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WARD IDENTITIES FROM RECURSION FORMULAS

FOR CORRELATION FUNCTIONS

IN CONFORMAL FIELD THEORY

Alexander Zuevsky

Abstract. A conformal block formulation for the Zhu recursion procedure in
conformal field theory which allows to find n-point functions in terms of the
lower correlations functions is introduced. Then the Zhu reduction operators
acting on a tensor product of VOA modules are defined. By means of these
operators we show that the Zhu reduction procedure generates explicit forms
of Ward identities for conformal blocks of vertex operator algebras. Explicit
examples of Ward identities for the Heisenberg and free fermionic vertex
operator algebras are supplied.

1. Introduction

Algebraic methods in computation of the partition and n-point functions in
Conformal Field Theory/Vertex Operator Super Algebras proved their effectiveness.
The Zhu reduction formula allowing to express n+ 1-point correlation functions as
finite sums of n-point functions constitute the main algebraic tool for calculations.
In this paper we give a the Zhu recursion procedure formulation for chiral Ward
identities for corresponding conformal blocks for vertex operator algebras considered
on Riemann surfaces of genus g ≥ 0. First we recall the notion of a vertex operator
algebra, introduce correlation functions on Riemann surfaces, and review the Zhu
recursion formulas for correlation functions. Then we provide examples of explicit
Ward identities for the Heisenberg and free fermionic vertex operator algebras on
Riemann surfaces of genuses one and two. Finally an appropriate definition for
conformal blocks related to chiral vertex operator algebra correlation functions
is given. We then define the Zhu reduction operators generating Ward explicit
identities for corresponding conformal blocks.
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2. Vertex operator algebras

A vertex operator algebra (VOA) [3, 4, 5, 6, 11, 18] is determined by a quadruple
(V, Y,1, ω), where V is a linear space endowed with a Z-grading

V =
⊕
r∈Z

Vr ,

with dimVr < ∞. The state 1 ∈ V0, 1 6= 0, is the vacuum vector and ω ∈ V2 is
the conformal vector with properties described below. The vertex operator Y is a
linear map

Y : V → End(V )[[z, z−1]] ,
for formal variable z so that for any vector u ∈ V we have a vertex operator

Y (u, z) =
∑
n∈Z

u(n)z−n−1 .

The linear operators (modes) u(n) : V → V satisfy creativity

Y (u, z)1 = u+O(z) ,

and lower truncation
u(n)v = 0 ,

conditions for each u, v ∈ V and n� 0. For the conformal vector ω one has

Y (ω, z) =
∑
n∈Z

L(n)z−n−2 ,

where L(n) satisfies the Virasoro algebra for some central charge C

[L(m), L(n) ] = (m− n)L(m+ n) + C

12(m3 −m)δm,−nIdV ,

where IdV is identity operator on V . Each vertex operator satisfies the translation
property

Y (L(−1)u, z) = ∂zY (u, z) .
The Virasoro operator L(0) provides the Z-grading with

L(0)u = ru ,

for u ∈ Vr, r ∈ Z. Finally, the vertex operators satisfy the Jacobi identity

z−1
0 δ

(z1 − z2

z0

)
Y (u, z1)Y (v, z2)− z−1

0 δ
(z2 − z1

−z0

)
Y (v, z2)Y (u, z1)

= z−1
2 δ

(z1 − z0

z2

)
Y
(
Y (u, z0)v, z2

)
,

where δ
(
x
y

)
=
∑
r∈Z

xry−r. We use the formal expansion:

(z1 + z2)m =
∑
n≥0

(
m

n

)
zm−n1 zn2 ,
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i.e., for m < 0 we formally expand in the second parameter z2. These axioms imply
locality, skew-symmetry, associativity and commutativity conditions:

(z1 − z2)NY (u, z1)Y (v, z2) = (z1 − z2)NY (v, z2)Y (u, z1) ,(2.1)

Y (u, z)v = ezL(−1)Y (v,−z)u ,
(z0 + z2)NY (u, z0 + z2)Y (v, z2)w = (z0 + z2)NY (Y (u, z0)v, z2)w ,

u(k)Y (v, z)− Y (v, z)u(k) =
∑
j≥0

(
k

j

)
Y (u(j)v, z)zk−j ,(2.2)

for u, v, w ∈ V and integers N � 0 [5, 11]. For v = 1 one has
Y (1, z) = IdV .

