , l. The operator dπ̃(F ) maps the degree l Jacobi
polynomial to the space of polynomials of degree (l − 1). The reason is that the
coefficient of the monomial tl in dπ̃(F )(P−λ−1,µ+λ−2l+1

l (2t+ 1)) is equal to

−l(l − 1) + l(2l − µ− 2) + l(µ− l + 1) = 0 .

In particular, we have

dπ̃(F )
(
P−λ−1,µ+λ−2l+1
l (2t+ 1)

)
=

l∑
i=0

[
2i(−i+ 2l − µ− 1) + 2l(µ− l + 1)

]
alit

i

for i = 0, . . . , l−1, and it remains to prove that this polynomial is, up to a multiple,
the degree (l − 1) Jacobi polynomial. Assuming the recursion relation (37) holds,
we prove that [2i(−i+ 2l−µ− 1) + 2l(µ− l+ 1)]ali are the coefficients of the degree
l − 1 Jacobi polynomial (see again (37)):[
i(i− 2l + µ+ 3) + (l − 1)(l − µ− 2)

][
2i(−i+ 2l − µ− 1) + 2l(µ− l + 1)

]
ali

=− (i− λ)(i+ 1)
[
2(i+ 1)(−i+ 2l − µ− 2) + 2(µ− l + 1)

]
ali+1 .(38)

However, the last equality is equivalent to[
i(i− 2l+ µ+ 3) + (l− 1)(l− µ− 2)

]
= −

[
(i+ 1)(−i+ 2l− µ− 2) + l(µ− l+ 1)

]
,

which is easy to verify and the claim follows.
It remains to compute the explicit polynomial in λ, µ as a coefficient of the

proportionality. By definition,

all = 1
l!µ(µ− 1) . . . (µ− l + 2)(µ− l + 1) ,

al−1
l−1 = 1

(l − 1)!µ(µ− 1) . . . (µ− l + 2) ,

and so we get for i = l − 1

dπ̃(F )
( l∑
i=0

alit
i
)

= 2µal−1
l tl−1 + · · · .

Because −µal−1
l = −l(l − 1− λ)all, a direct comparison yields the required form

2(l−1−λ)(µ− l+1) of the coefficient of proportionality. The proof is complete. �
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Example 2.10. Let us present a first few low degree polynomials:

P−λ−1,µ+λ+1
0 (2t+ 1) = 1 ,

P−λ−1,µ+λ−1
1 (2t+ 1) = µt− λ ,

P−λ−1,µ+λ−3
2 (2t+ 1) = −1

2
[
µ(1− µ)t2 + 2(1− µ)(1− λ)t+ λ(1− λ)

]
,

P−λ−1,µ+λ−5
3 (2t+ 1) = 1

6
[
µ(1− µ)(2− µ)t3 + 3(2− µ)(µ− 1)(2− λ)t2

+ 3(2− µ)(1− λ)(2− λ)t+ λ(2− λ)(1− λ)
]
.

It is straightforward to check

dπ̃(F )
(
P−λ−1,µ+λ−1

1 (2t+ 1)
)

= −2λµP−λ−1,µ+λ+1
0 (2t+ 1) ,

dπ̃(F )
(
P−λ−1,µ+λ−3

2 (2t+ 1)
)

= −2(λ− 1)(µ− 1)P−λ−1,µ+λ−1
1 (2t+ 1) ,

dπ̃(F )
(
P−λ−1,µ+λ−5

3 (2t+ 1)
)

= −2(λ− 2)(µ− 2)P−λ−1,µ+λ−3
2 (2t+ 1) .

We remark that because of the assumption of irreducibility, λ, µ /∈ N0, the
coefficients of proportionality (2(l− 1−λ)(µ− l+ 1)) are non-zero. In this example
we do not attempt to construct the complete sl(2,C)-structure on the space of
g′-singular vectors.

3. Relative Lie and Dirac cohomology and g′-singular vectors

The Lie algebra (co)homology or the Dirac cohomology associated to a Lie
algebra and its modules are among important algebraic invariants with applications
in representation theory, see [8], [1], [2].

In fact, the two examples in Section 2, Section 3 are motivated by the following
general problem. Let us consider the short exact sequence of pairs of Lie algebras
and their parabolic subalgebras:

0→ (g′, p′)→ (g, p)→ (g, p)/(g′, p′)→ 0(39)

and a g-module V . In our applications, g and g′ (g′ ⊂ g) are simple Lie algebras,
p ⊂ g and p′ ⊂ g′ their parabolic subalgebras (p is g′-compatible), and the vector
complements of p and p′ in g and g′ are the Lie algebras of the opposite nilradicals
n− and n′−.

Then the key question is an intrinsic definition of the relative Lie algebra
(co)differential or relative Dirac operator associated to compatible couples of Lie
algebras given by simple Lie algebra and its parabolic subalgebra, and their role in
the compatibility of the branching problem applied to g′ ⊂ g and the parabolic
BGG category Op(g).