Note also that modes of homogeneous states are graded operators on V , i.e., for
v ∈ Vk,

v(n) : Vm → Vm+k−n−1 .

In particular, let us define the zero mode o(v) of a state of weight wt(v) = k, i.e.,
v ∈ Vk, as

o(v) = v(wt(v)− 1) ,
extending to V additively. There is a number of equivalent sets of axioms for vertex
operator algebra theory. In [5, 6] Frenkel-Huang-Lepowsky have proven that one
can describe a vertex operator algebra by the set of all its correlation functions.

3. Correlation functions for vertex operator algebras

3.1. Matrix elements on the sphere. Let us first define matrix elements on
the sphere. Assume that our VOA is of CFT-type, i.e.,

V = C1⊕ V1 ⊕ . . . .
We define the restricted dual space of V by [5]

V ′ =
⊕
n≥0

V ∗n ,

where V ∗n is the dual space of linear functionals on the finite dimensional space
Vn with respect to the canonical pairing 〈·, ·〉 between V ′ and V . Define matrix
elements for v′ ∈ V ′, v ∈ V and n vertex operators Y (v1, z1), . . . , Y (vn, zn) by
(3.1) 〈v′, Y (v1, z1) . . . Y (vn, zn)v〉 .
In particular, choosing v = 1 and v′ = 1′ we obtain the n-point correlation function
on the sphere:

F
(0)
V (v1, z1; . . . ; vn, zn) = 〈1′, Y (v1, z1) . . . Y (vn, zn)1〉 .

Here the upper index of F (0)
V stands for the genus.

One can show in general that every matrix element is a homogeneous rational
function of z1, . . . , zn, [5]. Thus the formal parameters of VOA theory can be
replaced by complex parameters on (appropriate subdomains of) the genus zero
Riemann sphere CP1.
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We illustrate [15] this by considering matrix elements containing one or two
vertex operators. Recall that for u ∈ Vn,

u(k) : Vm → Vm+n−k−1 .

Hence it follows that for v′ ∈ V ′m′ , v ∈ Vm and u ∈ Vn we obtain a monomial

〈v′, Y (u, z)v〉 = Cuv′vz
m′−m−n ,

where
Cuv′v = 〈v′, u(m+ n−m′ − 1)v〉 .

Next consider the matrix element of two vertex operators. We then find in [5]
Theorem 1. Let v′ ∈ V ′m′ , v ∈ Vm, u1 ∈ Vn1 and u2 ∈ Vn2 . Then〈

v′, Y (u1, z1)Y (u2, z2)v
〉

= f(z1, z2)
zm+n1

1 zm+n2
2 (z1 − z2)n1+n2

,

〈
v′, Y (u2, z2)Y (u1, z1)v

〉
= f(z1, z2)
zm+n1

1 zm+n2
2 (−z2 + z1)n1+n2

,

where f(z1, z2) is a homogeneous polynomial of degree m+m′ + n1 + n2.
In general, let us recall the Proposition 3.5.1 of [5]:

Proposition 1. For v1, . . . , vn, v ∈ V , and v′ ∈ V ′, with any permutation of
(i1, . . . , in) of (1, . . . , n), the matrix element〈

v′, Y (ui1 , zi1) . . . Y (uin , zin)v
〉

is independent of the permutation can be expressed via a (uniquely determined)
function f(z1, . . . , zn) of the form

f(z1, . . . , zn) = g(z1, . . . , zn)
n∏
i=1

zrii
∏
j<k

(zj − zk)sjk
,

for some rational function g(z1, . . . , zn) in {z1, . . . , zn}, and ri, sjk ∈ Z.
3.2. Genus zero Zhu reduction. Using the vertex commutator property (2.2),
i.e.,

[u(m), Y (v, z)] =
∑
i≥0

(
m

i

)
Y (u(i)v, z) zm−i ,

one derives [26] a recursive relationship in terms of rational functions for n + 1
vertex operators and a finite sum of matrix elements for n vertex operators.

One has [26] the following
Lemma 1. For v1, . . . , vn ∈ V , and a homogeneous v ∈ V , we find

(3.2) 〈v′, Y (v1, z1) . . . Y (vn, zn)v〉

=
n∑
r=2

∑
m≥0

fwt(v1),m(z1, zr) 〈v′, Y (v2, z2) . . . Y (v1(m) vr, zr) . . . Y (vn, zn)v〉

+ 〈v′, o(v1) Y (v2, z2) . . . Y (vn, zn)v〉,
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where fwt(v1),m(z1, zr) are some rational functions.

3.3. Correlation functions on the torus. One would like to ask now for generali-
zations at higher genus. In order to consider modular-invariance of n-point functions
at genus one, Zhu introduced a second “square-bracket” VOA (V, Y [ , ],1, ω̃) asso-
ciated to a given VOA (V, Y ( , ),1, ω). The new square bracket vertex operators
are defined by a change of coordinates, namely

Y [v, z] =
∑
n∈Z

v[n]z−n−1 = Y
(
qL(0)
z v, qz − 1

)
,

with qz = ez, while the new conformal vector is ω̃ = ω − c
24 1. For v of L(0) weight

wt(v) ∈ R and m ≥ 0,

v[m] = m!
∑
i≥m

c(wt(v), i,m)v(i) ,

i∑
m=0

c(wt(v), i,m)xm =
(
wt(v)− 1 + x

i

)
.

In particular we note that

v[0] =
∑
i≥0

(
wt(v)− 1

i

)
v(i) .

At genus one, instead of matrix elements of the form (3.1), one considers [26]
(see also [13, 15, 17]) traces over corresponding vertex operator algebra. Vertex
operator algebra formal parameters are associated now with local coordinates
around insertion points on the torus. For v1, . . . , vn ∈ V the genus one n-point
function has the form:

(3.3) F
(1)
V (v1, z1; . . . ; vn, zn; τ)

= TrV
(
Y (qL(0)

1 v1, q1) . . . Y (qL(0)
n vn, qn) qL(0)−C/24) ,

for q = e2πiτ and qi = ezi , where τ is the torus modular parameter. Let us also
introduce an extra notation for the insertion of a state v ∈ V inside the trace in
(3.3)

F
(1)
V (v; v1, z1; . . . ; vn, zn; τ)

= TrV
(
v Y (qL(0)

1 v1, q1) . . . Y (qL(0)
n vn, qn) qL(0)−C/24) .

Then the genus one Zhu recursion formula is given by [26]

Theorem 2. For any v, v1, . . . , vn ∈ V we find for an n+ 1-point function

(3.4) F
(1)
V (v, z; v1, z1; . . . ; vn, zn; τ)

=
n∑
r=1

∑
m≥0

Pm+1(z − zr, τ) F (1)
V (v1, z1; . . . ; v[m]vr, zr; . . . ; vn, zn; τ)

+ F
(1)
V (o(v); v1, z1; . . . ; vn, zn; τ) .



352 A. ZUEVSKY

In this theorem Pm(z, τ) denote higher Weierstrass functions [19] defined by

Pm(z, τ) = (−1)m

(m− 1)!
∑
n∈Z6=0

nm−1qnz
1− qn .

The genus two version of the genus zero and one Zhu reduction procedure and the
formula (3.4) described in Lemma 1 and Theorem 2 are also available [8].

Let X be a smooth projective curve X over C and p1, . . ., pn an n-tuple of points
of X with local coordinates z1, . . ., zn. We consider the case when we have a finite
number n of irreducible modules for a vertex operator algebra V . We attach to this
points modules Mλi parameterized by complex parameters λi, i = 1, . . . , n (see for
instance [24] for the description of such a parameterization in case of the generalized
vertex operator algebra constructed as an extension of the Heisenberg subalgebra
by its irreducible modules). For vi ∈ V and a point pi we insert the vertex operator
Yλi(vi, zi) which belong to V -module Mλi with the formal parameter zi near pi.