Namely, for n− = n′−⊕(n−/n′−) with n′− the ideal in n, we would like to define the
relative Dirac operator such that the underlying relative Dirac cohomology functor
HD,rel(n−, n′−;−) abuts in a spectral sequence to the (g, p)-Dirac cohomology of
Mg

p (λ):

(40) HD

(
g, p;Mg

p (λ)
)

=⇒ HD,rel
(
n−, n

′
−, HD(g′, p′;Mg

p (λ)|g′)
)
.
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Here HD(g, p;Mg
p (λ)) was determined in [3] for irreducible generalized Verma

modules, while in the presence of non-trivial composition series the relevant higher
Dirac cohomology was constructed in [10].

We do not have an answer to the previous question, and the examples in Section
2.1, Section 2.2 clearly demonstrate the difficulties. To be more explicit, we shall
stick to the case discussed in Section 2.1 and assume that λ ∈ C is generic so that
Mg

p (λ) as well as Mg′

p′ (λ− j) are irreducible highest weight modules for all j ∈ N0.
Then the (g, p)-Dirac cohomology of the left hand side (3) equals to

HD

(
g, p,Mg

p (λ)
)
' Cλ ⊗ Cρ(n−) ,

while the (g′, p′)-Dirac cohomology of the right hand side of (3) is

HD

(
g′, p′,

∞⊕
j=0

Mg′

p′ (λ− j)
)
'
∞⊕
j=0

Cλ−j ⊗ Cρ(n′−) .

Here we used the notation ρ(n−) and ρ(n′−) for the half sum of roots of root
spaces in n− and n′−, respectively, and Cλ denotes the one dimensional inducing
representation of ξλ. Then the relative Dirac operator Drel

Drel(n−, n′−) := eξ ⊗ fξ + fξ ⊗ eξ ,(41)

based on Lemma 2.4 and the highest weight sl(2,C)-module with the action of
{eξ(l), fξ(l), hξ(l)}l∈N0 , computes the expected result.

However, this approach clearly fails for non-generic values of λ because the
sl(2,C)-module is no longer irreducible. Moreover, the construction (41) does not
intrinsically proceed in U(g).

4. Appendix: Jacobi and Gegenbauer polynomials

In the present section we summarize for the reader’s convenience a few basic
conventions and properties related to the Jacobi and Gegenbauer polynomials.

We use the notation Γ(z) for the Gamma function, z ∈ C, and the analytical
continuation of the binomial coefficient is given by(

z

l

)
:= Γ(z + 1)

Γ(l + 1)Γ(z − l + 1) ,
(
z

l

)
= 0 if l − z ∈ N and z 6∈ −N .

The Jacobi polynomials P (α,β)
l (z) of degree l ∈ N0 with two spectral parameters

α, β ∈ C are defined as special values of the hypergeometric function

P
(α,β)
l (z) =

(
l + α

l

)
2F1

(
−l, 1 + α+ β + l;α+ 1; 1− z

2

)
= Γ(α+ l + 1)
l!Γ(α+ β + l + 1)

n∑
m=0

(
l

m

)
Γ(α+ β + l +m+ 1)

Γ(α+m+ 1)

(
z − 1

2

)m

=
l∑

j=0

(
l + α

j

)(
l + β

l − j

)(
z − 1

2

)l−j (
z + 1

2

)j
,(42)
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normalized by

P
(α,β)
l (1) =

(
l + α

l

)
= (α+ 1)l

l! .

Here (α+ 1)l = (α+ 1)(α+ 2) · · · (α+ l) denotes the Pochhammer symbol for the
partially rising factorial. The Jacobi polynomials satisfy the orthogonality relations∫ 1

−1
(1− x)α(1 + x)βP (α,β)

k (x)P (α,β)
l (x) dx

= 2α+β+1

2l + α+ β + 1
Γ(l + α+ 1)Γ(l + β + 1)

Γ(l + α+ β + 1)l! δkl

for Re(α) > −1 and Re(β) > −1.
The k-th derivative of P (α,β)

l (x), k ∈ N0, is
dk

dxk
P

(α,β)
l (x) = Γ(α+ β + l + 1 + k)

2kΓ(α+ β + l + 1) P
(α+k,β+k)
l−k (x) .(43)

The Jacobi polynomials P (α,β)
l (x) are the polynomial solutions of the hypergeome-

tric differential equation(
(1− x2) d

2

dx2 + (β − α− (α+ β + 2)x) d
dx

+ l(l + α+ β + 1)
)

× P (α,β)
l (x) = 0 ,(44)

and specialize for α = β to the Gegenbauer polynomials fulfilling recurrence relation

Cαl (x) = 1
l

(
2x(l + α− 1)Cαl−1(x)− (l + 2α− 2)Cαl−2(x)

)
(45)

with Cα0 (x) = 1, Cα1 (x) = 2αx. The Gegenbauer polynomials are solutions of the
Gegenbauer differential equation

(46)
(

(1− x2) d
2

dx2 − (2α+ 1)x d

dx
+ l(l + 2α)

)
Cαl (x) = 0 ,

and are represented by finite hypergeometric series

Cαl (z) = (2α)l
l! 2F1

(
− l, 2α+ l;α+ 1

2; 1− z
2

)
.

More explicitly,

(47) Cαl (z) =
[l/2]∑
k=0

(−1)k Γ(l − k + α)
Γ(α)k!(l − 2k)! (2z)

l−2k ,

and their relation to the Jacobi polynomials is

Cαl (x) = (2α)l
(α+ 1

2 )l
P

(α−1/2,α−1/2)
l (x) .(48)
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