4. Ward identities for vertex operator algebras: examples

4.1. Heisenberg vertex operator algebra on the torus. For the Heisenberg
vertex operator algebra M , the Zhu reduction gives all n-pt functions [15], and in
particular,

F
(1)
M (a, z1; a; z2; q) = P2(z1 − z2, τ) F (1)

M (q) ,

where P2(z, τ) = − d
dzP1(z, τ). Then,

F
(1)
M (ω̃, q) = 1

2 lim
x→y

(
F

(1)
M (a, z1; a, z2; q)− (z1 − z2)−2F

(1)
M (q)

)
= 1

2E2(q)F (1)
M (q) .

Thus one has an ordinary differential equation [8]:(
q∂q −

1
2E2(q)

)
F

(1)
M (q) = 0 .

Then the genus one partition function for the Heisenberg vertex operator algebra
is given by F (1)

M (q) = 1
η(q) .

For the Virasoro vector ω̃ = ω − C
24 one finds [13,15]

F
(1)
V (ω̃, q) = TrV

(
(L(0)− C/24) qL(0)−C/24) = q∂qF

(1)
V (q) .

For n primary vectors u1, . . . , un (i.e., satisfying L(n)u = 0, for all n ≥ 1), the Zhu
reduction gives the Ward identity [8] for the n+ 1-point function:

F
(1)
V (ω̃, x;u1, z1; . . . ;un, zn; q)

=
(
q∂q+

∑
1≤i≤n

(
P1(x−zi)∂zi +wt[ui] ∂ziP1(x−zi)

))
F

(1)
V (u1; z1; . . . ;un; zn; q) .
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4.2. Ward identity for Virasoro one point function of the Heisenberg
VOA. One can derive [8] the genus two Ward identities for the Heisenberg vertex
operator algebra. The genus two counterpart of the relation for the genus one
Virasoro one-point function

F
(1)
V (ω, q) = q

∂

∂q
F

(1)
V (q) ,

is given for ω̃ ∈ V[2] by the following expression [8]

F
(2)
V (ω̃, z) dz2 = DzF

(2)
V (q) ,

where

Dz =
3∑
i=1

Di(z) qi∂qi ,

for specific local two-forms Di(z), and q3 ≡ ε ∈ C is a parameter describing sewing
of two tori to form a genus two Riemann surface [14,15].

4.3. Genus two Ward identities for the Heisenberg VOA. Recall the notion
of the genus g projective connection s(g) is defined by [9]

s(g)(x) = 6 lim
x→y

(
ω(g)(x, y)− dxdy

(x− y)2

)
,

where ω(g) is the meromorphic differential of the second kind on a Riemann
surface. The projective connection s(g)(x) transforms under a general conformal
transformation x→ φ(x) as follows s(g)(φ(x)) = s(g)(x)−{φ;x}dx2, where {φ;x} =
φ′′′

φ′ −
3
2

(
φ′′

φ′

)2
is the Schwarzian derivative.

If v ∈ V is a primary vector, one obtains the Ward identity [8]

Z
(2)
V (ω̃, z1, v, z2, τ1, τ2, ε)

=
(
Dz1 + P1(z1, z2)∂z2 + wt[v] ∂z2P1(z1, z2)

)
Z

(2)
V (v, z2, τ1, τ2, ε) ,

for a specific P1(z1, z2) which depends on 2wt[v]− 2. Thus for the Heisenberg VOA
M we find that Z(2)

M satisfies the PDE:(
Dz −

1
12s

(2)(z)
)
Z

(2)
M (q) = 0 ,

which is the genus two counterpart of the relation(
q∂q −

1
2E2(q)

)
Z

(1)
M (q) = 0 .
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4.4. Ward identities for fermionic genus two correlation functions. Intro-
duce the differential operator [21,22,23,25]

D(g) = 1
2πi

∑
1≤i≤j≤g

ν
(g)
i (x) ν(g)

j (x) ∂

∂Ω(g)
ij

.

It includes holomorphic 1-forms ν(g)
i as well as derivative with respect to the genus

g Riemann surface period matrix Ω(g).
Let Z(2)

M be the genus two partition function for the rank one Heisenberg VOA
M [14,16]. We proved in [23] that the Virasoro one-point normalized differential
form for the rank two fermion VOSA satisfies the genus two Ward identity

(4.1)
F (2)
V,1

[
f(2)

g(2)

]
(ω̃, z)

Z
(2)
M

= e−2πiα(2)·β(2)
[
D(2) + 1

12s
(2)(z)

]
· ϑ(2)

[
α(2)

β(2)

] (
Ω(2)) .

Here the expression for the normalized genus two one-point differential form
is represented as the action of a differential operator on an automorphic func-
tion. One can generalize (4.1) to get a genus g formula. In contrast to the pure
algebraic–geometry [12, 20, 25] and physics approaches [1, 7], the Ward identity
shows up from algebraic properties of corresponding vertex algebra.

5. Ward identities from Zhu reduction

5.1. Conformal blocks for vertex operator algebras. Let us introduce the
space of chiral conformal blocks as the space CV (Mλ1 , . . . ,Mλn) of linear functionals

ϕ :
n⊗
i=1

Mλi → C .

A conformal block is called invariant when

ϕ (η · v) = 0 ,

for all v ∈
⊗n

i=1 Mλi , and η ∈ V ⊗ C[X \ {x1, . . . , xn}].
The set of genus g correlation functions for a vertex operator algebra forms a

conformal block, i.e., we consider as ϕ

(5.1) ϕ = ϕn(v) = F
(g)
Mλ1 ,...,Mλn

(v1, z1; . . . ; vn, xn) ,

a genus g n-point correlation function.

5.2. Generation of Ward identities. The general structure of the Zhu reduction
formulas have the form of the insertion of an extra state v on the right hand side
of the formula into lower n-point functions. This plays the role of the action of
corresponding vertex operator algebra in the general definition of the conformal
block for vertex operator algebras.

Taking into account properties of genus g for g = 0, 1 correlation functions we
introduce the operators J (g)

n+1, n ≥ 1, g = 0, 1 corresponding to the simplest version
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Zhu reduction operators given by

J
(g)
n+1 =

(
I + o(v1).−

n∑
r=1

∑
m≥0

f (g)
r ·̂ 1 ⊗

n⊗
j=1

(v(m))δj,r .
)
,

which act on n+ 1-correlation functions, and where f (g)
r are specific autmorphic

functions corresponding to the genus g, and v ∈ V acts on the tensor product, and
1̂ denotes skipping the first multiplier in the tensor product. Notice that in the case
of g = 1, modes v(m) have to be replaced with v[m] as we see from (3.2) and (3.4).

Proposition 2. For η = J
(g)
n+1, n ≥ 1, g = 0, 1 a conformal block ϕ (5.1) for vertex

is invariant,
ϕn+1

(
J

(0,1)
n+1 · v

)
= 0 ,

i.e., it satisfies the left chiral Ward identity.

For g = 2 an appropriate expression for the operator J (2)
n+1 can be derived taking

into account a version of the Zhu reduction procedure for g = 2 presented in [8]. The
Zhu reduction procedure can be generalized to the genus g case various examples
of vertex operator algebras. For higher genus cases we formulate the following

Conjecture 1. The genus g Zhu reduction procedure generates chiral Ward iden-
tities of the form ϕn+1

(
J

(g)
n+1 · v

)
= 0, for v ∈ V with an appropriate operator

J
(g)
n+1.

The Zhu reduction formulas results in corresponding relations for conformal
blocks.

Corollary 1. The n + 1-point conformal blocks expand into (finite) sum of the
n-point conformal blocks:

CV (Mλ1 , . . . ,Mλn+1) ⊂M× CV (Mλ1 , . . . ,Mλn),
where M is the space of genus g automorphic forms.
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